

Dell EMC Demo

VxRack FLEX and VxFlex Ready Nodes: Premier
HCI Platforms for Kubernetes Stateful Applications

Using VxFlex OS Container Storage Interface (CSI) driver to deliver

persistent storage for PostgreSQL and Cassandra.

December 2018

Introduction

2 VxRack FLEX and VxFlex Ready Nodes: Premier HCI Platforms for Kubernetes Stateful Applications | 000044

Date Description

December 2018 Initial release

The information in this publication is provided “as is.” Dell Inc. makes no representations or warranties of any kind with respect to the information in this

publication, and specifically disclaims implied warranties of merchantability or fitness for a particular purpose.

Use, copying, and distribution of any software described in this publication requires an applicable software license.

© 2018 Dell Inc. or its subsidiaries. All Rights Reserved. Dell, EMC, Dell EMC and other trademarks are trademarks of Dell Inc. or its subsidiaries. Other

trademarks may be trademarks of their respective owners.

Dell believes the information in this document is accurate as of its publication date. The information is subject to change without notice.

Introduction

3 VxRack FLEX and VxFlex Ready Nodes: Premier HCI Platforms for Kubernetes Stateful Applications | 000044

Table of contents

Table of contents .. 3

1 Introduction ... 4

2 Before you begin .. 7

2.1 Prerequisites ... 7

2.2 Introduction to Helm ... 7

3 Container Storage Interface (CSI) driver for VxFlex OS .. 8

3.1 Kubernetes architecture with VxFlex OS CSI driver ... 8

3.2 Installing the VxFlex OS CSI driver using Helm ... 9

4 PostgreSQL example deployment.. 11

4.1 Installing PostgreSQL using Helm .. 11

4.2 Testing PostgreSQL database with pgbench script. .. 12

4.3 Demonstrating benefits of persistent storage with PostgreSQL ... 14

5 Cassandra example deployment .. 17

5.1 Installing Cassandra using Helm .. 17

5.2 Testing Cassandra with Cassandra Stress Script .. 18

5.3 Demonstrating benefits of persistent storage with Cassandra ... 22

6 Summary .. 25

7 Technical support and resources ... 26

Introduction

4 VxRack FLEX and VxFlex Ready Nodes: Premier HCI Platforms for Kubernetes Stateful Applications | 000044

1 Introduction
VxRack FLEX and VxFlex Ready Nodes, also known as the Flex family, create a server-based SAN by

combining storage virtualization software, known as VxFlex OS, with Dell EMC PowerEdge servers to deliver

flexibility, scalability, and capacity on demand. Local storage resources are combined to create a virtual pool

of block storage with varying performance tiers. The Flex family enables you to start small (with as little as

four nodes) and scale incrementally. The Flex family provides enterprise-grade data protection, multi-tenant

capabilities, and add-on enterprise features such as QoS, thin provisioning, and snapshots. VxFlex OS is the

key enabler and provides an unmatched combination of performance, resiliency and flexibility to address

enterprise data center needs. The unique features of VxFlex OS make it an excellent complement to

Kubernetes for stateful applications, such as databases, continuous integration, logging and monitoring

platforms.

 Flex Family with VxFlex OS offers flexibility for installing virtual machines, containers, and bare
metal applications.

VxFlex OS is capable of supporting a single, scalable block storage service across hypervisors, container
platforms and other data center services. VxFlex OS offers true block storage as a service:

• Provisioned natively through Kubernetes

• Dynamically create and delete volumes on demand

• Support quality of service and security context through container storage interface

• Dynamically scale storage service to match demand

• Support fully non-disruptive updates without future fork-lift migrations

VxFlex OS components

Storage Data Client (SDC)

• Provides front-end volume access to applications and filesystems

• Installed on servers consuming storage

• Maintains peer-to-peer connections to every SDS managing a pool of storage

Storage Data Server (SDS)

• Abstracts local storage, maintains storage pools, and presents volumes to the SDCs

• Installed on servers contributing local storage to the VxFlex OS cluster

VxRack FLEX and VxFlex

Ready Nodes integrate with

multiple Kubernetes

implementations.

Introduction

5 VxRack FLEX and VxFlex Ready Nodes: Premier HCI Platforms for Kubernetes Stateful Applications | 000044

Metadata Manager (MDM)

• Oversees storage cluster configurations, monitoring, rebalances, and rebuilds

• Highly available, independent cluster installed on 3 or 5 different nodes

• May reside alongside SDCs and/or SDSs, or on separate nodes

• Sits outside the data path

Gateway

• Performs installation and configuration checks

• Acts as an endpoint for API calls and passes them to MDM

Direct integration with Kubernetes Dynamic Volume Support

VxFlex OS leverages a Container Storage Interface (CSI) compatible driver with Kubernetes, which supports

the broadest set of features for block storage integration. Using storage classes, persistent applications

dynamically provision VxFlex OS volumes directly for any persistent volume requirements.

Portability between bare metal and virtualized

deployments

VxFlex OS offers a choice of hypervisor and operating

system. Kubernetes customers can deploy with a

combination of VMware vSphere, Linux, and Windows

hosts, and serve block storage as a service to any of

those environments. This ability makes it possible to

deploy stateful applications with virtualized

Kubernetes and transition those applications to bare

metal if the applications or infrastructure requires

migration.

Supports the most demanding workloads

Stateful applications in container platforms have

varied requirements for high availability, performance

and protocols. Applications such as Cassandra,

Kafka, Elasticsearch, and PostgreSQL often have

very high throughput, bandwidth and availability

requirements.

VxFlex OS can handle the most demanding

workloads in the data center, including databases and

analytics platforms.

Deploy VxFlex OS within a Kubernetes cluster, or as external storage

VxFlex OS is extremely lightweight, a small fraction of the CPU and RAM available in the servers; therefore,

you can easily deploy VxFlex OS to run on both virtualized and bare metal systems as part of the Kubernetes

cluster itself. Conversely, when running large multi-tenant environments, VxFlex OS can be attractive to run a

separate storage cluster, apart from Kubernetes. You can deploy VxFlex OS on separate systems as well,

with effectively no performance delta between the two deployments.

Introduction

6 VxRack FLEX and VxFlex Ready Nodes: Premier HCI Platforms for Kubernetes Stateful Applications | 000044

Dynamically upgrade and scale for day-2 operations

The VxFlex OS architecture supports maintenance, lifecycle,

and dynamic scalability for container platforms. You can expand

the cluster dynamically, adding capacity and performance to an

existing environment and increase the performance of existing

volumes.

In addition, you can replace VxRack FLEX or VxFlex Ready

Node systems with newer hardware, without the need to

migrate, take downtime, or reconfigure existing systems.

Modular hyper-converged infrastructure that

delivers extreme performance, resiliency and

flexibility for Kubernetes

Before you begin

7 VxRack FLEX and VxFlex Ready Nodes: Premier HCI Platforms for Kubernetes Stateful Applications | 000044

2 Before you begin
Understanding the material in this document requires prior knowledge on containers, Kubernetes and VxFlex

OS. These concepts are not covered in detail in this document, however, links to helpful resource on these

topics are provided though out the document and in Technical Support and Resources.

2.1 Prerequisites
Ensure you have understood and completed the necessary prerequisites before proceeding to the

demonstration sections:

• Installation and configuration of VxFlex OS cluster per best practices

• Kubernetes 1.9.x, 1.10.x or 1.11.x cluster installed with Beta APIs enabled

- May be installed manually or with a certified installer such as Kubeadm

• VxFlex OS storage data client (SDC) deployed and configured on each Kubernetes worker/slave

node

- Kubernetes worker/slave nodes may be virtual machines or bare metal nodes

• Helm installed in your Kubernetes cluster

2.2 Introduction to Helm
Helm, a Cloud Native Computing Foundation (CNCF) project, is a package manager for Kubernetes. With the

help of Helm Charts you can define, install, and upgrade complex Kubernetes applications. Charts are easy to

create, version, share, and publish for use by developers and operators.

A repository of community supported Helm Charts is available at https://github.com/helm/charts.

Note: For more information about Helm, Helm Charts and installation instructions, see https://helm.sh/.

https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/
https://github.com/helm/charts
https://helm.sh/

Container Storage Interface (CSI) driver for VxFlex OS

8 VxRack FLEX and VxFlex Ready Nodes: Premier HCI Platforms for Kubernetes Stateful Applications | 000044

3 Container Storage Interface (CSI) driver for VxFlex OS
Container Storage Interface (CSI) is a community driven standard for persistent storage on container

orchestrators (COs) like Kubernetes. It enables storage providers to develop a single CSI driver for any CO

that has implemented CSI. This lets you dynamically provision storage through a Kubernetes

PersistentVolumeClaim (PVC).

Note: For more information about CSI with Kubernetes, see https://kubernetes-csi.github.io/docs/Home.html.

3.1 Kubernetes architecture with VxFlex OS CSI driver
The Kubernetes cluster for this demo was built with one master node and 3 worker nodes deployed on VxFlex

OS Ready Nodes. Figure 2 shows the logical view of a CSI driver on a Kubernetes cluster with three slave

nodes. The node plugin runs on each node and the controller plugin runs on any one of the nodes. In this

demo, the controller plugin is running on Node3. Figure 3 shows the detailed architecture of the deployment

and how the VxFlex OS SDC interacts with CSI components to deliver persistent storage to the Kubernetes

cluster.

 Logical view of a CSI plugin on a Kubernetes cluster with 3 slave nodes.

https://kubernetes-csi.github.io/docs/Home.html

Container Storage Interface (CSI) driver for VxFlex OS

9 VxRack FLEX and VxFlex Ready Nodes: Premier HCI Platforms for Kubernetes Stateful Applications | 000044

 VxFlex OS and Kubernetes architecture with CSI driver

3.2 Installing the VxFlex OS CSI driver using Helm
After deploying the Kubernetes cluster with the SDC in each worker node and installing Helm, you can easily

deploy the VxFlex OS CSI driver using the available Helm chart for VxFlex OS CSI installation.

Note: VxFlex OS CSI driver is open source and therefore support is provided only by the GitHub repository

maintainers.

1. Using a command shell, add the VxFlex OS Helm repository to your environment:

$ helm repo add vxflex https://vxflex-os.github.io/charts

2. Install the CSI driver by providing the required values in vxflex.yml file.

Note: Sample vxflex.yml is shown below, modify the values as per your environment.

$ helm install --name vxflex-csi --values=vxflex.yml vxflex/vxflex-csi

$ cat vxflex.yml

systemName: VxFlex_K8s

username: admin

password: dellemc@123

restGateway: https://192.168.11.69

storagePool: SP01

volumeNamePrefix: vxvol

Container Storage Interface (CSI) driver for VxFlex OS

10 VxRack FLEX and VxFlex Ready Nodes: Premier HCI Platforms for Kubernetes Stateful Applications | 000044

3. Now, verify the pods. It created 3 agent pods on each of the nodes and one controller pod on k8s-

slave3 node.

$ kubectl get pods -o wide --namespace default

NAME READY STATUS RESTARTS AGE IP NODE

vxflex-csi-agent-4nl86 2/2 Running 0 7d 192.168.11.82 k8s-slave2

vxflex-csi-agent-b9fcm 2/2 Running 0 7d 192.168.11.83 k8s-slave3

vxflex-csi-agent-nftnx 2/2 Running 0 7d 192.168.11.81 k8s-slave1

vxflex-csi-controller-0 3/3 Running 0 7d 10.244.3.3 k8s-slave3

4. Verify the storage class created by VxFlex OS.

Note: VxFlex OS was previously branded as ScaleIO and the CSI driver was developed prior to the

rebranding.

$ kubectl get storageclass

NAME PROVISIONER AGE

vxflex (default) csi-scaleio 7d

PostgreSQL example deployment

11 VxRack FLEX and VxFlex Ready Nodes: Premier HCI Platforms for Kubernetes Stateful Applications | 000044

4 PostgreSQL example deployment
PostgreSQL is a general purpose and object-relational database management system. It is one of the widely

used open-source database systems.

The following section demonstrates the successful deployment of PostgreSQL using the Container Storage

Interface (CSI) driver with Helm package manager for Kubernetes.

4.1 Installing PostgreSQL using Helm
1. Run the PostgreSQL using Helm with the following command:

Note: With Helm, add a specific version of a given chart with the --version switch. If you do not provide

any version, it downloads the latest chart available in the repo. Additional switches are available to configure

parameters of the Cassandra Helm chart to customize the deployment.

$ helm install stable/postgresql

Note: The following command output is truncated. The full output shows all resources (deployments, pods,

secrets, persistent volume claims, config maps, services, and so on) deployed by the Helm chart and more

notes for interacting with the deployment. For more information, go to: https://kubernetes-

csi.github.io/docs/Home.html

NAME: yucky-mole

LAST DEPLOYED: Fri Sep 14 03:11:04 2018

NAMESPACE: default

STATUS: DEPLOYED

…

…

2. Verify that the PostgreSQL pod is running.

$ kubectl get pods -o wide | grep “postgresql”

 yucky-mole-postgresql-647dcf66c6-lqkq 1/1 Running 0 21h

10.244.3.8 k8s-slave3 <none>

3. Verify the PersistentVolumeClaim was created for PostgreSQL container.

$ kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES

STORAGECLASS AGE

yucky-mole-postgresql Bound vxvol-01a95d36bb 8Gi RWO vxflex

27m

4. In addition, verify that the volume was created using VxFlex OS GUI.

Note: The 8 GB volume vxvol-01a95d36bb was dynamically created for the PostgreSQL pod and mounted

to the SDC.

https://kubernetes-csi.github.io/docs/Home.html
https://kubernetes-csi.github.io/docs/Home.html

PostgreSQL example deployment

12 VxRack FLEX and VxFlex Ready Nodes: Premier HCI Platforms for Kubernetes Stateful Applications | 000044

 VxFlex OS GUI showing the dynamically created volume through a Kubernetes
PersistentVolumeClaim.

5. The following command helps you know the cluster IP, port number, number of replicas, and the

deployment information for the PostgreSQL.

$ kubectl get all -l release="yucky-mole"

NAME READY STATUS RESTARTS AGE

pod/yucky-mole-postgresql-647dcf66c6-lqkqs 1/1 Running 0 47m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

service/yucky-mole-postgresql ClusterIP 10.99.143.115 <none> 5432/TCP 47m

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

deployment.apps/yucky-mole-postgresql 1 1 1 1 47m

NAME DESIRED CURRENT READY AGE

replicaset.apps/yucky-mole-postgresql-647dcf66c6 1 1 1 47m

4.2 Testing PostgreSQL database with pgbench script.
1. The pgbench_script.sh script helps in basic validation of Helm deployed Cassandra instances in

Kubernetes environment. Download pgbench_script.sh from the following link:

https://github.com/VxFlex-OS/kubernetes-demo-scripts/blob/master/postgresql/pgbench_script.sh

2. Add execute permissions to the script.

$ chmod +x pgbench_script.sh

3. Initialize the pgbench_script.sh script to generate random data on the PostgreSQL database.

Note: The pgbench_script_sh script outputs the kubectl commands being run to show how it is

interacting with the system.

$./pgbench_script.sh yucky-mole init

/usr/bin/kubectl run --namespace default yucky-mole-postgresql-pgbench-

init --restart=Never --rm --tty -i --image postgres --env

https://github.com/VxFlex-OS/kubernetes-demo-scripts/blob/master/postgresql/pgbench_script.sh

PostgreSQL example deployment

13 VxRack FLEX and VxFlex Ready Nodes: Premier HCI Platforms for Kubernetes Stateful Applications | 000044

"PGPASSWORD=ag1u1Gs0re" --command -- pgbench -i -s 100 -U postgres -h

yucky-mole-postgresql postgres

If you don't see a command prompt, try pressing enter.

100000 of 10000000 tuples (1%) done (elapsed 0.07 s, remaining 6.53 s)

200000 of 10000000 tuples (2%) done (elapsed 0.16 s, remaining 7.76 s)

…

…

9900000 of 10000000 tuples (99%) done (elapsed 9.34 s, remaining 0.09 s)

10000000 of 10000000 tuples (100%) done (elapsed 9.44 s, remaining 0.00 s)

vacuum...

set primary keys...

done.

pod "yucky-mole-postgresql-pgbench-init" deleted

4. Benchmark the storage using pgbench_script.sh.

Note: This script runs for 80 clients, each client running 5000 per transactions and a single thread.

$./pgbench_script.sh yucky-mole bench

/usr/bin/kubectl run --namespace default yucky-mole-postgresql-pgbench --

restart=Never --rm --tty -i --image postgres --env "PGPASSWORD=ag1u1Gs0re"

--command -- pgbench -c 80 -t 5000 -U postgres -h yucky-mole-postgresql

postgres

If you don't see a command prompt, try pressing enter.

transaction type: <builtin: TPC-B (sort of)>

scaling factor: 100

query mode: simple

number of clients: 80

number of threads: 1

number of transactions per client: 5000

number of transactions actually processed: 400000/400000

…

tps = 3878.014577 (including connections establishing)

tps = 3878.100832 (excluding connections establishing)

pod "yucky-mole-postgresql-pgbench" deleted

PostgreSQL example deployment

14 VxRack FLEX and VxFlex Ready Nodes: Premier HCI Platforms for Kubernetes Stateful Applications | 000044

5. Open a shell to the database and verify the data by running the following command:

$./pgbench_script.sh yucky-mole shell

/usr/bin/kubectl run --namespace default yucky-mole-postgresql-pgbench-

shell --restart=Never --rm --tty -i --image postgres --env

"PGPASSWORD=ag1u1Gs0re" --command -- psql -U postgres -h yucky-mole-

postgresql postgres

If you don't see a command prompt, try pressing enter.

postgres=# select * from pgbench_history;

 tid | bid | aid | delta | mtime | filler

------+-----+---------+-------+----------------------------+--------

 251 | 94 | 4581131 | -482 | 2018-09-18 06:37:06.212423 |

 719 | 100 | 3220561 | -689 | 2018-09-18 06:37:06.210452 |

 823 | 67 | 2145699 | 4488 | 2018-09-18 06:37:06.211361 |

…

…

postgresql# \q

4.3 Demonstrating benefits of persistent storage with PostgreSQL
We are going to demonstrate the behavior of persistent volumes if there is a pod failure or crash due to an

unforeseen situation. The pod was deployed as a replica set, as defined by the stable/postgresql Helm

chart, which ensures that specified numbers of replicas should be running at any given point. In the following

example, we terminate a pod. It automatically deploys the pod on another node and dynamically maps the

existing PersistentVolumeClaim.

1. Check that the current state matches the wanted state of the replica set.

$ kubectl get replicaset

NAME DESIRED CURRENT READY AGE

yucky-mole-postgresql-647dcf66c6 1 1 1 10d

2. Open two shells and watch the state of the containers to see what happens when it is terminated.

$ kubectl get pods -o wide | grep “postgresql”

yucky-mole-postgresql-647dcf66c6-lqkq 1/1 Running 0 21h 10.244.3.8

k8s-slave3 <none>

3. In one shell, run the command to terminate the pod and ensure that it moves to another host.

$./pgbench_script.sh yucky-mole kill-and-move

/usr/bin/kubectl taint node k8s-slave3 key=value:NoSchedule &&

/usr/bin/kubectl delete pod yucky-mole-postgresql-647dcf66c6-lqkqs

node/k8s-slave3 tainted

pod "yucky-mole-postgresql-647dcf66c6-lqkqs" deleted

PostgreSQL example deployment

15 VxRack FLEX and VxFlex Ready Nodes: Premier HCI Platforms for Kubernetes Stateful Applications | 000044

4. In the second shell, observe that pod is terminated and recreated on another host.

$ kubectl get pods -l release='yucky-mole' -o wide -w

NAME READY STATUS RESTARTS AGE

IP NODE NOMINATED

yucky-mole-postgresql-647dcf66c6-lqkqs 1/1 Running 0 23h

10.244.3.8 k8s-slave3 <none>

yucky-mole-postgresql-647dcf66c6-lqkqs 1/1 Terminating 0

1d 10.244.3.8 k8s-slave3 <none>

yucky-mole-postgresql-647dcf66c6-rwjxm 0/1 Pending 0

0s <none> k8s-slave1 <none>

yucky-mole-postgresql-647dcf66c6-rwjxm 0/1 ContainerCreating0

0s <none> k8s-slave1 <none>

5. The Pod has been moved from k8-slave3 to k8-slave1.

$ kubectl get pods -l release="yucky-mole" -o wide -w

NAME READY STATUS

RESTARTS AGE IP NODE NOMINATED

yucky-mole-postgresql-647dcf66c6-rwjxm 1/1 Running 0

4m 10.244.1.14 k8s-slave1 <none>

6. Validate that the data is still available.

$./pgbench_script.sh yucky-mole shell

/usr/bin/kubectl run --namespace default yucky-mole-postgresql-pgbench-

shell --restart=Never --rm --tty -i --image postgres --env

"PGPASSWORD=ag1u1Gs0re" --command -- psql -U postgres -h yucky-mole-

postgresql postgres

If you don't see a command prompt, try pressing enter.

postgres=# select * from pgbench_history;

 tid | bid | aid | delta | mtime | filler

------+-----+---------+-------+----------------------------+--------

 251 | 94 | 4581131 | -482 | 2018-09-18 06:37:06.212423 |

 719 | 100 | 3220561 | -689 | 2018-09-18 06:37:06.210452 |

 823 | 67 | 2145699 | 4488 | 2018-09-18 06:37:06.211361 |

 253 | 37 | 4280386 | 3098 | 2018-09-18 06:37:06.21243 |

 371 | 12 | 1555538 | -4713 | 2018-09-18 06:37:06.21119 |

 608 | 28 | 1723588 | 1352 | 2018-09-18 06:37:06.211775 |

 609 | 79 | 3513289 | -2808 | 2018-09-18 06:37:06.21036 |

 106 | 33 | 8417082 | 912 | 2018-09-18 06:37:06.212862 |

 671 | 92 | 6808976 | 2804 | 2018-09-18 06:37:06.211198 |

 425 | 50 | 1489168 | 1284 | 2018-09-18 06:37:06.212353 |

 728 | 47 | 2915084 | -3893 | 2018-09-18 06:37:06.209597 |

 807 | 51 | 5923066 | 2234 | 2018-09-18 06:37:06.209765 |

 569 | 61 | 3344005 | 2743 | 2018-09-18 06:37:06.210641 |

 498 | 76 | 2812169 | 797 | 2018-09-18 06:37:06.210001 |

 382 | 90 | 4818043 | 2533 | 2018-09-18 06:37:06.212732 |

 345 | 80 | 8707846 | -425 | 2018-09-18 06:37:06.209153 |

PostgreSQL example deployment

16 VxRack FLEX and VxFlex Ready Nodes: Premier HCI Platforms for Kubernetes Stateful Applications | 000044

 527 | 72 | 2528320 | 1936 | 2018-09-18 06:37:06.213047 |

 550 | 78 | 7613351 | 3556 | 2018-09-18 06:37:06.212987 |

…

…

Cassandra example deployment

17 VxRack FLEX and VxFlex Ready Nodes: Premier HCI Platforms for Kubernetes Stateful Applications | 000044

5 Cassandra example deployment
Cassandra is a linear scaling database with high availability and proven fault-tolerance. It is one of the widely

used open-source database systems for mission-critical data.

The following section demonstrates the successful deployment of Cassandra using the Container Storage

Interface (CSI) driver with Helm package manager for Kubernetes.

5.1 Installing Cassandra using Helm
1. Install Cassandra using Helm with the following command:

Note: With Helm, you can add a specific version of a given chart with the --version switch. If you do not

provide any version, it downloads the latest chart available in the repo. Additional switches are available to

configure parameters of the Cassandra Helm chart to customize the deployment.

$ helm install incubator/cassandra

Note: The following command output is truncated. The full output shows all resources (deployments, pods,

secrets, persistent volume claims, config maps, services, and so on) deployed by the Helm chart and

additional notes for interacting with the deployment.

NAME: muddled-molly

LAST DEPLOYED: Tue Oct 9 04:23:24 2018

NAMESPACE: default

STATUS: DEPLOYED

…

…

2. Verify that the pods were created on each of the slave nodes.

Note: A StatefulSet pod is deployed on every slave node by the Cassandra Helm Chart.

$ kubectl get pods -o wide | grep 'muddled-molly'

muddled-molly-cassandra-0 1/1 Running 0

11m 10.244.3.22 k8s-slave3 <none>

muddled-molly-cassandra-1 1/1 Running 0 9m

10.244.1.32 k8s-slave1 <none>

muddled-molly-cassandra-2 1/1 Running 0 7m

10.244.2.40 k8s-slave2 <none>

3. Verify the storage was created for Cassandra container.

$ kubectl get pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

data-muddled-molly-cassandra-0 Bound vxvol-97082578cb 16Gi

RWO vxflex 11m

data-muddled-molly-cassandra-1 Bound vxvol-ea81dab6cb 16Gi

RWO vxflex 9m

Cassandra example deployment

18 VxRack FLEX and VxFlex Ready Nodes: Premier HCI Platforms for Kubernetes Stateful Applications | 000044

data-muddled-molly-cassandra-2 Bound vxvol-3160ea70cb 16Gi

RWO vxflex 7m

4. Verify the storage was created using the VxFlex OS GUI.

Note: Three volumes, each with 16 GB, where created by the Cassandra highlighted in blue in Figure 5.

 VxFlex OS GUI showing the dynamically created volumes through a Kubernetes
PersistentVolumeClaim

5. The following command helps you know the Cassandra port number, number of replicas, and

deployment information.

$ kubectl get all -l release="muddled-molly"

NAME READY STATUS RESTARTS AGE

pod/muddled-molly-cassandra-0 1/1 Running 0 16m

pod/muddled-molly-cassandra-1 1/1 Running 0 13m

pod/muddled-molly-cassandra-2 1/1 Running 0 11m

NAME TYPE CLUSTER-IP EXTERNAL-IP

PORT(S) AGE

service/muddled-molly-cassandra ClusterIP None <none>

7000/TCP,7001/TCP,7199/TCP,9042/TCP,9160/TCP 16m

NAME DESIRED CURRENT AGE

statefulset.apps/muddled-molly-cassandra 3 3 16m

5.2 Testing Cassandra with Cassandra Stress Script
1. The csstress_script.sh script helps in basic validation of Helm deployed Cassandra instances

in Kubernetes environment. Download csstress_script.sh from the given link:

https://github.com/VxFlex-OS/kubernetes-demo-scripts/blob/master/cassandra/csstress_script.sh

https://github.com/VxFlex-OS/kubernetes-demo-scripts/blob/master/cassandra/csstress_script.sh

Cassandra example deployment

19 VxRack FLEX and VxFlex Ready Nodes: Premier HCI Platforms for Kubernetes Stateful Applications | 000044

2. Add execute permissions to script.

$ chmod +x csstress_script.sh

3. Initialize the csstress_script.sh script that creates data on Cassandra stress tool.

Note: The csstress_script.sh script outputs the kubectl commands being run to show how it is

interacting with the system.

$./csstress_script.sh muddled-molly init

/usr/bin/kubectl run --namespace default muddled-molly-cassandra-stress-

init --restart=Never --rm --tty -i --image cassandra --command --

cassandra-stress write n=100000 -rate threads=64 -node muddled-molly-

cassandra

If you don't see a command prompt, try pressing enter.

******************** Stress Settings ********************

Command:

 Type: write

 Count: 100,000

 No Warmup: false

 Consistency Level: LOCAL_ONE

 Target Uncertainty: not applicable

 Key Size (bytes): 10

 Counter Increment Distibution: add=fixed(1)

Rate:

 Auto: false

 Thread Count: 64

 OpsPer Sec: 0

Population:

 Sequence: 1..100000

 Order: ARBITRARY

 Wrap: true

Insert:

 Revisits: Uniform: min=1,max=1000000

 Visits: Fixed: key=1

……………………………

……………………………

total, 69514, 18363, 18363, 18363, 3.5, 3.4,

6.6, 8.5, 20.8, 22.4, 4.0, 0.07974, 0, 0, 0,

0, 0, 0

total, 90344, 20830, 20830, 20830, 3.1, 2.6,

6.9, 13.9, 23.6, 29.6, 5.0, 0.06942, 0, 0, 0,

0, 0, 0

total, 100000, 26327, 26327, 26327, 2.4, 2.1,

5.4, 7.3, 19.0, 26.6, 5.4, 0.08947, 0, 0, 0,

0, 0, 0

Results:

Cassandra example deployment

20 VxRack FLEX and VxFlex Ready Nodes: Premier HCI Platforms for Kubernetes Stateful Applications | 000044

Op rate : 18,633 op/s [WRITE: 18,633 op/s]

Partition rate : 18,633 pk/s [WRITE: 18,633 pk/s]

…

…

END

pod "muddled-molly-cassandra-stress-init" deleted

4. Benchmark the storage using the csstress_script.sh.

$./csstress_script.sh muddled-molly bench

/usr/bin/kubectl run --namespace default muddled-molly-cassandra-stress-

bench --restart=Never --rm --tty -i --image cassandra --command --

cassandra-stress read n=100000 -rate threads=64 -node muddled-molly-

cassandra

If you don't see a command prompt, try pressing enter.

******************** Stress Settings ********************

Command:

 Type: read

 Count: 100,000

 No Warmup: false

 Consistency Level: LOCAL_ONE

 Target Uncertainty: not applicable

 Key Size (bytes): 10

 Counter Increment Distibution: add=fixed(1)

Rate:

 Auto: false

 Thread Count: 64

 OpsPer Sec: 0

Population:

 Distribution: Gaussian:

min=1,max=100000,mean=50000.500000,stdev=16666.500000

 Order: ARBITRARY

 Wrap: false

…

…

total, 72712, 15061, 15061, 15061, 4.2, 2.7,

12.2, 40.3, 59.2, 64.9, 6.0, 0.17178, 0, 0,

0, 0, 0, 0

total, 91941, 19229, 19229, 19229, 3.3, 2.9,

7.0, 13.4, 36.1, 42.8, 7.0, 0.15204, 0, 0, 0,

0, 0, 0

total, 100000, 19661, 19661, 19661, 3.2, 2.5,

8.0, 18.7, 27.7, 33.3, 7.4, 0.13751, 0, 0, 0,

0, 0, 0

Results:

Op rate : 13,495 op/s [READ: 13,495 op/s]

Partition rate : 13,495 pk/s [READ: 13,495 pk/s]

Cassandra example deployment

21 VxRack FLEX and VxFlex Ready Nodes: Premier HCI Platforms for Kubernetes Stateful Applications | 000044

…

…

END

pod "muddled-molly-cassandra-stress-bench" deleted

5. Open a shell to the database and verify the data using the following command:

$./csstress_script.sh muddled-molly shell

/usr/bin/kubectl run --namespace default muddled-molly-cassandra-stress-

shell --restart=Never --rm --tty -i --image cassandra --command -- cqlsh

muddled-molly-cassandra

If you don't see a command prompt, try pressing enter.

cqlsh> select * from system_schema.keyspaces;

 keyspace_name | durable_writes | replication

--------------------+----------------+------------------------------------

 system_auth | True | {'class':

'org.apache.cassandra.locator.SimpleStrategy', 'replication_factor': '1'}

 system_schema | True |

{'class': 'org.apache.cassandra.locator.LocalStrategy'}

 keyspace1 | True | {'class':

'org.apache.cassandra.locator.SimpleStrategy', 'replication_factor': '1'}

 system_distributed | True | {'class':

'org.apache.cassandra.locator.SimpleStrategy', 'replication_factor': '3'}

 system | True |

{'class': 'org.apache.cassandra.locator.LocalStrategy'}

 system_traces | True | {'class':

'org.apache.cassandra.locator.SimpleStrategy', 'replication_factor': '2'}

(6 rows)

6. Open a shell to the database and verify the data using the following command:

cqlsh> describe keyspace1;

CREATE KEYSPACE keyspace1 WITH replication = {'class': 'SimpleStrategy',

'replication_factor': '1'} AND durable_writes = true;

CREATE TABLE keyspace1.counter1 (

 key blob,

 column1 text,

 "C0" counter static,

 "C1" counter static,

 "C2" counter static,

 "C3" counter static,

 "C4" counter static,

 value counter,

 PRIMARY KEY (key, column1)

) WITH COMPACT STORAGE

 AND CLUSTERING ORDER BY (column1 ASC)

Cassandra example deployment

22 VxRack FLEX and VxFlex Ready Nodes: Premier HCI Platforms for Kubernetes Stateful Applications | 000044

 AND bloom_filter_fp_chance = 0.01

 AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'}

 AND comment = ''

 AND compaction = {'class':

'org.apache.cassandra.db.compaction.SizeTieredCompactionStrategy',

'max_threshold': '32', 'min_threshold': '4'}

 AND compression = {'enabled': 'false'}

 AND crc_check_chance = 1.0

 AND dclocal_read_repair_chance = 0.1

 AND default_time_to_live = 0

 AND gc_grace_seconds = 864000

 AND max_index_interval = 2048

 AND memtable_flush_period_in_ms = 0

 AND min_index_interval = 128

 AND read_repair_chance = 0.0

 AND speculative_retry = '99PERCENTILE';

CREATE TABLE keyspace1.standard1 (

 key blob PRIMARY KEY,

 "C0" blob,

 "C1" blob,

 "C2" blob,

 "C3" blob,

 "C4" blob

) WITH COMPACT STORAGE

 AND bloom_filter_fp_chance = 0.01

 AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'}

 AND comment = ''

 AND compaction = {'class':

'org.apache.cassandra.db.compaction.SizeTieredCompactionStrategy',

'max_threshold': '32', 'min_threshold': '4'}

 AND compression = {'enabled': 'false'}

 AND crc_check_chance = 1.0

 AND dclocal_read_repair_chance = 0.1

 AND default_time_to_live = 0

 AND gc_grace_seconds = 864000

 AND max_index_interval = 2048

 AND memtable_flush_period_in_ms = 0

 AND min_index_interval = 128

 AND read_repair_chance = 0.0

 AND speculative_retry = '99PERCENTILE';

cqlsh>

5.3 Demonstrating benefits of persistent storage with Cassandra
We are going to demonstrate the behavior of persistent volumes if there is a pod failure or crash due to an

unforeseen situation. The pod was deployed as a stateful set, as defined by the incubator/cassandra

Helm chart, which ensures that specified numbers of replicas should be running at any given point of time. In

the example below we terminate a pod, it automatically deploys the pod on another node and dynamically

maps the existing PersistentVolumeClaim.

Cassandra example deployment

23 VxRack FLEX and VxFlex Ready Nodes: Premier HCI Platforms for Kubernetes Stateful Applications | 000044

1. Check that the current state matches the wanted state of the stateful set.

$ kubectl get statefulset 'muddled-molly-cassandra'

NAME DESIRED CURRENT AGE

muddled-molly-cassandra 3 3 29m

2. Open another shell and watch the state of the containers so that you can see what happens when it is

terminated.

$ kubectl get pods -o wide | grep 'muddled-molly'

muddled-molly-cassandra-0 1/1 Running 0

38m 10.244.3.22 k8s-slave3 <none>

muddled-molly-cassandra-1 1/1 Running 0

35m 10.244.1.32 k8s-slave1 <none>

muddled-molly-cassandra-2 1/1 Running 0

33m 10.244.2.40 k8s-slave2 <none>

3. Run the csstress_script.sh command to terminate the container and ensure that it moves to

another host.

$./csstress_script.sh muddled-molly kill-and-move

/usr/bin/kubectl taint node k8s-slave3 key=value:NoSchedule &&

/usr/bin/kubectl delete pod muddled-molly-cassandra-0

node/k8s-slave3 tainted

pod "muddled-molly-cassandra-0" deleted

4. In another shell, observe that container is terminated, and recreated on another host.

$ kubectl get pods -o wide | grep 'muddled-molly'

muddled-molly-cassandra-0 1/1 Running 0 1h

10.244.3.22 k8s-slave3 <none>

muddled-molly-cassandra-0 0/1 Terminating 0

1h 10.244.3.22 k8s-slave3 <none>

muddled-molly-cassandra-1 1/1 Running 0

1h 10.244.1.32 k8s-slave1 <none>

muddled-molly-cassandra-2 1/1 Running 0

58m 10.244.2.40 k8s-slave2 <none>

muddled-molly-cassandra-0 0/1 ContainerCreating 0

7s <none> k8s-slave4 <none>

Cassandra example deployment

24 VxRack FLEX and VxFlex Ready Nodes: Premier HCI Platforms for Kubernetes Stateful Applications | 000044

5. Next, see that the pod was moved from k8-slave3 to k8-slave1.

$ kubectl get pods -o wide | grep 'muddled-molly'

muddled-molly-cassandra-0 1/1 Running 0 2m

10.244.5.9 k8s-slave4 <none>

muddled-molly-cassandra-1 1/1 Running 0 1h

10.244.1.32 k8s-slave1 <none>

muddled-molly-cassandra-2 1/1 Running 0 1h

10.244.2.40 k8s-slave2 <none>

6. Validate that data is still available.

$./csstress_script.sh muddled-molly shell

/usr/bin/kubectl run --namespace default muddled-molly-cassandra-stress-

shell --restart=Never --rm --tty -i --image cassandra --command -- cqlsh

muddled-molly-cassandra

If you don't see a command prompt, try pressing enter.

cqlsh> select * from system_schema.keyspaces;

 keyspace_name | durable_writes | replication

--------------------+----------------+------------------------------------

 system_auth | True | {'class':

'org.apache.cassandra.locator.SimpleStrategy', 'replication_factor': '1'}

 system_schema | True |

{'class': 'org.apache.cassandra.locator.LocalStrategy'}

 keyspace1 | True | {'class':

'org.apache.cassandra.locator.SimpleStrategy', 'replication_factor': '1'}

 system_distributed | True | {'class':

'org.apache.cassandra.locator.SimpleStrategy', 'replication_factor': '3'}

 system | True |

{'class': 'org.apache.cassandra.locator.LocalStrategy'}

 system_traces | True | {'class':

'org.apache.cassandra.locator.SimpleStrategy', 'replication_factor': '2'}

(6 rows)

cqlsh>

Summary

25 VxRack FLEX and VxFlex Ready Nodes: Premier HCI Platforms for Kubernetes Stateful Applications | 000044

6 Summary
VxRack FLEX and VxFlex Ready Nodes with VxFlex OS are HCI offerings that can replace an enterprise

grade SAN using Dell EMC PowerEdge servers and intelligent software. They exhibit balanced and

predictable behavior, allow for varying performance and capacity ratios, decouple compute and storage

resources, and can scale enormously and non-disruptively.

These HCI platforms deliver consistent, predictable IOPS and latency, eliminating hotspots—an excellent

match for many Kubernetes environments as demonstrated in this demo.

The demo shows how easy it is to deploy PostgreSQL and Cassandra databases using helm, the usage of

CSI driver in achieving persistent storage for stateful applications and dynamic volume creation. The test

scripts also help in demonstrating the read and write transactions that are achieved per sec and show the

benefits of deploying the pod as replica set that in turn helps in achieving the HA.

Technical support and resources

26 VxRack FLEX and VxFlex Ready Nodes: Premier HCI Platforms for Kubernetes Stateful Applications | 000044

7 Technical support and resources
For more information about this technology, see the following links:

https://github.com/VxFlex-OS

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/

https://helm.sh/

https://github.com/helm/charts

https://github.com/container-storage-interface/spec/blob/master/spec.md

https://kubernetes-csi.github.io/docs/Home.html

VxRack FLEX Marketing Web page

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/
https://helm.sh/
https://github.com/helm/charts
https://github.com/container-storage-interface/spec/blob/master/spec.md
https://kubernetes-csi.github.io/docs/Home.html
https://www.dellemc.com/en-us/converged-infrastructure/vxrack-system/index.htm#scroll=off&tab0=0

	1 Introduction
	2 Before you begin
	2.1 Prerequisites
	2.2 Introduction to Helm

	3 Container Storage Interface (CSI) driver for VxFlex OS
	3.1 Kubernetes architecture with VxFlex OS CSI driver
	3.2 Installing the VxFlex OS CSI driver using Helm

	4 PostgreSQL example deployment
	4.1 Installing PostgreSQL using Helm
	4.2 Testing PostgreSQL database with pgbench script.
	4.3 Demonstrating benefits of persistent storage with PostgreSQL

	5 Cassandra example deployment
	5.1 Installing Cassandra using Helm
	5.2 Testing Cassandra with Cassandra Stress Script
	5.3 Demonstrating benefits of persistent storage with Cassandra

	6 Summary
	7 Technical support and resources

