Configuring Pools

H14976
REV 07
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Chapter 1</td>
<td>Introduction to pools</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>About pools</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Dynamic pools</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Traditional pools</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Storage tiers</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Pool best practices</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Spare drive policy (physical deployments only)</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Considerations for expanding pools</td>
<td>15</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Configuring pools</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Create a dynamic pool</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Create a traditional pool in physical deployments</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Create a pool in virtual deployments</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Enable automatic snapshot deletion for a pool</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Monitor pool space allocation and usage</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>View drive information</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Change pool properties</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Expand a pool in physical deployments</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Expand a pool in virtual deployments</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Delete a pool</td>
<td>22</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Introduction to Data Efficiency</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Optimizing drive performance using the FAST Cache and FAST VP (supported physical deployments only)</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Automatic snapshot deletion</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>About data reduction</td>
<td>25</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Managing the FAST Cache (supported physical deployments only)</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>About the FAST Cache</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>FAST Cache best practices</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Create the FAST Cache</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Enable or disable the FAST Cache for a pool</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>View system-level FAST Cache information</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>View pool-level Fast Cache Information</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Expand or shrink the FAST Cache capacity</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Delete the FAST Cache</td>
<td>30</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Managing FAST VP (supported physical deployments only)</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>About FAST VP</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Data relocation with FAST VP</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>FAST VP tiering policy</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Enable or disable scheduled data relocations at the system level</td>
<td>34</td>
</tr>
</tbody>
</table>
Stop a pool from participating in scheduled data relocations35
Manually initiate or stop data relocations for a pool35
Pause or resume data relocations for all pools ..35
Change system-level data relocation information ...35
Change data relocation information for a pool ...36
View pool-level FAST VP information ..36

Chapter 6 Understanding RAID (physical deployments only) 39
About RAID ..40
RAID configurations ...41
RAID for dynamic pools in Unisphere ..42
Drive IOPS by RAID type ..42

Chapter 7 Configuring pools using the CLI 45
Configure custom pools..46
 Create pools..47
 Change pool settings...52
 Add drives to pools...51
 View pools..52
 Delete pools..53
Manage pool tiers...62
 View storage tiers..62
View pool resources..64
View storage profiles (physical deployments only)..66
Manage drive groups (physical deployments only).69
 View drive groups..70
 View recommended drive group configurations......................................71
Manage storage system capacity settings..72
 View system capacity settings ..73
Manage system tier capacity settings..74
 View system tier capacity ..74
Change disk settings (virtual deployments only)..74
Pool use cases..75
 Create a pool using drives with specific characteristics..........................75
 Configure a dynamic pool..76
 Configure a traditional pool for an all-Flash model78
 Add drives to an existing pool..79
The show action command..80

Chapter 8 Managing the FAST Cache using the CLI (supported physical deployments only) 83
Manage FAST Cache..84
 Create FAST Cache...84
 View FAST Cache settings..85
 Extend FAST Cache...85
 Shrink FAST Cache..86
 Delete FAST Cache..86
Manage FAST Cache storage objects (physical deployments only).............87
 View FAST Cache storage objects..87

Chapter 9 Managing FAST VP using the CLI (supported physical deployments only) 89
CONTENTS

Manage FAST VP pool settings... 90
View FAST VP pool settings... 92
Change FAST VP pool settings... 92
Start data relocation.. 93
Stop data relocation... 94
Manage FAST VP general settings.. 95
Change FAST VP general settings.. 96
View FAST VP general settings... 97
Additional resources

As part of an improvement effort, revisions of the software and hardware are periodically released. Therefore, some functions described in this document might not be supported by all versions of the software or hardware currently in use. The product release notes provide the most up-to-date information on product features. Contact your technical support professional if a product does not function properly or does not function as described in this document.

Where to get help
Support, product, and licensing information can be obtained as follows:

Product information
For product and feature documentation or release notes, go to Unity Technical Documentation at: www.emc.com/en-us/documentation/unity-family.htm.

Troubleshooting
For information about products, software updates, licensing, and service, go to Online Support (registration required) at: https://Support.EMC.com. After logging in, locate the appropriate Support by Product page.

Technical support
For technical support and service requests, go to Online Support at: https://Support.EMC.com. After logging in, locate Create a service request. To open a service request, you must have a valid support agreement. Contact your Sales Representative for details about obtaining a valid support agreement or to answer any questions about your account.

Special notice conventions used in this document

⚠️ DANGER
Indicates a hazardous situation which, if not avoided, will result in death or serious injury.

⚠️ WARNING
Indicates a hazardous situation which, if not avoided, could result in death or serious injury.

⚠️ CAUTION
Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

NOTICE
Addresses practices not related to personal injury.

Note
Presents information that is important, but not hazard-related.
Additional resources
CHAPTER 1

Introduction to pools

This chapter contains the following topics:

- About pools .. 10
- Dynamic pools .. 10
- Traditional pools .. 11
- Storage tiers ... 12
- Pool best practices .. 13
- Spare drive policy (physical deployments only) .. 14
- Considerations for expanding pools .. 15
About pools

A pool is a set of drives that provide specific storage characteristics for the resources that use them. For example, the pool configuration defines the types and capacities of the drives in the pool. For physical deployments, the pool configuration also defines the RAID configurations (RAID types and stripe widths) for these drives.

You choose which pool to use when you create a new storage resource.

Note

Before you create storage resources, you must configure at least one pool. You cannot shrink a pool, and you cannot change its storage characteristics without deleting the storage resources configured in the pool and the pool itself. However, you can add drives to expand the pool.

Pools generally provide optimized storage for a particular set of applications or conditions. When you create a storage resource for hosts to use, you must choose a pool with which to associate the storage resource. The storage that the storage resource uses is drawn from the specified pool. If there are multiple drive types on the system, you can define multiple tiers for the pool. In physical deployments, each tier can be associated with a different RAID type.

Unity supports two types of pools, depending on your Unity model.

- Dynamic pools
- Traditional pools

All-Flash models running Unity OE version 4.2 and later supports both dynamic and traditional pools. In these models, all new pools created in the Unisphere GUI are dynamic pools. New pools created using the Unisphere CLI or REST API can be dynamic pools (the default) or traditional pools. Although you cannot create traditional pools in the Unisphere GUI, you can use the GUI to manage existing traditional pools.

All-Flash models running Unity OE version 4.1x and earlier, and all hybrid and VSA models support traditional pools only.

Dynamic pools

In Unity All-Flash models running OE version 4.2.x or later, all new pools created in the Unisphere GUI are dynamic pools, and new pools created in the Unisphere CLI and REST API are dynamic pools by default. Dynamic pools implement advanced RAID technology. In dynamic pools, a RAID group is spread across drive extents in multiple drives. The required spare space is also spread across drive extents in multiple drives. When a drive fails, the extents on the failed drive are rebuilt to spare space extents within the pool.

Note

For Unity All-Flash models running OE version 4.2.x or later, you can create traditional pools using the Unisphere CLI or REST API.

Dynamic pools have the following advantages over traditional pools:

- Drives are not wasted, because there are no fixed spares. All drives in the system can be added to a pool. This prolongs the life of the drives in the pool, since the load is spread across additional drives.
Rebuild times are usually much faster than with traditional pools. Since spare capacity for a dynamic pool is spread across multiple drives rather than concentrated in on a single hot spare drive, more drives contribute to the rebuilding process when a drive fails.

Pools can usually be expanded based on desired capacity. For example, you can add one drive at a time to a dynamic pool, providing provisioning flexibility and cost savings.

You can generally provision a dynamic pool with any number of drives, as long as the minimum drive number is satisfied for each specified drive type/capacity combination. The minimum drive number is the selected stripe width for a drive type/capacity combination plus one additional drive (for example, 6 drives for RAID 5 (4 + 1)).

The following considerations apply to dynamic pools:

- Once a dynamic pool is created, you cannot change its RAID type or stripe width. However, if you expand the pool using a different drive type, the added drives can have a different stripe width.

- You cannot shrink a dynamic pool or change its storage characteristics without deleting the storage resources configured in the pool and the pool itself. However, you can add drives to expand the pool.

- You can mix Flash drives of the same drive type with different capacities when you provision a dynamic pool. However, if you do this, the system might not use the entire capacity of the larger drives. This depends on how many drives of each capacity are in the pool. The unused capacity in a dynamic pool might become available during a future pool expansion.

One drive's worth of capacity equal to that of the largest drive in the pool is set aside as spare space for every set of 32 drives in a dynamic storage pool. For example, a dynamic pool with 1 to 32 drives of a given drive type has 1 drive's worth of spare space, while a dynamic pool with 33 to 64 drives of a given drive type has 2 drive's worth of spare space. At a minimum, there must be the equivalent capacity of one spare drive per pool. Therefore, to minimize the amount of spare capacity required, it is recommended that you create dynamic pools with larger, rather than smaller, numbers of drives of the same drive type.

Dynamic pools can be homogeneous or heterogeneous. All drives in a homogeneous pool have the same drive type, such as SAS Flash 2 or SAS Flash 3 drives. Drives in a heterogeneous pool can include SAS Flash 2 drives, SAS Flash 3 drives, and SAS Flash 4 drives.

Traditional pools

Pools created in UnityVSA models, hybrid models, and Unity All-Flash models running OE version 4.1.x or earlier are traditional pools. For Unity All-Flash models running OE version 4.2.x or later, you can create traditional pools using the Unisphere CLI or REST API, but not the Unisphere GUI.

Traditional pools can be homogeneous or heterogeneous. All drives in a homogeneous pool have the same drive type, such as SAS drives or SAS Flash 2 drives. Drives in a heterogeneous pool have a mixture of drive types, such as a mixture of NL-SAS, SAS, and SAS Flash 2 drives. Traditional pools can also be All-Flash or hybrid. A hybrid pool contains a mixture of Flash and non-Flash drives. All supported drive types can be included in a hybrid pool, except for SAS Flash 4 drives, which must be in an All-Flash pool.

In physical deployments, storage in traditional pools is managed in RAID group units, where:
• A drive is consumed by a single RAID group.
• A RAID group is limited to a maximum of 16 drives and is composed of drives of the same type.
• Each tier supports a single RAID type.

Since storage in traditional pools is managed in RAID group units, adding capacity to a pool requires that you add drives in RAID group increments. For example, to add drives to a pool with RAID 5 (4+1), you must add at least 5 drives to the pool. As drive capacity increases, the minimum amount of storage that can be added to a pool and the cost of that storage become increasingly large.

The following considerations apply to traditional pools:

• Once a tier in a traditional pool is created, you cannot change the RAID type or stripe width of the existing drives in the tier. However, if you expand a tier within a traditional pool, you can specify a different stripe width for the newly-added drives. When you add a new tier to a traditional pool, you can specify a different RAID type, stripe width, or both for the newly-added drives.

• You cannot shrink a traditional pool or change its storage characteristics without deleting the storage resources configured in the pool and the pool itself. However, you can add drives to expand the pool.

With traditional pools, the storage system uses dedicated hot spares to replace a drive that has failed or faulted. Any unused drive in the system with the appropriate drive technology and size can be used to replace a failed or faulted drive in a pool. If a spare drive with the same type and size is not available, the system can use a larger drive of the same type. Because spare drives are dedicated hot spares, they cannot be used to improve pool performance or mitigate Flash drive wear. Also, when a drive fails or is faulted, the whole drive must be rebuilt on the spare drive. Therefore, the rebuild time can be very long, because it is limited by the performance of the single drive whose contents is being rebuilt. This can impact performance. It can also increase the chances of encountering additional drive failures during the rebuild process, which can lead to data loss.

Storage tiers

The storage tiers available for both physical and virtual deployments are described in the table below.

• For physical deployments, the storage tier is associated with the physical drive type.
• For virtual deployments, the storage tier is associated with the virtual disk's underlying characteristics and must be manually assigned.
• For both types of deployments, if FAST VP is installed on the system, you can create tiered pools to optimize drive utilization. A tiered pool consists of multiple drive types, such as SAS Flash 2 drives and SAS drives.

<table>
<thead>
<tr>
<th>Storage tier</th>
<th>Drive types</th>
<th>Description</th>
<th>Default RAID configuration (physical deployments only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extreme Performance tier</td>
<td>Solid state extreme performance drives. The following types are supported:</td>
<td>Provides very fast access times for resources subject to variable workloads. For</td>
<td>RAID 5 (8 + 1).</td>
</tr>
</tbody>
</table>
Table 1 Storage tier descriptions (continued)

<table>
<thead>
<tr>
<th>Storage tier</th>
<th>Drive types</th>
<th>Description</th>
<th>Default RAID configuration (physical deployments only)</th>
</tr>
</thead>
</table>
| | - SAS Flash 2
 | - SAS Flash 3
 | - SAS Flash 4 | example, databases can achieve their best performance when using SAS Flash drives. SAS Flash drives are more expensive than SAS drives per GB of storage. SAS Flash 2, SAS Flash 3, and SAS Flash 4 drives can be used together in the Extreme Performance tier. Only SAS Flash 2 drives can be used in the FAST Cache, and only SAS Flash 2 and SAS Flash 3 drives can be used in FAST VP. | | |
| Performance tier | SAS - Rotating performance drive | Provides high, all-around performance with consistent response times, high throughput, and good bandwidth at a mid-level price point. Performance tier storage is appropriate for database resources accessed centrally through a network. | RAID 5 (4 + 1). |
| Capacity tier | NL-SAS - Rotating capacity drive | Provides the highest storage capacity with generally lower performance. Capacity storage is appropriate for storing large amounts of data that is primarily static (such as video files, audio files, and images) for users and applications that do not have strict performance requirements. |

Note
For data that changes or is accessed frequently, capacity tier storage has significantly lower performance.

Pool best practices

Using fewer pools reduces complexity and increases flexibility. However, it may be appropriate to configure multiple pools, in order to:
Introduction to pools

- Separate workloads with different I/O profiles.
- Dedicate resources to meet specific performance goals.
- Separate resources for multi-tenancy.
- Create smaller failure domains.
- (Traditional hybrid pools only) Separate pools where FAST Cache is and is not active.

Pools must maintain free capacity in order to operate properly. By default, the storage system raises an alert if a pool has less than 30% free capacity, and will begin to automatically invalidate snapshots and replication sessions if a pool has less than 5% free capacity. It is recommended that a pool always have at least 10% free capacity.

All-Flash pools

All-Flash pools provide the highest level of performance in Unity. Use an all-Flash pool for applications that require the highest storage performance at the lowest response time. Note the following about all-Flash pools:

- Compression is only supported in all-Flash pools.
- Snapshots and replication operate most efficiently in all-Flash pools.
- FAST Cache and FAST VP are not applicable to all-Flash pools.

Follow these best practices for dynamic pools:

- Because of the way spare space is reserved for dynamic pools, it is recommended that you create dynamic pools with larger, rather than smaller, numbers of drives of the same drive type. Following this practice minimizes the amount of spare capacity required for a dynamic pool.
- Expanding a dynamic pool by adding multiples of the pool’s RAID stripe width plus one allows space to be available faster than if you expand the pool by adding fewer drives. You can see the RAID stripe width for a pool with a single drive type by using the CLI.

For traditional pools, it is recommended that you use a single drive size and a single RAID width within a traditional all-Flash pool.

Hybrid pools

Hybrid pools typically provide greater capacity at a lower cost than all-Flash pools, but also typically have lower overall performance and higher response times. Use hybrid pools for applications that do not require consistently low response times, or that have large amounts of mostly inactive data.

It is recommended that you provision a Flash tier in hybrid pools. The Flash tier helps enable pool performance efficiencies, and improves response times when using snapshots or replication, or both. The minimum recommended Flash capacity is at least 5% of the pool capacity.

You can improve the performance of a hybrid pool by increasing the amount of capacity in the Flash tier, so that more of the active dataset resides on and is serviced by the Flash drives.

Hybrid pools can have up to three tiers (Extreme Performance, Performance, and Capacity). It is recommended that you use a single drive speed, size, and RAID width within a tier of a hybrid pool.

Spare drive policy (physical deployments only)

The spare drive policy applies only to traditional pools.
Any unused drive in the system with the appropriate drive technology and size, or larger, can be used to replace a failed or faulted drive in a traditional pool. Most of the drive configurations require the use of hot sparing, except for the following:

- If the system has only 8 drives in total, and they are of the same type, you can configure RAID 6 (6+2) with no hot spare.
- If the system has only 12 drives in total, and they are of the same type, you can configure RAID 6 (10+2) with no hot spare.

Note

When you expand traditional pools for a drive configuration, the system prevents you from configuring all available drives, so as to leave some drives as spares.

The spare drive policy follows these rules to determine how many drives are left as spares:

- In general, the system reserves one spare drive for every group of 1-31 drives that have the same type, capacity, and rotational speed (or Flash type). For example, if there are 40 300-GB, 15K-RPM SAS drives in the system, the system reserves two of those drives as spares.
- The system does not reserve a spare drive for:
 - The FAST Cache.
 - A system drive, unless it has user data on it.
- Any unused non-system drive can become a spare drive.
- A system drive that does not contain user data can be a spare drive for a failed system drive that has user data.
- A spare drive can be used to replace a failed or faulted drive in the FAST Cache.
- When a spare drive swaps into a pool, it becomes a permanent member of that pool and cannot be used in another pool.
- When a broken drive is fixed or replaced, it can be a candidate for a spare drive or used in another pool.

Refer to the compatibility and interoperability documentation on the support website for a listing of basic platform and component support for the storage system, including capacity limits.

Considerations for expanding pools

Dynamic pools

You can usually expand dynamic pools based on desired capacity instead of by adding drives that are multiples of the pool's RAID stripe width plus one. For example, you can add two drives to a RAID 5 pool instead of six drives. The following exceptions apply:

- If you add a new drive type when you expand a pool, you must expand the pool with the minimum amount of drives required for the selected RAID configuration.
- Depending on the RAID configuration and number of drives in the pool, there are certain internal thresholds at which you must expand the pool with multiples of the pool's RAID stripe width plus one. The system tells you how many drives you need to add when you try to expand a pool that has reached one of these thresholds.

Expanding a pool by adding multiples of the pool's RAID strip width plus one allows space to be available faster than if you expand the pool by adding fewer drives. You can see the RAID stripe width for a pool by accessing the RAID tab on the pool's properties page.
Traditional pools
You expand a traditional pool by adding drives to the pool’s existing tiers, adding new tiers that have available drives, or both. When you add drives, you must add them in multiples of the selected RAID stripe width.

Note
You cannot expand an All-Flash pool in a hybrid model by adding SAS or NL-SAS drives if the pool contains:

- SAS Flash 4 drives.
- Data reduction-enabled thin LUNs or thin file systems.
- Data reduction savings. For example, data reduction was enabled for a period of time on a resource and then subsequently disabled. The savings for when data reduction was enabled is still available.
CHAPTER 2

Configuring pools

This chapter contains the following topics:

- Create a dynamic pool ... 18
- Create a traditional pool in physical deployments 18
- Create a pool in virtual deployments .. 19
- Enable automatic snapshot deletion for a pool 20
- Monitor pool space allocation and usage 20
- View drive information .. 20
- Change pool properties ... 21
- Expand a pool in physical deployments 21
- Expand a pool in virtual deployments 22
- Delete a pool ... 22
Create a dynamic pool

Before you begin

In Unity All-Flash models running OE version 4.2.x or later, all new pools created in the Unisphere GUI are dynamic pools, and new pools created in the Unisphere CLI and REST API are dynamic pools by default. Before you create a dynamic pool:

- Decide what RAID protection to use for the pool.
- Decide whether to create a capability profile that has capabilities based on the pool configuration. To use the capability profile for VMware VVols, you must assign specific usage tags, which are propagated to the VMware vSphere environment, and can be used in policy profiles. The virtualization administrator and storage administrator should work together to define these tags.

Note

You cannot change the RAID type of a dynamic pool once it is created. Also, you cannot shrink a dynamic pool or change its storage characteristics without deleting the storage resources configured in the pool and the pool itself. However, you can add drives to expand the pool.

Procedure

1. Under **Storage**, select **Pools**.
2. Select the **Add** icon.
3. Follow the steps in the wizard.

 The number and types of drives you can choose is based on the RAID configuration, which you can optionally change.

Create a traditional pool in physical deployments

Before you begin

All pools created with All-Flash models running Unity OE version 4.1.x and earlier, and all hybrid and VSA models support traditional pools only. With newer All-Flash models, you can create a traditional pool using the Unisphere CLI and REST API.

Before you create a traditional pool:

- If you have a hybrid model, find out whether the storage system is licensed for FAST Cache. To do this, select the Settings icon, and then select **Storage Configuration > FAST Cache**. If the storage system is licensed for FAST Cache, you can choose whether to use it for the pool.
- If you have a hybrid model, find out whether the storage system is licensed for FAST VP. To do this, select the Settings icon, and then select **Storage Configuration > FAST VP**. If the storage system is licensed for FAST VP you can choose which storage tiers to add to the pool.
- Decide whether to change the suggested RAID type of the tiers.
- Decide whether to create a capability profile that has capabilities based on the pool configuration. To use the capability profile for VMware VVols, you must assign specific usage tags, which are propagated to the VMware vSphere environment, and can be used in policy profiles. The virtualization administrator and storage administrator should work together to define these tags.
Procedure

1. Under Storage, select Pools.
2. Select the Add icon.
3. Follow the steps in the wizard, taking into account the following considerations:
 - On the Tiers screen, you can only select multiple storage tiers if the system is a hybrid model that is licensed to use FAST VP. The wizard displays a maximum usable capacity for each selected tier, which it calculates based on the default RAID configuration. You can optionally change the RAID configuration for all selected tiers.
 - The number and types of drives you can choose is based on the RAID configuration.

Create a pool in virtual deployments

Before you begin

All pools created in virtual deployments are traditional pools.

Before you create a traditional pool:

- From the storage administrator, obtain information about the underlying characteristics of the drives to use in the pool. You will use this information to assign tiers to the virtual disks that do not already have them assigned. You can create a multi-tier pool if the system has multiple underlying drive types.
- Decide whether to create a capability profile for VMware VVols that has capabilities based on the pool configuration. To use the capability profile, you must assign specific usage tags, which are propagated to the VMware vSphere environment, and can be used in policy profiles. The virtualization administrator and storage administrator should work together to define these tags.

Note

You cannot shrink a pool or change its storage characteristics without deleting the storage resources configured in the pool and the pool itself. However, you can add drives to expand the pool.

Procedure

1. Under Storage, select Pools.
2. Select the Add icon.
3. Select the tiers and virtual disks to use in the pool. Each virtual disk must have an assigned tier. If the virtual disks you want to include in the pool do not have assigned tiers, you must assign one. The tier you select for a virtual disk must be based on the underlying drive characteristics.
4. Optionally create a VMware capability profile for use by VVols, and specify usage tags for that profile.
Enable automatic snapshot deletion for a pool

Procedure

1. Under Storage, select Pools.
2. Select the relevant pool, and click the Edit icon.
3. Select the Snapshot Settings tab.
4. In the Automatically delete oldest snapshots section, select whether you want the automatic deletion to occur when the total pool consumption space reaches a threshold you set, snapshot pool consumption space reaches a threshold you set, or both. For each option, you can also set the threshold when the automatic snapshot deletion stops.

Monitor pool space allocation and usage

Procedure

1. Under Storage, select Pools.
2. Select the relevant pool, and then select the Edit icon.
3. Select Usage > Capacity to view pool space usage with metrics on: current pool capacity, space used, alert threshold, data reduction savings, and a graph showing the pool's used capacity over time.

Note the following:

- The Non-base Space field displays the space used by all snapshots and thin clones in the pool.
- The Used field displays the percentage of the pool's total space that has been reserved by its associated storage resources. This total includes the space used by thin clones and snapshots. When this value is over 100%, the pool is oversubscribed.
- The Preallocated Space displays the amount of remaining space in the pool that is reserved for, but not actively being used by, a storage resource.
- The Alert Threshold field displays the percentage of storage allocation at which Unisphere generates notifications about the amount of space remaining in the pool. You can set this value between 50% and 84%.

4. Select Storage Resources to view a list of storage resources in the pool, along with the following metrics: total amount of pool space used by each resource and amount of pool space used for each resource's snapshots and thin clones.

View drive information

Procedure

1. Select the Settings icon, and then select Storage Configuration > Drives to view the information about the drives in the storage system:

 - For physical deployments this includes the drive type, capacity, total number of drives, number of unconfigured and configured drives, and number of drives in the FAST Cache.
For virtual deployments, this includes the size and WWN of the virtual drives that are available for use in a pool. Drives that are already used in a pool or that are faulted are not included in the list.

2. To view information about unconfigured drives for a specific drive type and capacity, select the number in the Unconfigured - Available column. The system displays the name, type, drive size, and rotational speed (for hard drives) of the available drives.

Change pool properties

Procedure

1. Under Storage, select Pools.
2. Select the relevant pool, and then select the Edit icon.
3. On the General tab, optionally change the pool name and description.
4. On the Drives tab, review the characteristics of the drives in the pool.
5. On the Usage tab, select Capacity to view the amount of free space in the pool, subscribed pool capacity, pool used capacity history, and space saved (if data reduction is enabled on a storage resource which supports it). You can also change the alert threshold.

Note the following:

- The Used field displays the percentage of the pool's total space that has been reserved by its associated storage resources. This total includes the space used by thin clones and snapshots. When this value is over 100%, the pool is oversubscribed.
- The Non-base Space field displays the space used by all snapshots and thin clones in the pool.
- The Preallocated Space displays the amount of remaining space in the pool that is reserved for, but not actively being used by, a storage resource.
- The Alert Threshold field displays the percentage of storage allocation at which Unisphere generates notifications about the amount of space remaining in the pool. You can set this value between 50% and 84%.

6. On the Usage tab, select Storage Resources to view a list of storage resources in the pool, along with applicable metrics.
7. On the FAST VP tab (which appears if FAST VP is licensed), view data relocation and tier information for the pool. You can also exclude the pool from data relocations, manually start or stop data relocations for the pool, and manually move data to different tiers. Click Manage FAST VP settings to manage system-wide FAST VP settings.
8. On the Snapshot Settings tab, review and optionally change the properties for snapshot automatic deletion.
9. On the RAID tab (dynamic pools only), view the number of drives per drive type in the pool as well as the RAID type and stripe width of each drive type.

Expand a pool in physical deployments

Expand a dynamic or traditional pool by adding drives to the pool tiers.
Procedure
1. Under Storage, select Pools.
2. Select the pool to expand, and then select Expand Pool.

Note
If the Expand Pool button is disabled, a tool tip will display with an explanation.

3. On the Storage Tiers tab, select the storage tiers for the drives you want to add to the pool.
4. On the Drives tab, select the number of drives to add to each tier. You can select Flash drives by capacity.

Expand a pool in virtual deployments
Expand a pool by adding virtual disks to the pool. Before you expand a pool, obtain information from your storage administrator about the underlying characteristics of the virtual disks to use in the pool.

Procedure
1. Under Storage, select Pools.
2. Select the pool to expand, and then select Expand Pool.
3. On the Assign Tier to the Virtual Disk page, assign or optionally change the storage tiers to which virtual disks are assigned. To do this, select the virtual disk, select the Edit icon, and then select the tier.
4. On the Tiers page, select one or more tiers to add to the pool.
5. On the Virtual Disks page, select the virtual disks to add to the pool.

Delete a pool
You can delete pools if they contain no allocated storage resources, including consistency groups, LUNs, file systems, VMware datastores, or NAS servers.

Procedure
1. Under Storage, select Pools.
2. Select the pool to delete, and click the Delete icon.
CHAPTER 3

Introduction to Data Efficiency

This chapter contains the following topics:

- Optimizing drive performance using the FAST Cache and FAST VP (supported physical deployments only) ... 24
- Automatic snapshot deletion .. 25
- About data reduction .. 25
Optimizing drive performance using the FAST Cache and FAST VP (supported physical deployments only)

The FAST (Fully Automated Storage Tiering) Suite includes features that enable you to:

- Leverage SAS Flash 2 drives as additional read/write cache for improved performance (FAST Cache).
- Dynamically tier data across different types of drives (FAST VP). FAST VP can use all supported drive types except SAS Flash 4.

Comparison of FAST Cache and FAST VP

The following table describes the differences between the FAST Cache and FAST VP features:

<table>
<thead>
<tr>
<th>Table 2 Differences between the FAST Cache and FAST VP features</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAST Cache</td>
</tr>
<tr>
<td>Enables SAS Flash 2 drives to be used as an additional read/write cache for the storage system.</td>
</tr>
<tr>
<td>Caches 64-KB data chunks for higher performance.</td>
</tr>
<tr>
<td>Copies data from Hard Disk Drives (HDDs) to Flash drives when the data is accessed frequently.</td>
</tr>
<tr>
<td>Adapts continuously to changes in workload.</td>
</tr>
</tbody>
</table>

Interoperability considerations

You can use FAST Cache and FAST VP functionality together to yield high performance and improve Total Cost of Ownership (TCO) for the storage system. It is recommended that you:

1. Use available SAS Flash 2 drives for the FAST Cache first, because this can benefit all storage resources in the storage system.
2. Supplement performance as needed by adding additional SAS Flash 2 drives to pool tiers for use by FAST VP.

For example, in scenarios where limited SAS Flash 2 drives are available, you can use SAS Flash 2 drives to create the FAST Cache, and you can apply FAST VP on a one- or two-tier pool (SAS and NL-SAS). From a performance point of view, FAST Cache dynamically provides performance benefits to bursts of data, while FAST VP moves "hotter" data to performance drives and "colder" data to capacity drives. From a TCO perspective, FAST Cache, with a small number of Flash drives, serves the data that is accessed most frequently, while FAST VP optimizes drive utilization and efficiency.

The FAST Cache feature is storage-tier-aware and works with FAST VP to make sure that the storage system resources are not wasted by unnecessarily copying data to
FAST Cache, if it is already on a Flash drive. If FAST VP moves a chunk of data to the Extreme Performance Tier on a pool, the system will not copy that chunk of data into FAST Cache, even if FAST Cache criteria is met for promotion. This ensures that the storage system resources are not wasted in copying data from one Flash drive to another.

Automatic snapshot deletion

Automatic snapshot deletion is a space management feature used to automatically manage the number of snapshots in a pool. This feature is triggered when the total pool consumption or pool consumption by the snapshots reach a high threshold you define. The system automatically starts deleting old and expired snapshots until the pool space reaches a set threshold.

Expired snapshots are deleted first. If deleting the expired snapshots does not still result in reaching the thresholds, the system starts deleting the detached oldest snapshots with the automatic deletion option enabled. Automatic deletion does not apply to snapshots attached to hosts, including attached groups of snapshots on a consistency group. It also does not apply to system snapshots used for replication.

You can set a snapshot of a storage resource for automatic deletion when the snapshot expires (by setting a snapshot expiration date) or the associated pool reaches the auto delete threshold settings. The following table explains the automatic snapshot deletion options:

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pool</td>
<td>Applies to snapshots of storage resources and pools. When the pool reaches a certain threshold, the system automatically deletes the snapshot.</td>
</tr>
<tr>
<td>Expiration time</td>
<td>Applies to snapshots of storage resources. This is the time when the snapshot expires.</td>
</tr>
</tbody>
</table>

Note

If a snapshot has automatic snapshot deletion enabled, it cannot be used as a source snapshot for creating or refreshing a thin clone.

Table 3 Automatic snapshot deletion options

About data reduction

Applying data reduction saves space on the system. Data reduction includes savings from deduplicating blocks which contain internally-defined data patterns, including zero detection and compression. Data reduction is available for thin LUNs, thin file systems, and thin NFS and VMFS datastores created in All-Flash pools. The thin file system must be created on a Unity system that is running OE version 4.2.x or later.

A single switch called Data Reduction controls deduplication of the blocks at an individual LUN and file system level. Adding a subsequent switch called Advanced Deduplication controls a deeper, dynamic ability for deduplicating data blocks within a given storage resource that do not contain internally-defined data patterns.
Data reduction is applied on all new incoming writes. Data that cannot be deduplicated or compressed is detected, and is written uncompressed.

Data that already exists on a LUN will not have data reduction applied after data reduction is enabled. In order to apply data reduction to existing LUN data, you must use the LUN Move feature to move the LUN's data to a destination LUN that has data reduction enabled.

The Advanced Deduplication option helps increase the storage efficiency of systems above what is achieved with data reduction on a LUN, file system, or datastore. It provides the ability to reduce the amount of storage needed for user data by keeping only a small number of copies (often just one copy) of a data block with a given content. Advanced deduplication can be enabled only if data reduction is enabled first.

The Advanced Deduplication switch is available only on:

- Dynamic or Traditional pools in Unity 380F, 480F, 680F, and 880F systems
- Dynamic pools in Unity All-Flash 450F, 550F, and 650F systems
- All-Flash pools in Unity Hybrid 380, 480, 680, and 880 systems

If you need to convert an All-Flash pool to a hybrid pool (adding non-Flash drives to an All-Flash pool), any LUNs, file systems, or datastores that use data reduction must be deleted or moved. Hybrid pools cannot have data reduction enabled, and you cannot create a data reduction-enabled LUN, file system, or datastore in a hybrid pool. An All-Flash pool can contain both data reduction-enabled and non-data reduction enabled LUNs, file systems, or datastores.

For additional information, refer to the Dell EMC Unity: Data Reduction white paper.
CHAPTER 4

Managing the FAST Cache (supported physical deployments only)

This chapter contains the following topics:

- About the FAST Cache ... 28
- FAST Cache best practices .. 29
- Create the FAST Cache ... 29
- Enable or disable the FAST Cache for a pool 29
- View system-level FAST Cache information 29
- View pool-level Fast Cache Information 30
- Expand or shrink the FAST Cache capacity 30
- Delete the FAST Cache .. 30
About the FAST Cache

FAST Cache functionality is available in traditional, hybrid pools with Flash drives. It is not applicable to dynamic pools.

The FAST Cache is a large capacity secondary cache that uses SAS Flash drives to improve system performance by extending the storage system's existing caching capacity. You can configure individual pools to use the FAST Cache. When you do this, all storage resources created in those pools will use the FAST Cache.

Note

The use of SAS Flash 3 or SAS Flash 4 type drives for the FAST Cache is not supported.

The FAST Cache provides the following benefits:

- **Improved Total Cost of Ownership (TCO)**
 The FAST Cache reduces the number of drive spindles needed for a given level of performance and allows you to replace high performance drives with more economical options. This is possible because the load on back-end hard drives is reduced. Because the FAST Cache copies the busy subsets of large storage capacities in 64 KB data chunks to Flash drives, the busiest areas of many LUNs or file systems use a small set of Flash drives. This allows a large set of slower, less expensive drives to deliver the performance typically provided by faster, more expensive drives. Over a period of time, pools with faster SAS drives can be replaced by new pools with slower NL-SAS drives, while maintaining the same application performance. This improves the financial (IOPS/dollar) and power (IOPS/KWH) efficiency of the storage system.

- **Reduced complexity**
 At a system level, the FAST Cache helps make the most efficient use of Flash drive capacity. The FAST Cache does this by using Flash drives for the most frequently accessed data in the storage system instead of dedicating Flash drives to a particular application. It adjusts to a hot spot anywhere in the storage system, so that you do not need to analyze specific application requirements. It provides better performance to all applications in the storage system while using fewer Flash drives.

- **Highly scalable cache capacity**
 The FAST Cache can scale up to a larger capacity than the maximum DRAM Cache capacity. This larger cache capacity means that all or a higher percentage of a customers working set can be promoted into the better performing FAST Cache. The working set is the most active part of an application.

FAST Cache drive configurations

The FAST Cache uses SAS Flash 2 drives configured in RAID 1 pairs. The drive sizes used to configure the FAST Cache and maximum FAST Cache capacity vary by model. For information, see the compatibility and interoperability documentation. Go to the support website to locate this documentation.

You cannot mix drive types or sizes in the FAST Cache.

FAST Cache actions

You can expand or shrink the FAST Cache by adding or removing drives. You can also delete the FAST Cache, but this can impact system performance and the performance of pools currently using the FAST Cache. The FAST Cache deletion process takes time, because the storage system has to flush all of the cache data to the pool drives.
FAST Cache best practices

Use the FAST Cache under the following circumstances:

- Large working sets of data must be stored and read, accessed frequently, and readily available.
- The system has enough drives for both data storage and performance improvement.

For example, use the FAST Cache if the system has enough SAS Flash drives, is active with daily read/write transactions of big blocks of data, and is not used as long term storage for archival purposes that would be accessed on a weekly or monthly basis.

Avoid using the FAST Cache for data that is sequential or that uses large-block I/O. For example, do not use the FAST Cache for database logs or circular logs, since their data is sequential.

Create the FAST Cache

Before you begin

To create the FAST Cache, the FAST Cache license must be installed on the system and the system must have available SAS Flash 2 drives in sizes supported by the model. (See the compatibility and interoperability documentation for this information).

Procedure

1. Select the Settings icon, and then select Storage Configuration > FAST Cache.
2. Select Create.
3. Select the size and number of drives to use for the FAST Cache. The available drives are based on the number of available SAS Flash drives, spare drive policy, and system limits.
4. Optionally, clear Enable FAST Cache for existing pools, if you do not want the FAST Cache enabled for all existing pools. You can enable the FAST Cache for individual pools at a later time.

Enable or disable the FAST Cache for a pool

Procedure

1. Under Storage, select Pools.
2. Select the relevant pool, and then select the Edit icon.
3. On the General tab, select or clear Use FAST Cache.

View system-level FAST Cache information

Procedure

1. Select the Settings icon, and then select Storage Configuration > FAST Cache to view the status, total space, and number of drives in the FAST Cache.
2. Select the Settings icon, and then select Storage Configuration > FAST Cache Disks to view the name and size of each drive in the FAST Cache.
View pool-level Fast Cache Information

At the pool level, you can verify whether a specific pool is configured to use the FAST Cache.

Procedure
1. Under Storage, select Pools.
2. Select the pool, and then select the Edit icon.
3. On the General tab, view whether the Use FAST Cache field is enabled.

Expand or shrink the FAST Cache capacity

If you have a small FAST Cache, and your business's growth requires larger blocks of data to be read and written, you can expand the FAST Cache capacity by adding SAS Flash 2 drives.

On rare occasions, you might want to shrink the FAST Cache capacity. For example, consider doing so under these circumstances:

- The FAST Cache is too large for users' applications.
- You need to repurpose some SAS Flash 2 drives to create storage pools with higher performance.
- The storage system does not have enough slots left to be populated with additional drives for storage.

Note

Shrinking the FAST Cache can take a long time and can affect the performance of pools currently using the FAST Cache, because data on the drives being removed from the FAST Cache must be flushed to the pool drives.

Procedure
1. Select the Settings icon, and then select Storage Configuration > FAST Cache.
2. To expand the FAST Cache, select Expand. Then select the drives to add to the FAST Cache.
3. To shrink the FAST Cache, select Shrink. Then select the drives to remove from the FAST Cache.

Delete the FAST Cache

Deleting the FAST Cache frees up drives for other uses. However, it can impact system performance and the performance of pools currently using the FAST Cache. The FAST Cache deletion process can take a long time, because it has to flush all of the cache data to the pool drives.

Procedure
1. Select the Settings icon, and then select Storage Configuration > FAST Cache.
2. Select Delete.
CHAPTER 5
Managing FAST VP (supported physical deployments only)

This chapter contains the following topics:

- About FAST VP ... 32
- Data relocation with FAST VP .. 32
- FAST VP tiering policy .. 33
- Enable or disable scheduled data relocations at the system level 34
- Stop a pool from participating in scheduled data relocations 35
- Manually initiate or stop data relocations for a pool 35
- Pause or resume data relocations for all pools 35
- Change system-level data relocation information 35
- Change data relocation information for a pool 36
- View pool-level FAST VP information 36
About FAST VP

FAST VP functionality is available in traditional, hybrid pools with Flash drives. It is not applicable to dynamic pools.

Fully Automated Storage Tiering for Virtual Pools (FAST VP) enables the system to retain the most frequently accessed or important data on fast, high-performance drives and move the less frequently accessed and less important data to lower-performance, cost-effective drives. FAST VP does the following for traditional pools:

- Monitors the usage of the data in a tiered pool. Tiered pools are heterogeneous pools that are configured with multiple classes of drives (SAS Flash 2 and/or SAS Flash 3, plus SAS and/or NL-SAS).
- Depending on the tiering policy, uses the monitoring statistics to automatically relocate data chunks, at 256 MB granularity, to other tiers within the pool. For example, the Start High then Auto-Tier policy relocates data to the storage tier that is best suited for that data, based on relative activity.
- Performs load balancing across the drives in tiered and non-tiered pools.

FAST VP is an automated feature that optimizes drive utilization. It requires very little manual intervention.

Note

- To configure and use the FAST VP feature, the FAST VP license must be installed on the system. All-Flash models of Unity do not support FAST VP.
- FAST VP can use all supported drive types except for SAS Flash 4.

The data relocation performed by FAST VP can help you achieve the following benefits:

- Increased performance
 In some cases, you can double performance throughput by adding less than 10 percent of a pool’s total capacity in SAS Flash 2 or SAS Flash 3 drives.
- Reduced Total Cost of Ownership (TCO)
 Using a combination of NL-SAS, SAS, SAS Flash 2, and SAS Flash 3 drives instead of all SAS drives enables you to address performance requirements and still reduce the drive count. In some cases, you can achieve up to a two-thirds reduction in drive count by using FAST VP.

Data relocation with FAST VP

Data relocation (also called auto-tiering) is the process by which the system relocates data to another tier within the same pool and rebalances data within a tier to achieve maximum pool performance gain. Data relocation can be scheduled or manually initiated.

The data relocation process does the following:

- Relocates the most active data up to the highest available tier.
- Relocates the least active data to lower tiers, as needed to free up space for more active data in the higher tiers.
- Rebalances data within a tier.
Scheduled data relocation
Scheduled data relocation is enabled for all pools by default when FAST VP is installed on your system. The system performs scheduled data relocations for pools participating in the automatic data relocation schedule. By default, the data relocation window is every day from 22:00 to 6:00 (UTC time) the next day. The specified data relocation times provide the window of time in which data relocations occur on an ongoing basis, if the system determines the relocations are needed.

You can do the following to configure scheduled data relocations:

- Disable or re-enable scheduled data relocations for the system.
- Change the days on which data relocation occurs and the data relocation window start time and end time for each scheduled day.
- Configure individual pools to participate in scheduled data relocations.
- Pause all scheduled data relocations. (This action also pauses manual data relocations that are currently in progress.)
- Resume all scheduled data relocations (This action also resumes paused manual data relocations whose specified end times have not expired.)

Note
The system rebalances data within a tier automatically when a pool tier is expanded.

Manual data relocation
You can manually initiate data relocations for individual pools. When you start a manual data relocation, you specify a data relocation rate and an end time for the data relocation operation.

You can do the following to control manual data relocations:

- Start or stop a manual data relocation.
- Pause manual relocations that are currently in progress. This action also pauses all scheduled data relocations.
- Resume paused manual relocations whose end times are not over. This action also resumes all scheduled data relocations.

FAST VP tiering policy
The following table describes the FAST VP tiering policy settings, which are defined at the data-resource level. This policy defines both the initial tier placement and the ongoing automated tiering of data during data relocation operations.

Table 4 FAST VP tiering policy settings

<table>
<thead>
<tr>
<th>Tiering policy</th>
<th>Corresponding initial tier placement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start High then Auto-Tier (default)</td>
<td>Highest available tier</td>
<td>Recommended setting. Sets the initial data placement to the highest-performing drives with available space, and then relocates portions of the storage resource's data based on I/O activity.</td>
</tr>
</tbody>
</table>
Table 4 FAST VP tiering policy settings (continued)

<table>
<thead>
<tr>
<th>Tiering policy</th>
<th>Corresponding initial tier placement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto-Tier</td>
<td>Optimize for pool performance</td>
<td>Sets the initial data placement to an optimum, system-determined setting, and then relocates portions of the storage resource's data based on the storage resource's performance statistics such that data is relocated among tiers according to I/O activity.</td>
</tr>
<tr>
<td>Highest Available Tier</td>
<td>Highest available tier</td>
<td>Sets the initial data placement and subsequent data relocation (if applicable) to the highest-performing drives with available space.</td>
</tr>
<tr>
<td>Lowest Available Tier</td>
<td>Lowest available tier</td>
<td>Sets the initial data placement and subsequent data relocation (if applicable) to the most cost-effective drives with available space.</td>
</tr>
</tbody>
</table>

Enable or disable scheduled data relocations at the system level

When you disable scheduled data relocations at the system level, no pools in the system will participate in scheduled data relocations. If you disable scheduled data relocations at the system level when a data relocation is taking place, the system will complete the data relocation.

When you enable scheduled data relocations at the system level, pools that have scheduled data relocations enabled at the pool level will participate in scheduled data relocations.

Note

Scheduled data relocations for the storage system are enabled by default.

Procedure

1. Select the Settings icon, and then select Storage Configuration > FAST VP.
2. Do either of the following:
 - Select Pause to disable data relocations for the storage system.
 - Select Resume to enable data relocations for the storage system, and optionally select Modify data relocation schedule to change the data relocation schedule.
Stop a pool from participating in scheduled data relocations

If you stop a pool from participating in scheduled data relocations when a data relocation is taking place, the system will complete the data relocation.

Procedure
1. Under Storage, select Pools.
2. Select the relevant pool, and click the Edit icon.
3. Select FAST VP.
4. If the Data relocations scheduled field has a value of No, select the Edit icon, and select Yes on the confirmation message.

Manually initiate or stop data relocations for a pool

You can manually initiate or stop data relocations for pools.

Procedure
1. Under Storage, select Pools.
2. Select the pool for which you want to initiate or stop data relocations, and then select the Edit icon.
3. Select FAST VP.
4. Do either of the following:
 - To start data relocations for the pool, choose Start Relocation, and select the rate and end time for the data relocation. A data relocation rate of Low has the least impact on system performance, Medium (the default) has a moderate impact on system performance, and High has the most impact on system performance.
 - To stop data relocations, choose Stop Relocation. This stops all data relocations for the pool, including manually initiated data relocations that are currently in progress and scheduled data relocations.

Pause or resume data relocations for all pools

Pausing data relocations stops all scheduled data relocations as well as manual data relocations that are in progress. Resuming data relocations restarts these data relocations.

Procedure
1. Select the Settings icon, and then select Storage Configuration > FAST VP.
2. Pause or resume data relocations.

Change system-level data relocation information

System-level data relocation information includes whether scheduled relocations are enabled for the system. If scheduled data relocations are enabled, the information includes:

- Total amount of data in the system scheduled to move to higher and lower tiers.
• Total amount of data in the system to be rebalanced within a tier
• Estimated time needed for the scheduled data relocations.

Procedure

1. Select the **Settings** icon, and then select **Storage Configuration > FAST VP**.
2. Optionally, take one of the following actions:
 - Select **Pause** (if enabled) to pause all scheduled data relocations and manual data relocations that are currently in progress.
 - Select **Resume** (if enabled) to resume paused data relocations.
 - Modify the data relocation rate. A data relocation rate of **Low** has the least impact on system performance, **Medium** (the default) has a moderate impact on system performance, and **High** has the most impact on system performance.
 - Select **Modify data relocation schedule** to change the data relocation schedule.

Change data relocation information for a pool

You can specify whether a pool is scheduled to participate in scheduled data relocations. You can also manually start or stop data relocations on the pool.

Procedure

1. Under **Storage**, select **Pools**.
2. Select the relevant pool, and click **Edit**.
3. Select **FAST VP**.
4. Make the appropriate changes.

View pool-level FAST VP information

If a FAST VP license is installed on the system, you can view the following information for a pool:

• Whether the pool participates in scheduled data relocations.
• Estimated time needed for scheduled data relocations.
• Start and end time for the most recent data relocation.
• Number and type of drives in each tier.
• Amount of data in the pool scheduled to move to higher and lower tiers.
• Amount of data in the pool scheduled to be rebalanced within a tier.

Procedure

1. Under **Storage**, select **Pools**.
2. Select the relevant pool, and then select the **Edit** icon.
3. Select the **FAST VP** tab.
4. Optionally click **Manage FAST VP system settings** to view the data relocation rate.
• **Low** has the least impact on system performance.
• **Medium** (the default) has a moderate impact on system performance.
• **High** has the most impact on system performance.
Managing FAST VP (supported physical deployments only)
CHAPTER 6

Understanding RAID (physical deployments only)

This chapter contains the following topics:

- About RAID .. 40
- RAID configurations .. 41
- RAID for dynamic pools in Unisphere 42
- Drive IOPS by RAID type 42
About RAID

Redundant Array of Independent Disks (RAID) is a method for providing high levels of storage reliability by arranging drives in groups, and dividing and replicating data among the drives in a group. You select drive types and RAID configurations (RAID types and stripe widths) when you create a pool. Once a pool is configured, you cannot change the RAID type of a tier. However, in hybrid models, you can add a new tier with a different RAID type. (All-Flash models have only one tier.)

RAID usually has the characteristics of parity, striping, or both:

- Parity provides redundancy for blocks of data on the drives. Depending on the RAID type, this provides the ability to continue to operate with the loss of one or more drives.
- Striping provides a mechanism for processing data that allows the comprehensive read/write performance of a RAID group to exceed the performance of its component drives.

In hybrid models that are licensed for FAST VP and that have unused drives of different types, you can configure multiple storage tiers for the pool and can specify a different RAID configuration for each tier.

The system supports RAID 5, 6, and 1/0 (also called RAID 10).

RAID in dynamic pools

In a dynamic pool, drives are partitioned into drive extents. These extents are combined into RAID extents, which are spread across multiple drives. The number of drive extents within a RAID extent depends on the RAID type and width. For example, a RAID 5 (4+1) RAID extent contains five drive extents. For redundancy purposes, the system ensures that no RAID extent contains two drive extents from the same drive. Also, each drive extent can only be part of one RAID extent.

A RAID group in a dynamic pool is a collection of RAID extents. The number and size of RAID groups in a dynamic pool can vary depending on the number of drives and how the pool was created and expanded. A RAID extent can only be part of one RAID group.

The following illustration shows a RAID group with a RAID 5 (4+1) configuration. This configuration requires six drives to meet the requirement for spare space. In this illustration, each rectangle represents one drive extent, and each color represents one RAID extent:

Figure 1 RAID 5 (4+1) group in a dynamic pool

<table>
<thead>
<tr>
<th>Drive 1</th>
<th>Drive 2</th>
<th>Drive 3</th>
<th>Drive 4</th>
<th>Drive 5</th>
<th>Drive 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 DE1</td>
<td>D2 DE1</td>
<td>D3 DE1</td>
<td>D4 DE1</td>
<td>D5 DE1</td>
<td>D6 DE1</td>
</tr>
<tr>
<td>D1 DE2</td>
<td>D2 DE2</td>
<td>D3 DE2</td>
<td>D4 DE2</td>
<td>D5 DE2</td>
<td>D6 DE2</td>
</tr>
<tr>
<td>D1 DE3</td>
<td>D2 DE3</td>
<td>D3 DE3</td>
<td>D4 DE3</td>
<td>D5 DE3</td>
<td>D6 DE3</td>
</tr>
<tr>
<td>D1 DE4</td>
<td>D2 DE4</td>
<td>D3 DE4</td>
<td>D4 DE4</td>
<td>D5 DE4</td>
<td>D6 DE4</td>
</tr>
<tr>
<td>Spare</td>
<td>Spare</td>
<td>Spare</td>
<td>Spare</td>
<td>Spare</td>
<td>Spare</td>
</tr>
</tbody>
</table>

40 Unity Family 5.x Configuring Pools
RAID in traditional pools
In a traditional pool, a RAID group contains sets of drives with the same capacity and redundancy on which you create one or more storage resources. The system creates one or more RAID groups for the pool based on the specified configuration. For example, when you create a storage resource in a RAID 5 (4 + 1) group, data is distributed equally across the five drives in the RAID group. If you want to create a pool using more than five drives, you must do so in multiples of the selected RAID stripe width.

The following illustration shows a RAID 5 (4 + 1) group, along with the required spare drive.

Figure 2 RAID 5 (4 + 1) group plus one spare drive in a traditional pool

RAID configurations
Pool tiers are built using a set of one or more individual drive groups based on the tier’s RAID type and stripe width. The RAID type determines the performance characteristics of each drive group. The stripe width determines the fault characteristics of each drive group.

For example, a RAID 5 drive group can still operate with the loss of one drive (traditional pools) or it’s equivalent (dynamic pools). A RAID 5 (4+1), 5 drive configuration has less risk of multiple drive faults than a RAID 5 (12+1), 13 drive configuration.

The following table describes the supported RAID types for the intended storage usage:

Table 5 Supported RAID levels

<table>
<thead>
<tr>
<th>RAID level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID 1/0 (also called RAID 10)</td>
<td>Best suited for applications with fast or high processing requirements, such as enterprise servers and moderate-sized database systems. Provides both high performance and reliability at medium cost, while providing lower capacity per drive.</td>
</tr>
<tr>
<td>RAID 5</td>
<td>Best suited for transaction processing and often used for general purpose storage, as well as for relational database and enterprise resource systems. Depending on the drives used, this RAID type can provide a fairly low cost per MB while still retaining redundancy.</td>
</tr>
</tbody>
</table>
Table 5 Supported RAID levels (continued)

<table>
<thead>
<tr>
<th>RAID level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID 6</td>
<td>Best suited for read-biased workloads, such as archiving and backup to drive.</td>
</tr>
</tbody>
</table>

Mixed RAID configurations (traditional pools only)
If FAST VP is installed on the system, you can create a pool with multiple storage tiers. Each tier can have its own RAID type. Only one RAID type can be used within a tier, but the tier can have different stripe configurations. For example, you can mix RAID 5 (4+1) and RAID 5 (8+1) in a tier.

To do this:
- Select the Maximum Capacity RAID configuration when you create the pool. This configuration might mix RAID types in the pool.
- Expand the pool using a different stripe width than currently exists in the pool.

RAID for dynamic pools in Unisphere
Unisphere automatically assigns a RAID width to a dynamic pool based on the selected RAID type and the selected number of drives. The following table describes how the RAID width gets assigned:

<table>
<thead>
<tr>
<th>RAID level</th>
<th>Number of drives</th>
<th>RAID Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID 5</td>
<td>6 to 9</td>
<td>4+1</td>
</tr>
<tr>
<td></td>
<td>10 to 13</td>
<td>8+1</td>
</tr>
<tr>
<td></td>
<td>14 or more</td>
<td>12+1</td>
</tr>
<tr>
<td>RAID 6</td>
<td>7 to 8</td>
<td>4+2</td>
</tr>
<tr>
<td></td>
<td>9 to 10</td>
<td>6+2</td>
</tr>
<tr>
<td></td>
<td>11 to 12</td>
<td>8+2</td>
</tr>
<tr>
<td></td>
<td>13 to 14</td>
<td>10+2</td>
</tr>
<tr>
<td></td>
<td>15 to 16</td>
<td>12+2</td>
</tr>
<tr>
<td></td>
<td>17 or more</td>
<td>14+2</td>
</tr>
<tr>
<td>RAID 1/0</td>
<td>3 to 4</td>
<td>1+1</td>
</tr>
<tr>
<td></td>
<td>5 to 6</td>
<td>2+2</td>
</tr>
<tr>
<td></td>
<td>7 to 8</td>
<td>3+3</td>
</tr>
<tr>
<td></td>
<td>9 or more</td>
<td>4+4</td>
</tr>
</tbody>
</table>

Drive IOPS by RAID type
Front-end application workloads translate into different back-end drive workloads based on the RAID type in use. For front-end reads, there is no impact by RAID type: 1 front-end read I/O equals 1 back-end read I/O.

The following table shows the impact by RAID type for random front-end writes.
Table 6: IOPS by RAID type for front-end writes

<table>
<thead>
<tr>
<th>RAID type</th>
<th>IOPS per 1 front-end write I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID 1/0</td>
<td>2 back-end write I/Os</td>
</tr>
<tr>
<td>RAID 5</td>
<td>2 back-end reads and 2 back-end writes</td>
</tr>
<tr>
<td>RAID 6</td>
<td>3 back-end reads and 3 back-end writes</td>
</tr>
</tbody>
</table>
CHAPTER 7

Configuring pools using the CLI

This chapter contains the following topics:

- Configure custom pools .. 46
- Manage pool tiers ... 62
- View pool resources .. 64
- View storage profiles (physical deployments only) .. 66
- Manage drive groups (physical deployments only) ... 69
- Manage storage system capacity settings ... 72
- Manage system tier capacity settings ... 74
- Change disk settings (virtual deployments only) ... 74
- Pool use cases ... 75
- The show action command ... 80
Configure custom pools

Pools are the groups of drives on which you create storage resources. Configure pools based on the type of storage resource and usage that will be associated with the pool, such as file system storage optimized for database usage. The storage characteristics differ according to the following:

- Type of drive used to provide the storage.
- (dual-SP virtual deployments only) RAID level implemented for the storage.

Note

Before you create storage resources, you must configure at least one pool.

The following table lists the attributes for pools:

Table 7 Custom pool attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>ID of the pool.</td>
</tr>
<tr>
<td>Name</td>
<td>Name of the pool.</td>
</tr>
<tr>
<td>Type</td>
<td>Pool type. Valid values are: Dynamic, Traditional</td>
</tr>
<tr>
<td>Description</td>
<td>Brief description of the pool.</td>
</tr>
<tr>
<td>Total space</td>
<td>Total storage capacity of the pool.</td>
</tr>
<tr>
<td>Current allocation</td>
<td>Amount of storage in the pool allocated to storage resources.</td>
</tr>
<tr>
<td>Preallocated space</td>
<td>Amount of storage space reserved in the pool by storage resources for future needs to make writes more efficient. The pool may be able to reclaim some of this space if total pool space is running low. This value equals the sum of the sizePreallocated values of each storage resource in the pool.</td>
</tr>
<tr>
<td>Remaining space</td>
<td>Amount of storage in the pool not allocated to storage resources.</td>
</tr>
<tr>
<td>Subscription</td>
<td>For thin provisioning, the total storage space subscribed to the pool. All pools support both standard and thin provisioned storage resources. For standard storage resources, the entire requested size is allocated from the pool when the resource is created, for thin provisioned storage resources only incremental portions of the size are allocated based on usage. Because thin provisioned storage resources can subscribe to more storage than is actually allocated to them, pools can be over provisioned to support more storage capacity than they actually possess.</td>
</tr>
</tbody>
</table>
Table 7 Custom pool attributes (continued)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Note</td>
</tr>
<tr>
<td></td>
<td>The system automatically generates an alert when the total pool usage reaches 85% of the pool's physical capacity. alertThreshold specifies the alert threshold value.</td>
</tr>
<tr>
<td>Subscription percent</td>
<td>For thin provisioning, the percentage of the total space in the pool that is subscription storage space.</td>
</tr>
<tr>
<td>Alert threshold</td>
<td>Threshold for the system to send an alert when hosts have consumed a specific percentage of the subscription space. Value range is 50 to 85.</td>
</tr>
<tr>
<td>Drives</td>
<td>List of the types of drives on the system, including the number of drives of each type, in the pool. If FAST VP is installed, you can mix different types of drives to make a tiered pool. However, SAS Flash 4 drives must be used in a homogeneous pool.</td>
</tr>
<tr>
<td>Number of drives</td>
<td>Total number of drives in the pool.</td>
</tr>
<tr>
<td>Number of unused drives</td>
<td>Number of drives in the pool that are not being used.</td>
</tr>
<tr>
<td>RAID level (physical deployments only)</td>
<td>RAID level of the drives in the pool.</td>
</tr>
<tr>
<td>Stripe length (physical deployments only)</td>
<td>Number of drives the data is striped across.</td>
</tr>
<tr>
<td>Rebalancing</td>
<td>Indicates whether a pool rebalancing is in progress. Valid values are: yes, no.</td>
</tr>
<tr>
<td>Rebalancing progress</td>
<td>Indicates the progress of the pool rebalancing as a percentage.</td>
</tr>
<tr>
<td>System defined pool</td>
<td>Indication of whether the system configured the pool automatically. Valid values are: yes, no.</td>
</tr>
<tr>
<td>Health state</td>
<td>Health state of the pool. The health state code appears in parentheses. Valid values are:</td>
</tr>
<tr>
<td></td>
<td>• Unknown (0) - Health is unknown.</td>
</tr>
<tr>
<td></td>
<td>• OK (5) - Operating normally.</td>
</tr>
<tr>
<td></td>
<td>• OK BUT (7) - Pool has exceeded its user-specified threshold or the system specified threshold of 85%.</td>
</tr>
<tr>
<td></td>
<td>• Degraded/Warning (10) - Pool is operating, but degraded due to one or more of the following:</td>
</tr>
<tr>
<td></td>
<td>• Pool has exceeded the user-specified threshold.</td>
</tr>
</tbody>
</table>
Table 7 Custom pool attributes (continued)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute</td>
<td>Description</td>
</tr>
<tr>
<td>Health details</td>
<td>Additional health information. See Appendix A, Reference, for health information details.</td>
</tr>
<tr>
<td>FAST Cache enabled (physical deployments only)</td>
<td>Indicates whether FAST Cache is enabled on the pool. Valid values are:</td>
</tr>
<tr>
<td></td>
<td>• yes</td>
</tr>
<tr>
<td></td>
<td>• no</td>
</tr>
<tr>
<td>Non-base size used</td>
<td>Quantity of storage used for thin clone and snapshot data.</td>
</tr>
<tr>
<td>Auto-delete state</td>
<td>Indicates the state of an auto-delete operation on the pool. Valid values are:</td>
</tr>
<tr>
<td></td>
<td>• Idle</td>
</tr>
<tr>
<td></td>
<td>• Running</td>
</tr>
<tr>
<td></td>
<td>• Could not reach LWM</td>
</tr>
<tr>
<td></td>
<td>• Could not reach HWM</td>
</tr>
<tr>
<td>Note</td>
<td>If the auto-delete operation cannot satisfy the high water mark, and there are snapshots in the pool, the auto-delete operation sets the auto-delete state for that watermark to Could not reach HWM, and generates an alert.</td>
</tr>
<tr>
<td></td>
<td>• Failed</td>
</tr>
<tr>
<td>Auto-delete paused</td>
<td>Indicates whether an auto-delete operation is paused. Valid values are:</td>
</tr>
<tr>
<td></td>
<td>• yes</td>
</tr>
<tr>
<td></td>
<td>• no</td>
</tr>
<tr>
<td>Auto-delete pool full threshold enabled</td>
<td>Indicates whether the system will check the pool full high water mark for auto-delete. Valid values are:</td>
</tr>
<tr>
<td></td>
<td>• yes</td>
</tr>
</tbody>
</table>
Table 7 Custom pool attributes (continued)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto-delete pool full high water mark</td>
<td>The pool full high watermark on the pool.</td>
</tr>
<tr>
<td>Auto-delete pool full low water mark</td>
<td>The pool full low watermark on the pool.</td>
</tr>
<tr>
<td>Auto-delete snapshot space used threshold enabled</td>
<td>Indicates whether the system will check the snapshot space used high water mark for auto-delete. Valid values are:</td>
</tr>
<tr>
<td></td>
<td>• yes</td>
</tr>
<tr>
<td></td>
<td>• no</td>
</tr>
<tr>
<td>Auto-delete snapshot space used high water mark</td>
<td>High watermark for snapshot space used on the pool.</td>
</tr>
<tr>
<td>Auto-delete snapshot space used low water mark</td>
<td>Low watermark for snapshot space used on the pool.</td>
</tr>
<tr>
<td>Data Reduction space saved (physical deployments only)</td>
<td>Storage size saved on the pool by using data reduction.</td>
</tr>
<tr>
<td></td>
<td>Note</td>
</tr>
<tr>
<td></td>
<td>Data reduction is available for thin LUNs and thin file systems in an All-Flash pool only. The thin file systems must be created on Unity systems running version 4.2.x or later.</td>
</tr>
<tr>
<td>Data Reduction percent (physical deployments only)</td>
<td>Storage percentage saved on the pool by using data reduction.</td>
</tr>
<tr>
<td></td>
<td>Note</td>
</tr>
<tr>
<td></td>
<td>Data reduction is available for thin LUNs and thin file systems in an All-Flash pool only. The thin file systems must be created on Unity systems running version 4.2.x or later.</td>
</tr>
<tr>
<td>Data Reduction ratio (physical deployments only)</td>
<td>Ratio between data without data reduction and data after data reduction savings.</td>
</tr>
<tr>
<td></td>
<td>Note</td>
</tr>
<tr>
<td></td>
<td>Data reduction is available for thin LUNs and thin file systems in an All-Flash pool only. The thin file systems must be created on Unity systems running version 4.2.x or later.</td>
</tr>
<tr>
<td>All flash pool</td>
<td>Indicates whether the pool contains only Flash drives. Valid values are:</td>
</tr>
</tbody>
</table>
Table 7 Custom pool attributes (continued)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• yes</td>
</tr>
<tr>
<td></td>
<td>• no</td>
</tr>
</tbody>
</table>

Create pools

Create a dynamic or traditional pool:

- Both traditional pools and dynamic pools are supported in the CLI and REST API for Unity All-Flash models running OE version 4.2.x or later. The default pool type is dynamic.

- Traditional pools are supported in all Unity hybrid and virtual models. They are also supported in Unity All-Flash models running OE version 4.1.x or earlier.

Format

Action qualifier

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-async</td>
<td>Run the operation in asynchronous mode.</td>
</tr>
<tr>
<td></td>
<td>Note</td>
</tr>
<tr>
<td></td>
<td>Simultaneous commands, asynchronous or synchronous, may fail if they conflict in trying to manage the same system elements.</td>
</tr>
<tr>
<td>-name</td>
<td>Type a name for the pool.</td>
</tr>
</tbody>
</table>
| -type | (Available only for systems that support dynamic pools) Specify the type of pool to create. Value is one of the following:
| | • dynamic |
| | • traditional |
| | Default value is dynamic. |
| -descr | Type a brief description of the pool. |
| -storProfile | Type the ID of the storage profiles, separated by commas, to apply to the pool, based on the type of storage resource that will use the pool and the |
| (physical deployments only) | |

Simultaneous commands, asynchronous or synchronous, may fail if they conflict in trying to manage the same system elements.
<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-diskGroup (physical deployments only)</td>
<td>Type a comma-separated list of IDs of the drive groups to use in the pool. Specifying drive groups with different drive types causes the creation of a multi-tier pool. View drive groups on page 70 explains how to view the IDs of the drive groups on the system.</td>
</tr>
<tr>
<td>-drivesNumber (physical deployments only)</td>
<td>Specify the drive numbers, separated by commas, from the selected drive groups to use in the pool. If this option is specified when -storProfile is not specified, the operation may fail when the -drivesNumber value does not match the default RAID configuration for each drive type in the selected drive group.</td>
</tr>
<tr>
<td>-disk (virtual deployments only)</td>
<td>Specify the list of drive IDs, separated by commas, to use in the pool. Specified drives must be reliable storage objects that do not require additional protection.</td>
</tr>
<tr>
<td>-alertThreshold</td>
<td>For thin provisioning, specify the threshold, as a percentage, when the system will alert on the amount of subscription space used. When hosts consume the specified percentage of subscription space, the system sends an alert. Value range is 50% to 85%.</td>
</tr>
<tr>
<td>-FASTCacheEnabled (physical deployments only)</td>
<td>Specify whether to enable FAST Cache on the pool. Value is one of the following:</td>
</tr>
<tr>
<td></td>
<td>• yes</td>
</tr>
<tr>
<td></td>
<td>• no</td>
</tr>
<tr>
<td></td>
<td>Default value is yes.</td>
</tr>
<tr>
<td>-snapPoolFullThresholdEnabled</td>
<td>Indicate whether the system should check the pool full high water mark for auto-delete. Value is one of the following:</td>
</tr>
<tr>
<td></td>
<td>• yes</td>
</tr>
<tr>
<td></td>
<td>• no</td>
</tr>
<tr>
<td></td>
<td>Default value is yes.</td>
</tr>
</tbody>
</table>
Configuring pools using the CLI

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-snapPoolFullHWM</td>
<td>Specify the pool full high watermark for the pool. Valid values are 1-99. Default value is 95.</td>
</tr>
<tr>
<td>-snapPoolFullLWM</td>
<td>Specify the pool full low watermark for the pool. Valid values are 0-98. Default value is 85.</td>
</tr>
<tr>
<td>-snapSpaceUsedThresholdEnabled</td>
<td>Indicate whether the system should check the snapshot space used high water mark for auto-delete. Value is one of the following: yes, no. Default value is yes.</td>
</tr>
<tr>
<td>-snapSpaceUsedHWM</td>
<td>Specify the snapshot space used high watermark to trigger auto-delete on the pool. Valid values are 1-99. Default value is 95.</td>
</tr>
<tr>
<td>-snapSpaceUsedLWM</td>
<td>Specify the snapshot space used low watermark to trigger auto-delete on the pool. Valid values are 0-98. Default value is 20.</td>
</tr>
</tbody>
</table>

Note

Use the Change disk settings (virtual deployments only) on page 74 command to change the assigned tiers for specific drives.

Example 1 (physical deployments only)

The following command creates a dynamic pool. This example uses storage profiles profile_1 and profile_2, six drives from drive group dg_2, and ten drives from drive group dg_28. The configured pool receives ID pool_2.

Note

Before using the stor/config/pool create command, use the /stor/config/profile show command to display the dynamic pool profiles and the /stor/config/dg show command to display the drive groups.

```
uemcli -d 10.0.0.1 -u Local/joe -p MyPassword456! uemcli /stor/config/pool create -name MyPool -descr "dynamic pool" -diskGroup dg_2,dg_28 -drivesNumber 6,10 -storProfile profile_1,profile_2
```

Storage system address: 10.0.0.1
Storage system port: 443
Example 2 (physical deployments only)
The following command creates a traditional pool in models that support dynamic pools. This example uses storage profiles tprofile_1 and tprofile_2, five drives from drive group dg_3, and nine drives from drive group dg_28. The configured pool receives ID pool_6.

```bash
temcli -d 10.0.0.1 -u Local/joe -p MyPassword456! /stor/config/pool create -name MyPool -descr "traditional pool" -diskGroup dg_3,dg_28 -drivesNumber 5,9 -storProfile tprofile_1,tprofile_2 -type traditional
```

Example 3 (physical deployments only)
The following command creates a traditional pool in models that do not support dynamic pools. This example uses storage profiles profile_19 and profile_20, five drives from drive group dg_15, and nine drives from drive group dg_16. The configured pool receives ID pool_5.

```bash
temcli -d 10.0.0.1 -u Local/joe -p MyPassword456! /stor/config/pool create -name MyPool -descr "my big pool" -diskGroup dg_15,dg_16 -drivesNumber 5,9 -storProfile profile_19,profile_20 -type traditional
```

Note

Before using the `stor/config/pool create` command, use the `/stor/config/profile -traditional show` command to display the traditional pool profiles (which start with "t") and the `/stor/config/dg show` command to display the drive groups.

Create pools
Example 4 (virtual deployments only)
The following command creates a traditional pool with two virtual disks, vdisk_0 and vdisk_2 in the Extreme Performance tier. The configured pool receives ID pool_4.

```
uemcli -d 10.0.0.1 -u Local/joe -p MyPassword456! /stor/config/pool create -name vPool -descr "my virtual pool" -disk vdisk_0,vdisk_2
```

```
Storage system address: 10.0.0.1
Storage system port: 443
HTTPS connection
ID = pool_4
Operation completed successfully.
```

Change pool settings

Change the subscription alert threshold, FAST Cache, and snapshot threshold settings for a pool.

Format

```
```

Object qualifiers

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-id</td>
<td>Type the ID of the pool to change.</td>
</tr>
<tr>
<td>-name</td>
<td>Type the name of the pool to change.</td>
</tr>
</tbody>
</table>

Action qualifier

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-async</td>
<td>Run the operation in asynchronous mode.</td>
</tr>
</tbody>
</table>

Note
Simultaneous commands, asynchronous or synchronous, may fail if they conflict in trying to manage the same system elements.

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-name</td>
<td>Type a name for the pool.</td>
</tr>
<tr>
<td>-descr</td>
<td>Type a brief description of the pool.</td>
</tr>
<tr>
<td>-alertThreshold</td>
<td>For thin provisioning, specify the threshold, as a percentage, when the system will alert on the amount of subscription space used. When hosts consume the specified percentage of</td>
</tr>
</tbody>
</table>
Qualifier

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
</table>
| subscription space, the system sends an alert. Value range is 50% to 84%. | -FASTCacheEnabled *(physical deployments only)* Specify whether to enable FAST Cache on the pool. Value is one of the following:
 - yes
 - no |
| -snapPoolFullThresholdEnabled | Indicate whether the system should check the pool full high water mark for auto-delete. Value is one of the following:
 - yes
 - no |
| -snapPoolFullHWM | Specify the pool full high watermark for the pool. Valid values are 1–99. Default value is 95. |
| -snapPoolFullLWM | Specify the pool full low watermark for the pool. Valid values are 0–98. Default value is 85. |
| -snapSpaceUsedThresholdEnabled | Indicate whether the system should check the snapshot space used high water mark for auto-delete. Value is one of the following:
 - yes
 - no |
| -snapSpaceUsedHWM | Specify the snapshot space used high watermark to trigger auto-delete on the pool. Valid values are 1–99. Default value is 95. |
| -snapSpaceUsedLWM | Specify the snapshot space used low watermark to trigger auto-delete on the pool. Valid values are 0–98. Default value is 20. |
| -snapAutoDeletePaused | Specify whether to pause snapshot auto-delete. Typing no resumes the auto-delete operation. |

Example

The following command sets the subscription alert threshold for pool pool_1 to 70%:

```
uemcli -d 10.0.0.1 -u Local/joe -p MyPassword456! /stor/config/pool -id pool_1 -set -alertThreshold 70 -FASTCacheEnabled no
```

Storage system address: 10.0.0.1
Storage system port: 443
Add drives to pools

Add new drives to a pool to increase its storage capacity.

Format

```
/stor/config/pool {-id <value> | -name <value>} extend [-async]
{-diskGroup <value> -drivesNumber <value> [-storProfile <value>] [-disk <value>]
```

Object qualifiers

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-id</td>
<td>Type the ID of the pool to extend.</td>
</tr>
<tr>
<td>-name</td>
<td>Type the name of the pool to extend.</td>
</tr>
</tbody>
</table>

Action qualifier

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-async</td>
<td>Run the operation in asynchronous mode.</td>
</tr>
<tr>
<td>-diskGroup</td>
<td>Type the IDs of the drive groups, separated by commas, to add to the pool.</td>
</tr>
<tr>
<td>-drivesNumber</td>
<td>Type the number of drives from the specified drive groups, separated by commas, to add to the pool. If this option is specified when -storProfile is not specified, the operation may fail when the -drivesNumber value does not match the default RAID configuration for each drive type in the selected drive group.</td>
</tr>
<tr>
<td>-storProfile</td>
<td>Type the IDs of the storage profiles, separated by commas, to apply to the pool. If this option is not specified, a default RAID configuration is selected for each particular drive type in the selected drive group: NL-SAS (RAID 6 with a stripe length of 8), SAS (RAID 5 with a stripe length of 5), or Flash (RAID 5 with a stripe length of 5).</td>
</tr>
<tr>
<td>-disk</td>
<td>Specify the list of drives, separated by commas, to add to the pool. Specified drives must be reliable storage objects that do not require additional protection.</td>
</tr>
</tbody>
</table>

Example 1 (physical deployments only)
The following command extends pool pool_1 with seven drives from drive group DG_1:

```
uemcli -d 10.0.0.1 -u Local/joe -p MyPassword456! /stor/config/pool {-id pool_1 extend -diskGroup dg_1 -drivesNumber 7 -storProfile profile_12
```

Storage system address: 10.0.0.1
Storage system port: 443
Example 2 (virtual deployments only)
The following command extends pool pool_1 by adding two virtual disks, vdisk_1 and vdisk_5.

uemcli -d 10.0.0.2 -u Local/joe -p MyPassword456! /stor/config/pool -id pool_1 extend -disk vdisk_1,vdisk_5

Storage system address: 10.0.0.2
Storage system port: 443
HTTPS connection
ID = pool_1
Operation completed successfully.

View pools

View a list of pools. You can filter on the pool ID.

Note
The show action command on page 80 explains how to change the output format.

Format
/stor/config/pool {-id <value> | -name <value>} show

Object qualifiers

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-id</td>
<td>Type the ID of a pool.</td>
</tr>
<tr>
<td>-name</td>
<td>Type the name of a pool.</td>
</tr>
</tbody>
</table>

Example 1 (physical deployments only)
The following command shows details about all pools on a hybrid system:

uemcli -d 10.0.0.1 -u Local/joe -p MyPassword456! /stor/config/pool show -detail

Storage system address: 10.0.0.1
Storage system port: 443
HTTPS connection

1: ID = pool_1
Name = Performance
Description = Multi-tier pool
Total space = 8663754342400 (7.8T)
Current allocation = 0
Preallocated space = 38310387712 (35.6G)
Remaining space = 8663754342400 (7.8T)
Subscription = 0
Subscription percent = 0%
Alert threshold = 70%
<table>
<thead>
<tr>
<th>Drives</th>
<th>= 5 x 600.0G SAS; 5 x 1.6T SAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash 3</td>
<td>Number of drives = 10</td>
</tr>
<tr>
<td></td>
<td>RAID level = 5</td>
</tr>
<tr>
<td></td>
<td>Stripe length = 5</td>
</tr>
<tr>
<td></td>
<td>Rebalancing = no</td>
</tr>
<tr>
<td></td>
<td>Rebalancing progress =</td>
</tr>
<tr>
<td></td>
<td>Health state = OK (5)</td>
</tr>
</tbody>
</table>
| | Health details = "The component is operating normally. No action is required."
| | FAST Cache enabled = no |
| | Protection size used = 0 |
| | Non-base size used = 0 |
| | Auto-delete state = Idle |
| | Auto-delete paused = no |
| | Auto-delete pool full threshold enabled = yes |
| | Auto-delete pool full high water mark = 95% |
| | Auto-delete pool full low water mark = 85% |
| | Auto-delete snapshot space used threshold enabled = no |
| | Auto-delete snapshot space used high water mark = 25% |
| | Auto-delete snapshot space used low water mark = 20% |
| | Compression space saved = 0 |
| | Compression Percent = 0% |
| | Compression Ratio = 1:1 |
| | Data Reduction space saved = 0 |
| | Data Reduction percent = 0% |
| | Data Reduction ratio = 1:1 |
| | All flash pool = no |

2: ID = pool_2
 Name = Capacity
 Description =
 Total space = 4947802324992 (4.5T)
 Current allocation = 3298534883328 (3T)
 Preallocated space = 22194823168 (20.6G)
 Remaining space = 4947802324992 (1.5T)
 Subscription = 10995116277760 (10T)
 Subscription percent = 222%
 Alert threshold = 70%
 Drives = 12 x 2TB NL-SAS
 Number of drives = 12
 Unused drives = 7
 RAID level = 6
 Stripe length = 6
 Rebalancing = yes
 Rebalancing progress = 46%
 Health state = OK (5)
 Health details = "The component is operating normally. No action is required."
 FAST Cache enabled = yes
 Protection size used = 10995116238 (10G)
 Non-base size used = 10995116238 (10G)
 Auto-delete state = Running
 Auto-delete paused = no
 Auto-delete pool full threshold enabled = yes
 Auto-delete pool full high water mark = 95%
 Auto-delete pool full low water mark = 85%
 Auto-delete snapshot space used threshold enabled = yes
 Auto-delete snapshot space used high water mark = 25%
 Auto-delete snapshot space used low water mark = 20%
 Compression space saved = 4947802324992 (1.5T)
 Compression percent = 23%
 Compression Ratio = 1.3:1
 Data Reduction space saved = 4947802324992 (1.5T)
 Data Reduction percent = 23%
 Data Reduction ratio = 1.3:1
 All flash pool = no
Example 2
The following example shows all pools for a model that supports dynamic pools.

uemcli -d 10.0.0.2 -u Local/joe -p MyPassword456! /stor/config/pool show -detail

[Response]
Storage system address: 10.64.75.201
Storage system port: 443
HTTPS connection
1: ID = pool_3
 Type = Traditional
 Name = MyPool
 Description = traditional pool
 Total space = 14177955479552 (12.8T)
 Current allocation = 0
 Preallocated space = 14177955479552 (12.8T)
 Remaining space = 14177955479552 (12.8T)
 Subscription = 0
 Subscription percent = 0%
 Alert threshold = 70%
 Drives = 9 x 1.6T SAS Flash 3; 5 x 400.0G SAS Flash 2
 Number of drives = 14
 RAID level = 5
 Stripe length = Mixed
 Rebalancing = no
 Rebalancing progress =
 Health state = OK (5)
 Health details = "The component is operating normally. No action is required."
 FAST Cache enabled = no
 Protection size used = 0
 Non-base size used = 0
 Auto-delete state = Idle
 Auto-delete paused = no
 Auto-delete pool full threshold enabled = yes
 Auto-delete pool full high water mark = 95%
 Auto-delete pool full low water mark = 85%
 Auto-delete snapshot space used threshold enabled = no
 Auto-delete snapshot space used high water mark = 25%
 Auto-delete snapshot space used low water mark = 20%
 Compression space saved = 0
 Compression Percent = 0%
 Compression Ratio = 1:1
 Data Reduction space saved = 0
 Data Reduction percent = 0%
 Data Reduction ratio = 1:1
 All flash pool = yes
Example 3 (virtual deployments only)

The following command shows details for all pools on a virtual system.
Delete pools

Delete a pool.

Format

```
/stor/config/pool {-id <value> | -name <value>} delete [-async]
```

Object qualifiers

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-id</td>
<td>Type the ID of the pool to delete.</td>
</tr>
<tr>
<td>-name</td>
<td>Type the name of the pool to delete.</td>
</tr>
</tbody>
</table>

Action qualifier

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-async</td>
<td>Run the operation in asynchronous mode.</td>
</tr>
</tbody>
</table>

Note

Simultaneous commands, asynchronous or synchronous, may fail if they conflict in trying to manage the same system elements.

Example

The following deletes pool pool_1:
Manage pool tiers

Storage tiers allow users to move data between different types of drives in a pool to maximize storage efficiency. Storage tiers are defined by the following characteristics:

- Drive performance.
- Drive capacity.

The following table lists the attributes for storage profiles:

Table 8 Storage tier attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Storage tier name.</td>
</tr>
<tr>
<td>Drives</td>
<td>The list of drive types, and the number of drives of each type in the storage tier.</td>
</tr>
<tr>
<td>RAID level (physical deployments only)</td>
<td>RAID level of the storage tier.</td>
</tr>
<tr>
<td>Stripe length (physical deployments only)</td>
<td>Comma-separated list of the stripe length of the drives in the storage tier.</td>
</tr>
<tr>
<td>Total space</td>
<td>Total capacity in the storage tier.</td>
</tr>
<tr>
<td>Current allocation</td>
<td>Currently allocated space.</td>
</tr>
<tr>
<td>Remaining space</td>
<td>Remaining space.</td>
</tr>
</tbody>
</table>

View storage tiers

View a list of storage tiers. You can filter on the pool ID.

Note

The show action command on page 80 explains how to change the output format.

Format

```
/stor/config/pool/tier {-pool <value> | -poolName <value>} show
```

Object qualifiers

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-pool</td>
<td>Type the ID of a pool.</td>
</tr>
<tr>
<td>-poolName</td>
<td>Type the name of a pool.</td>
</tr>
</tbody>
</table>
Example 1 (physical deployments only)
The following command shows tier details about the specified pool:

```bash
uemcli -d 10.0.0.1 -u Local/joe -p MyPassword456! /stor/config/pool/tier -pool pool_1 show -detail
```

```
Storage system address: 10.0.0.1
Storage system port: 443
HTTPS connection

1:    Name                = Extreme Performance
      Drives              = 2 x 200.0G SAS Flash 2; 2 x 800.0G SAS
      Drive type          = SAS Flash
      RAID level          = 10
      Stripe length       = 2
      Total space         = 868120264704 (808.5G)
      Current allocation  = 56371445760 (52.5G)
      Remaining space     = 811748818944 (756.0G)

2:    Name                = Performance
      Drives              = 15 x 600.0G SAS
      Drive type          = SAS
      RAID level          = 5
      Stripe length       = 5
      Total space         = 7087501344768 (6.4T)
      Current allocation  = 0
      Remaining space     = 7087501344768 (6.4T)

3:    Name                = Capacity
      Drives              = 8 x 6.0T NL-SAS
      Drive type          = NL-SAS
      RAID level          = 6
      Stripe length       = 8
      Total space         = 35447707271168 (32.2T)
      Current allocation  = 1610612736 (1.5G)
      Remaining space     = 35446096658432 (32.2T)
```

Example 2 (virtual deployments only)
The following command shows details about pool pool_1 on a virtual system.

```bash
uemcli -d 10.0.0.2 -u Local/joe -p MyPassword456! /stor/config/pool/tier -pool pool_1 show -detail
```

```
Storage system address: 10.0.0.2
Storage system port: 443
HTTPS connection

1:    Name                = Extreme Performance
      Drives              =
      Total space         = 0
      Current allocation  = 0
      Remaining space     = 0

2:    Name                = Performance
      Drives              = 1 x 500GB Virtual
      Total space         = 631242752000 (6.0T)
      Current allocation  = 12624855040 (1.2T)
      Remaining space     = 61861789658400 (587.4T)

3:    Name                = Capacity
      Drives              =
      Total space         = 0
```
View pool resources

This command displays a list of storage resources allocated in a pool. This can be storage resources provisioned on the specified pool and NAS servers that have file systems allocated in the pool.

The following table lists the attributes for pool resources.

<table>
<thead>
<tr>
<th>Table 9 Pool resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute</td>
</tr>
<tr>
<td>ID</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Resource type</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pool</td>
</tr>
<tr>
<td>Total pool space used</td>
</tr>
<tr>
<td>Total pool space preallocated</td>
</tr>
<tr>
<td>Total pool non-base space used</td>
</tr>
<tr>
<td>Health state</td>
</tr>
<tr>
<td>Health details</td>
</tr>
</tbody>
</table>

Format

/stor/config/pool/sr [{-pool <value> | -poolName <value>}] show
Object qualifiers

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-pool</td>
<td>Type the ID of the pool.</td>
</tr>
<tr>
<td>-poolName</td>
<td>Type the name of the pool.</td>
</tr>
</tbody>
</table>

Example

The following command shows details for all storage resources associated with the pool pool_1:

```plaintext
uemcli -d 10.0.0.1 -u Local/joe -p MyPassword456! /stor/config/pool/sr -pool pool_1 show -detail
```

Storage system address: 10.0.0.1
Storage system port: 443
HTTPS connection

```
1:       ID                             = res_1
         Name                           = File_System_1
         Resource type                  = File System
         Pool                           = pool_1
         Total pool space used          = 53024473088 (49.3G)
         Total pool preallocated        = 15695003648 (14.6G)
         Total pool snapshot space used = 7179124736 (6.6G)
         Total pool non-base space used = 7179124736 (6.6G)
         Health state                   = OK (5)
         Health details                 = "The component is operating normally. No action is required."
2:       ID                             = sv_1
         Name                           = AF LUN 1
         Resource type                  = LUN
         Pool                           = pool_1
         Total pool space used          = 14448566272 (13.4G)
         Total pool preallocated        = 4610351104 (4.2G)
         Total pool snapshot space used = 4593991680 (4.2G)
         Total pool non-base space used = 4593991680 (4.2G)
         Health state                   = OK (5)
         Health details                 = "The LUN is operating normally. No action is required."
3:       ID                             = res_2
         Name                           = File_System_2
         Resource type                  = File System
         Pool                           = pool_1
         Total pool space used          = 117361025024 (109.3G)
         Total pool preallocated        = 3166493720 (2.9G)
         Total pool snapshot space used = 4102208352 (38.2G)
         Total pool non-base space used = 4102208352 (38.2G)
         Health state                   = OK (5)
         Health details                 = "The component is operating normally. No action is required."
4:       ID                             = sv_2
         Name                           = AF LUN 2
         Resource type                  = LUN
         Pool                           = pool_1
         Total pool space used          = 950246016 (8.8G)
         Total pool preallocated        = 2579349504 (2.4G)
         Total pool snapshot space used = 0
         Total pool non-base space used = 0
         Health state                   = OK (5)
         Health details                 = "The LUN is operating normally. No action is required."
```
View storage profiles (physical deployments only)

Storage profiles are preconfigured settings for configuring pools based on the following:

- Types of storage resources that will use the pools.
- Intended usage of the pool.

For example, create a pool for file system storage resources intended for general use. When configuring a pool, specify the ID of the storage profile to apply to the pool.

Note

Storage profiles are not restrictive with regard to storage provisioning. For example, you can provision file systems from an FC or iSCSI database pool. However, the characteristics of the storage will be best suited to the indicated storage resource type and use.

Each storage profile is identified by an ID.

The following table lists the attributes for storage profiles.

Table 10 Storage profile attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>ID of the storage profile.</td>
</tr>
<tr>
<td>Type</td>
<td>(Available only for systems that support dynamic pools) Type of pool the profile can create. Value is one of the following:</td>
</tr>
<tr>
<td>Description</td>
<td>Brief description of the storage profile.</td>
</tr>
<tr>
<td>Drive type</td>
<td>Types of drives for the storage profile.</td>
</tr>
<tr>
<td>RAID level</td>
<td>RAID level number for the storage profile. Value is one of the following:</td>
</tr>
<tr>
<td></td>
<td>• 1 - RAID level 1.</td>
</tr>
<tr>
<td></td>
<td>• 5 - RAID level 5.</td>
</tr>
<tr>
<td></td>
<td>• 6 - RAID level 6.</td>
</tr>
<tr>
<td></td>
<td>• 10 - RAID level 1+0.</td>
</tr>
</tbody>
</table>
Table 10: Storage profile attributes (continued)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum capacity</td>
<td>Maximum storage capacity for the storage profile.</td>
</tr>
<tr>
<td>Stripe length</td>
<td>Number of drives the data is striped across.</td>
</tr>
<tr>
<td></td>
<td>Note</td>
</tr>
<tr>
<td></td>
<td>For best fit profiles, this value is Best fit.</td>
</tr>
<tr>
<td>Disk group</td>
<td>List of drive groups recommended for the storage pool configurations of the specified storage profile. This is calculated only when the -configurable option is specified.</td>
</tr>
<tr>
<td>Maximum drives to configure</td>
<td>List of the maximum number of drives allowed for the specified storage profile in the recommended drive groups. This is calculated only when the -configurable option is specified.</td>
</tr>
<tr>
<td>Maximum capacity to configure</td>
<td>List of the maximum number of free capacity of the drives available to configure for the storage profile in the recommended drive groups. This is calculated only when the -configurable option is specified.</td>
</tr>
</tbody>
</table>

Note

The show action command on page 80 explains how to change the output format.

Format

```
/stor/config/profile [-id <value> | -driveType <value> [-raidLevel <value>] | -traditional] [-configurable] show
```

Object qualifier

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-id</td>
<td>Type the ID of a storage profile.</td>
</tr>
<tr>
<td>-driveType</td>
<td>Specify the type of drive.</td>
</tr>
<tr>
<td>-raidLevel</td>
<td>Specify the RAID type of the profile.</td>
</tr>
<tr>
<td>-traditional</td>
<td>(Available only for systems that support dynamic pools) Specify this option to view the profiles that you can use for creating traditional pools. To view the profiles you can use for creating dynamic pools, omit this option.</td>
</tr>
<tr>
<td>-configurable</td>
<td>Show only profiles that can be configured, that is, those with non-empty drive group information. If specified, calculates the following drive group information for each profile:</td>
</tr>
<tr>
<td></td>
<td>- Disk group</td>
</tr>
<tr>
<td></td>
<td>- Maximum drives to configure</td>
</tr>
<tr>
<td></td>
<td>- Maximum capacity to configure</td>
</tr>
</tbody>
</table>

If the profile is for a dynamic pool, the calculated information indicates whether the drive group has enough drives for pool
Example 1
The following command shows details for storage profiles that can be used to create dynamic pools:

```bash
eumcli -d 10.0.0.1 -u Local/joe -p MyPassword456! /stor/config/profile -configurable show
```

<table>
<thead>
<tr>
<th>ID</th>
<th>Type</th>
<th>Description</th>
<th>Drive type</th>
<th>RAID level</th>
<th>Maximum capacity</th>
<th>Stripe length</th>
<th>Disk group</th>
<th>Maximum drives to configure</th>
<th>Maximum capacity to configure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>profile_22</td>
<td>Dynamic</td>
<td>SAS Flash 2 RAID5 (4+1)</td>
<td>5</td>
<td>4611148087296 (4.1T)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:</td>
<td>profile_30</td>
<td>Dynamic</td>
<td>SAS Flash 2 RAID10 (1+1)</td>
<td>10</td>
<td>9749818597376 (8.8T)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:</td>
<td>profile_31</td>
<td>Dynamic</td>
<td>SAS Flash 2 RAID10 (2+2)</td>
<td>10</td>
<td>9749818597376 (8.8T)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 2
The following command shows details for storage profiles that can be used to create traditional pools in models that support dynamic pools:

```bash
eumcli -d 10.0.0.1 -u Local/joe -p MyPassword456! /stor/config/profile -traditional -configurable show
```

<table>
<thead>
<tr>
<th>ID</th>
<th>Type</th>
<th>Description</th>
<th>Drive type</th>
<th>RAID level</th>
<th>Maximum capacity</th>
<th>Stripe length</th>
<th>Disk group</th>
<th>Maximum drives to configure</th>
<th>Maximum capacity to configure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>tprofile_22</td>
<td>Traditional</td>
<td>SAS Flash 3 RAID5 (4+1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Drive type = SAS Flash 3
RAID level = 5
Maximum capacity = 4611148087296 (4.1T)
Stripe length = Maximum capacity
Disk group = dg_16
Maximum drives to configure = 5
Maximum capacity to configure = 1884243623936 (1.7T)

2: ID = tprofile_30
Type = Traditional
Description = SAS Flash 3 RAID10 (1+1)
Drive type = SAS Flash 3
RAID level = 10
Maximum capacity = 9749818597376 (8.8T)
Stripe length = 2
Disk group = dg_13, dg_15
Maximum drives to configure = 10, 10
Maximum capacity to configure = 1247522127872 (1.1T),
2954304921600 (2.6T)

3: ID = tprofile_31
Type = Traditional
Description = SAS Flash 3 RAID10 (2+2)
Drive type = SAS Flash 3
RAID level = 10
Maximum capacity = 9749818597376 (8.8T)
Stripe length = 4
Disk group = dg_13, dg_15
Maximum drives to configure = 8, 8
Maximum capacity to configure = 2363443937280 (2.1T),
952103075840 (886.7G)

Manage drive groups (physical deployments only)

Drive groups are the groups of drives on the system with similar characteristics, including type, capacity, and spindle speed. When configuring pools, you select the drive group to use and the number of drives from the group to add to the pool. Each drive group is identified by an ID.

The following table lists the attributes for drive groups.

Table 11 Drive group attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>ID of the drive group.</td>
</tr>
<tr>
<td>Drive type</td>
<td>Type of drives in the drive group.</td>
</tr>
<tr>
<td>FAST Cache</td>
<td>Indicates whether the drive group's drives can be added to FAST Cache.</td>
</tr>
<tr>
<td>Drive size</td>
<td>Capacity of one drive in the drive group.</td>
</tr>
<tr>
<td>Rotational speed</td>
<td>Rotational speed of the drives in the group.</td>
</tr>
<tr>
<td>Number of drives</td>
<td>Total number of drives in the drive group.</td>
</tr>
<tr>
<td>Unconfigured drives</td>
<td>Total number of drives in the drive group that are not in a pool.</td>
</tr>
<tr>
<td>Capacity</td>
<td>Total capacity of all drives in the drive group.</td>
</tr>
</tbody>
</table>
Table 11 Drive group attributes (continued)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended number of spares</td>
<td>Number of spares recommended for the drive group.</td>
</tr>
<tr>
<td>Drives past EOL</td>
<td>Number of drives past EOL (End of Life) in the group.</td>
</tr>
<tr>
<td>Drives approaching EOL</td>
<td>Number of drives that will reach EOL in 0-30 days, 0-60 days, 0-90 days and 0-180 days.</td>
</tr>
</tbody>
</table>

View drive groups

View details about drive groups on the system. You can filter on the drive group ID.

Note

The show action command on page 80 explains how to change the output format.

Format

/stor/config/dg [-id <value>] [-traditional] show

Object qualifier

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-id</td>
<td>Type the ID of a drive group.</td>
</tr>
<tr>
<td>-traditional</td>
<td>(Available only for systems that support dynamic pools) Specify this qualifier to have the system assume that the pools to be created are traditional pools.</td>
</tr>
</tbody>
</table>

Example 1

The following command shows details about all drive groups that can be used to configure dynamic pools:

uemcli -d 10.0.0.1 -u Local/joe -p MyPassword456! /stor/config/dg show -detail

<table>
<thead>
<tr>
<th>Storage system address: 10.0.0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage system port: 443</td>
</tr>
<tr>
<td>HTTPS connection</td>
</tr>
</tbody>
</table>

1: ID = dg_3
 Drive type = SAS Flash 2
 FAST Cache = yes
 Drive size = 393846128640 (366.7G)
 Vendor size = 400.0G
 Rotational speed = 0 rpm
 Number of drives = 3
 Unconfigured drives = 3
 Capacity = 1181538385920 (1.1T)
 Recommended number of spares = 0
 Drives past EOL = 0
 Drives approaching EOL = 0 (0-30 days), 0 (0-60 days), 0 (0-90 days), 0 (0-180 days)

2: ID = dg_2
Drive type = SAS Flash 2 (183.4G)
FAST Cache = yes
Drive size = 196971960832
Vendor size = 200.0G
Rotational speed = 0 rpm
Number of drives = 7
Unconfigured drives = 7
Capacity = 1378803725824 (1.2T)
Recommended number of spares = 0
Drives past EOL = 0
Drives approaching EOL = 1 (0-30 days), 2 (0-60 days), 2 (0-90 days), 3 (0-180 days)

Example 2
The following command shows details about all drive groups that can be used to configure traditional pools in models that support dynamic pools:

```
uemcli -d 10.0.0.1 -u Local/joe -p MyPassword456! /stor/config/dg -traditional show
```

```
1:     ID                           = dg_8
Drive type                   = NL-SAS
FAST Cache                   = no
Drive size                   = 1969623564288 (1.7T)
Vendor size                  = 2.0T
Rotational speed             = 7200 rpm
Number of drives             = 7
Unconfigured drives          = 7
Capacity                     = 13787364950016 (12.5T)
Recommended number of spares = 1
2:     ID                           = dg_15
Drive type                   = SAS
FAST Cache                   = no
Drive size                   = 590894538752 (550.3G)
Vendor size                  = 600.0G
Rotational speed             = 15000 rpm
Number of drives             = 16
Unconfigured drives          = 4
Capacity                     = 9454312620032 (8.5T)
Recommended number of spares = 1

View recommended drive group configurations

View the recommended drive groups from which to add drives to a pool based on a specified storage profile or pool type.

Note

The show action command on page 80 explains how to change the output format.
Configuring pools using the CLI

Format
/stor/config/dg recom {–profile <value> | -pool <value> | -poolName <value>}

Action qualifier

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-profile</td>
<td>Type the ID of a storage profile. The output will include the list of drive groups recommended for the specified storage profile.</td>
</tr>
<tr>
<td>-pool</td>
<td>Type the ID of a pool. The output will include the list of drive groups recommended for the specified pool.</td>
</tr>
<tr>
<td>-poolName</td>
<td>Type the name of a pool. The output will include the list of drive groups recommended for the specified pool.</td>
</tr>
</tbody>
</table>

Example
The following command shows the recommended drive groups for pool pool_1:

uemcli -d 10.0.0.1 -u Local/joe -p MyPassword456! /stor/config/dg recom -pool pool_1

Storage system address: 10.0.0.1
Storage system port: 443
HTTPS connection

1:     ID                        = DG_1
       Drive type                = SAS
       Drive size                = 536870912000 (500GB)
       Number of drives          = 8
       Allowed numbers of drives = 4,8
       Capacity                  = 439804651104 (4TB)

2:     ID                        = DG_2
       Drive type                = SAS
       Drive size                = 268435456000 (250GB)
       Number of drives          = 4
       Allowed numbers of drives = 4
       Capacity                  = 1099511627776 (1TB)

Manage storage system capacity settings

The following table lists the general storage system capacity attributes:

Table 12 General storage system capacity attributes

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free space</td>
<td>Specifies the amount of space that is free (available to be used) in all storage pools on the storage system.</td>
</tr>
<tr>
<td>Used space</td>
<td>Specifies the amount of space that is used in all storage pools on the storage system.</td>
</tr>
<tr>
<td>Preallocated space</td>
<td>Space reserved across all of the pools on the storage system. This space is reserved for future needs of storage resources, which can make writes more efficient. Each pool may be able to reclaim preallocated space from storage</td>
</tr>
</tbody>
</table>
Table 12 General storage system capacity attributes (continued)

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total space</td>
<td>Specifies the total amount of space, both free and used, in all storage pools on the storage system.</td>
</tr>
<tr>
<td>Data Reduction space saved</td>
<td>Specifies the storage size saved on the entire system when using data reduction.</td>
</tr>
<tr>
<td>Note</td>
<td>Data reduction is available for thin LUNs and thin file systems in an All-Flash pool only. The thin file systems must be created on Unity systems running version 4.2.x or later.</td>
</tr>
<tr>
<td>Data Reduction percent</td>
<td>Specifies the storage percentage saved on the entire system when using data reduction.</td>
</tr>
<tr>
<td>Note</td>
<td>Data reduction is available for thin LUNs and thin file systems in an All-Flash pool only. The thin file systems must be created on Unity systems running version 4.2.x or later.</td>
</tr>
<tr>
<td>Data Reduction ratio</td>
<td>Specifies the ratio between data without data reduction and data after data reduction savings.</td>
</tr>
<tr>
<td>Note</td>
<td>Data reduction is available for thin LUNs and thin file systems in an All-Flash pool only. The thin file systems must be created on Unity systems running version 4.2.x or later.</td>
</tr>
</tbody>
</table>

View system capacity settings

View the current storage system capacity settings.

Format

/stor/general/system show

Example

The following command displays details about the storage capacity on the system:

uemcli -d 10.0.0.1 -u Local/joe -p MyPassword456! /stor/general/system show

Storage system address: 10.0.0.1
Storage system port: 443
HTTPS connection

1: Free space = 4947802324992 (1.5T)
Used space = 4947802324992 (1.5T)
Total space = 9895604649984 (3.0T)
Preallocated space = 60505210880 (56.3G)
Compression space saved = 4947802324992 (1.5T)
Manage system tier capacity settings

The following table lists the general system tier capacity attributes:

**Table 13 General system tier capacity attributes**

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name of the tier. One of the following:</td>
</tr>
<tr>
<td></td>
<td>• Extreme Performance</td>
</tr>
<tr>
<td></td>
<td>• Performance</td>
</tr>
<tr>
<td></td>
<td>• Capacity</td>
</tr>
<tr>
<td>Free space</td>
<td>Specifies the amount of space that is free (available to be used) in the tier.</td>
</tr>
<tr>
<td>Used space</td>
<td>Specifies the amount of space that is used in the tier.</td>
</tr>
<tr>
<td>Total space</td>
<td>Specifies the total amount of space, both free and used, in the tier.</td>
</tr>
</tbody>
</table>

View system tier capacity

View the current system tier capacity settings.

**Format**

/stor/general/tier show

**Example**

The following command displays details about the storage tier capacity on the system:

uemcli -d 10.0.0.1 -u Local/joe -p MyPassword456! /stor/general/tier show

Storage system address: 10.0.0.1
Storage system port: 443
HTTPS connection

1: Name = Extreme Performance Tier
Free space = 4947802324992 (1.5T)
Used space = 4947802324992 (1.5T)
Total space = 9895604649984 (3.0T)

2: Name = Capacity Tier
Free space = 4947802324992 (1.5T)
Used space = 4947802324992 (1.5T)
Total space = 9895604649984 (3.0T)

Change disk settings (virtual deployments only)

Change settings of an existing disk.
Configuring pools using the CLI

Format
/env/disk -id <value> set [-async] [-name <value>] [-tier <value>]

Object qualifier

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-id</td>
<td>Disk identifier.</td>
</tr>
</tbody>
</table>

Action qualifier

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-async</td>
<td>Run the operation in asynchronous mode.</td>
</tr>
<tr>
<td>-name</td>
<td>Specify the new name for the disk.</td>
</tr>
<tr>
<td>-tier</td>
<td>Specify the new tier. Valid values are:</td>
</tr>
<tr>
<td></td>
<td>• capacity</td>
</tr>
<tr>
<td></td>
<td>• performance</td>
</tr>
<tr>
<td></td>
<td>• extreme</td>
</tr>
</tbody>
</table>

Note
Disks without a tier cannot be used for pool provisioning.

Example
The following command changes the name of the virtual disk with the ID "vdisk_1".

uemcli -d 10.0.0.2 -u Local/joe -p MyPassword456! /env/disk -id vdisk_1 set -name "High-performance storage"

Storage system address: 10.0.0.2
Storage system port: 443
HTTPS connection
Operation completed successfully.

Pool use cases

This section describes different CLI use cases for pools.

Create a pool using drives with specific characteristics
This example applies to hybrid Flash arrays, which only support traditional pools.

Retrieve the list of storage profiles
uemcli -d 10.0.0.1 -u Local/joe -p MyPassword456! /stor/config/profile-configurable show

Storage system address: 10.0.0.1
Storage system port: 443
HTTPS connection
<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
<th>Drive type</th>
<th>RAID level</th>
<th>Maximum capacity</th>
<th>Stripe length</th>
<th>Disk group</th>
<th>Maximum drives to configure</th>
<th>Maximum capacity to configure</th>
</tr>
</thead>
<tbody>
<tr>
<td>profile_22</td>
<td>SAS RAID5</td>
<td>SAS</td>
<td>5</td>
<td>4611148087296 (4.1T)</td>
<td>Maximum capacity</td>
<td>dg_16</td>
<td>5</td>
<td>1884243623936 (1.7T)</td>
</tr>
<tr>
<td>profile_30</td>
<td>SAS RAID10</td>
<td>SAS</td>
<td>10</td>
<td>9749818597376 (8.8T)</td>
<td>2</td>
<td>dg_13, dg_15</td>
<td>10, 10</td>
<td>1247522127872 (1.1T), 2954304921600 (2.6T)</td>
</tr>
<tr>
<td>profile_31</td>
<td>SAS RAID10</td>
<td>SAS</td>
<td>10</td>
<td>9749818597376 (8.8T)</td>
<td>4</td>
<td>dg_13, dg_15</td>
<td>8, 8</td>
<td>2363443937280 (2.1T), 952103075840 (886.7G)</td>
</tr>
</tbody>
</table>

Configure a new pool

```
uemcli -d 10.0.0.1 -u Local/joe -p MyPassword456! /stor/config/pool create -name MyPool -description "My custom pool" -storProfile profile_22 -diskGroup dg_16 -drivesNumber 5
```

Storage system address: 10.0.0.1
Storage system port: 443
HTTPS connection

ID = GP_4
Operation completed successfully.

Configure a dynamic pool

You can configure dynamic pools for all-Flash models of Unity running OE version 4.2.x or later. New pools created for these models are dynamic pools by default. Dynamic pools implement advanced RAID technology. In dynamic pools, a RAID group is spread across drive extents in multiple drives. The required spare space is also spread across drive extents in multiple drives. When a drive fails, the extents on the failed drive are rebuilt to spare space extents within the pool.

When you configure dynamic pools, you can select different capacity drives from different drive groups with the same Flash drive types to create a tier. The total drive count of the drive type must be at least the stripe width plus one. For example, the total drive count for a RAID 4+1 group must be at least 6.
**Step 1: View the list of available drive groups**

View the list of available drive groups, as shown in the following example:

```
[Request]
Uemcli /stor/config/dg show

[Response]
Storage system address: 127.0.0.1
Storage system port: 443
HTTPS connection

1: ID = dg_2
 Drive type = SAS Flash 2
 FAST Cache = yes
 Drive size = 196971960832 (183.4G)
 Vendor size = 200.0G
 Rotational speed = 0 rpm
 Number of drives = 12
 Unconfigured drives = 12
 Capacity = 2363663529984 (2.1T)
 Recommended number of spares = 0

2: ID = dg_3
 Drive type = SAS Flash 2
 FAST Cache = yes
 Drive size = 393846128640 (366.7G)
 Vendor size = 400.0G
 Rotational speed = 0 rpm
 Number of drives = 12
 Unconfigured drives = 6
 Capacity = 4726153543680 (4.2T)
 Recommended number of spares = 0
```

**Step 2: View the list of storage profiles**

View the list of storage profiles, as shown in the following example:

```
[Request]
Uemcli /stor/config/profile show

[Response]
Storage system address: 127.0.0.1
Storage system port: 443
HTTPS connection

1: ID = profile_1
 Type = Dynamic
 Description = SAS Flash 2 RAID5 (4+1)
 Drive type = SAS Flash 2
 RAID level = 5
 Maximum capacity = 97373737844736 (88.5T)
 Stripe length = 5
 Disk group =
 Maximum drives to configure =
 Maximum capacity to configure =
```

**Step 3: Configure the dynamic pool**

Configure the dynamic pool with the specified drive groups and profiles. Optionally set `-type` to `dynamic` and make sure that the `-drivesNumber` value for each drive type is not less than the drive group’s RAID group width plus one:

```
uemcli /stor/config/pool create –name mypool -diskGroup dg_2,dg_3 -drivesNumber 4,2
```
Configure a traditional pool for an all-Flash model

You can configure traditional pools for all-Flash models of Unity running OE version 4.2.x by explicitly setting the `Type` attribute to `traditional`. If you do not set `Type` to `traditional` when you create a pool in the Unisphere CLI, a dynamic pool is created.

**Step 1: View the list of storage profiles**

View the list of storage profiles, as shown in the following example:

```
uemcli /stor/config/profile -traditional -configurable show
```

```
Storage system address: 127.0.0.1
Storage system port: 443
HTTPS connection

1: ID = tprofile_2
 Type = Traditional
 Description = SAS Flash 2 RAID5 (8+1)
 Drive type = SAS Flash 2
 RAID level = 5
 Maximum capacity = 95010661072896 (86.4T)
 Stripe length = 9
 Disk group = dg_34, dg_26
 Maximum drives to configure = 9, 9
 Maximum capacity to configure = 60189403250688 (54.7T), 2232208064512 (2.0T)

2: ID = tprofile_4
 Type = Traditional
 Description = SAS Flash 2 RAID5
 Drive type = SAS Flash 2
 RAID level = 5
 Maximum capacity = 95010661072896 (86.4T)
 Stripe length = Maximum capacity
 Disk group = dg_34, dg_26
 Maximum drives to configure = 9, 10
 Maximum capacity to configure = 60189403250688 (54.7T), 2691354329088 (2.4T)
```

**Step 2: Configure the traditional pool**

Configure a traditional pool with the specified profile. Make sure you set `-type` to `traditional` and that the `-drivesNumber` is a multiple of the RAID group width.

```
uemcli /stor/config/pool create -name test -diskGroup dg_34 -drivesNumber 9 -storProfile tprofile_2 -type traditional
```

```
Storage system address: 127.0.0.1
Storage system port: 443
```
Add drives to an existing pool

Retrieve the list of existing pools
uemcli -d 10.0.0.1 -u Local/joe -p MyPassword456! /store/config/pool show

Retrieve the list of recommended disk groups for the selected pool
uemcli -d 10.0.0.1 -u Local/joe -p MyPassword456! /stor/config/dg recom -pool SPL_3
## Configuring pools using the CLI

**Allowed numbers of drives = 4**  
**Capacity = 419430400 (400G)**

**Extend the existing pool**

```
uemcli -d 10.0.0.1 -u Local/joe -p MyPassword456! /stor/config/pool -id SPL_3 extend -diskGroup DG_4 -drivesNumber 4
```

Storage system address: 10.0.0.1  
Storage system port: 443  
HTTPS connection

ID = SPL_3  
Operation completed successfully.

### The show action command

The `show action` command displays a list of objects that exist on the system and the attributes of those objects. You can specify an object qualifier to view the attributes for a single object. The `show action` command provides qualifiers for changing the display of the output, including the format and the attributes to include. The available output formats are name-value pair (NVP), table, and comma-separated values (CSV).

#### Format

```
uemcli [<switches>] <object> [<object qualifier>] show [{-detail | -brief | -filter <value>} [-output {nvp | table [-wrap] | csv}]
```

#### Action qualifier

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-output</td>
<td>-o</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>-detail</td>
<td>Display all attributes.</td>
</tr>
<tr>
<td>-brief</td>
<td>Display only the basic attributes (default).</td>
</tr>
<tr>
<td>-filter</td>
<td>Comma-separated list of attributes which are included into the command output.</td>
</tr>
</tbody>
</table>
Name-value pair format

1:     ID                 = la0_SPA
SP                 = SPA
Ports              = eth0_SPA,eth1_SPA
Health state       = OK (5)

2:     ID                 = la0_SPB
SP                 = SPB
Ports              = eth0_SPB,eth1_SPB
Health state       = OK (5)

Table format

<table>
<thead>
<tr>
<th>ID</th>
<th>SP</th>
<th>Ports</th>
<th>Health state</th>
</tr>
</thead>
<tbody>
<tr>
<td>la0_SPA</td>
<td>SPA</td>
<td>eth0_SPA,eth1_SPA</td>
<td>OK (5)</td>
</tr>
<tr>
<td>la0_SPB</td>
<td>SPB</td>
<td>eth0_SPB,eth1_SPB</td>
<td>OK (5)</td>
</tr>
</tbody>
</table>

Comma-separated values format

ID,SP,Ports,Health state
la0_SPA,SPA,"eth0_SPA,eth1_SPA",OK (5)
la0_SPB,SPB,"eth0_SPB,eth1_SPB",OK (5)

Example
The following command modifies the set of attributes in the show action output. For example, if you add -filter "ID,ID,ID,ID" to the command, in the output you will see four lines with the "ID" attribute for each listed instance:

1:  ID = la_0
    ID = la_0
    ID = la_0
    ID = la_0

uemcli /net/nas/server show -filter “ID, SP, Health state, ID, Name”

Filter format

Storage system address: 10.0.0.1
Storage system port: 443
HTTPS connection

1:     ID                 = nas_1
SP                 = SPA
Health state       = OK (5)
ID                 = nas_1
Name               = Mynas1

2:     ID                 = nas_2
SP                 = SPA
Health state       = OK (5)
ID                 = nas_2
Name               = Mynas2
Configuring pools using the CLI
CHAPTER 8

Managing the FAST Cache using the CLI (supported physical deployments only)

This chapter contains the following topics:

- Manage FAST Cache .......................................................................................... 84
- Manage FAST Cache storage objects (physical deployments only) ............... 87
Manage FAST Cache

FAST Cache is a storage efficiency technology that uses disks to expand the cache capability of the storage system to provide improved performance.

The following table lists the attributes for FAST Cache:

**Table 14 FAST Cache attributes**

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>Capacity of the FAST Cache.</td>
</tr>
<tr>
<td>Drives</td>
<td>The list of disk types, and the number of disks of each type in the FAST Cache.</td>
</tr>
<tr>
<td>Number of drives</td>
<td>Total number of disks in the FAST Cache.</td>
</tr>
<tr>
<td>RAID level</td>
<td>RAID level applied to the FAST Cache disks. This value is always RAID 1.</td>
</tr>
<tr>
<td>Health state</td>
<td>Health state of the FAST Cache. The health state code appears in parentheses.</td>
</tr>
<tr>
<td>Health details</td>
<td>Additional health information. See Appendix A, Reference, for health information details.</td>
</tr>
</tbody>
</table>

Create FAST Cache

Configure FAST Cache. The storage system generates an error if FAST Cache is already configured.

**Format**

```
/stor/config/fastcache create [-async] -diskGroup <value> -drivesNumber <value> [-enableOnExistingPools {yes | no}]
```

**Action qualifier**

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-async</td>
<td>Run the operation in asynchronous mode.</td>
</tr>
<tr>
<td>-diskGroup</td>
<td>Specify the drive group to include in the FAST Cache.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong></td>
</tr>
<tr>
<td></td>
<td>Only SAS Flash 2 drives can be used in the FAST Cache.</td>
</tr>
<tr>
<td>-drivesNumber</td>
<td>Specify the number of drives to include in the FAST Cache.</td>
</tr>
<tr>
<td>-enableOnExistingPools</td>
<td>Specify whether FAST Cache is enabled on all existing pools. Valid values are:</td>
</tr>
<tr>
<td></td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>no</td>
</tr>
</tbody>
</table>
Example
The following command configures FAST Cache with six drives from drive group dg_2, and enables FAST Cache on existing pools:

```
uemcli -d 10.0.0.1 -u Local/joe -p MyPassword456! /stor/config/fastcache create -diskGroup dg_2 -drivesNumber 6 -enableOnExistingPools yes
```

Storage system address: 10.0.0.1
Storage system port: 443
HTTPS connection

Operation completed successfully.

View FAST Cache settings

View the FAST Cache parameters.

Format
```
/stor/config/fastcache show
```

Example
The following command displays the FAST Cache parameters for a medium endurance Flash drive:

```
uemcli -d 10.0.0.1 -u Local/joe -p MyPassword456! /stor/config/fastcache show -detail
```

Storage system address: 10.0.0.1
Storage system port: 443
HTTPS connection

```
1: Total space = 536870912000 (500G)
 Drives = 6 x 200GB SAS Flash 2
 Number of drives = 6
 RAID level = 1
 Health state = OK (5)
 Health details = "The component is operating normally. No action is required."
```

Extend FAST Cache

Extend the FAST Cache by adding more drives.

Format
```
/stor/config/fastcache extend [-async] -diskGroup <value> -drivesNumber <value>
```

Action qualifier

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-async</td>
<td>Run the operation in asynchronous mode.</td>
</tr>
<tr>
<td>-diskGroup</td>
<td>Specify the comma-separated list of SAS Flash drives to add to the FAST Cache. Any added drives must have the same drive type and drive size as the existing drives.</td>
</tr>
<tr>
<td>-drivesNumber</td>
<td>Specify the number of drives for each corresponding drive group to be added to the FAST Cache.</td>
</tr>
</tbody>
</table>
Example

The following command adds six drives from drive group "dg_2" to FAST cache.

```
uemcli -d 10.0.0.1 -u Local/joe -p MyPassword456! /stor/config/fastcache extend -diskGroup dg_2 -drivesNumber 6
```

Storage system address: 10.0.0.1
Storage system port: 443
HTTPS connection

Operation completed successfully.

Shrink FAST Cache

Shrink the FAST Cache by removing storage objects.

**Format**

```
/stor/config/fastcache shrink [-async] -so <value>
```

**Action qualifier**

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-async</td>
<td>Run the operation in asynchronous mode.</td>
</tr>
<tr>
<td>-so</td>
<td>Specify the comma-separated list of storage objects to remove from the FAST Cache. Run the <code>/stor/config/fastcache/so show</code> command to obtain a list of all storage objects currently in the FAST Cache.</td>
</tr>
</tbody>
</table>

Example

The following command removes Raid Group RG_1 from the FAST Cache.

```
uemcli -d 10.0.0.1 -u Local/joe -p MyPassword456! /stor/config/fastcache shrink -so rg_1
```

Storage system address: 10.0.0.1
Storage system port: 443
HTTPS connection

Operation completed successfully.

Delete FAST Cache

Delete the FAST Cache configuration. The storage system generates an error if FAST Cache is not configured on the system.

**Format**

```
/stor/config/fastcache delete [-async]
```

**Action qualifier**

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-async</td>
<td>Run the operation in asynchronous mode.</td>
</tr>
</tbody>
</table>

Example

The following command deletes the FAST Cache configuration:
Manage FAST Cache storage objects (physical deployments only)

FAST Cache storage objects include the RAID groups and drives that are in the FAST Cache.

Table 15 FAST Cache storage object attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Identifier of the storage object.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of storage object.</td>
</tr>
<tr>
<td>RAID level</td>
<td>RAID level applied to the storage object.</td>
</tr>
<tr>
<td>Drive type</td>
<td>Type of drive.</td>
</tr>
<tr>
<td>Number of drives</td>
<td>Number of drives in the storage object.</td>
</tr>
<tr>
<td>Drives</td>
<td>Comma-separated list of the drive IDs for each storage object.</td>
</tr>
<tr>
<td>Total space</td>
<td>Total space used by the storage object.</td>
</tr>
<tr>
<td>Device state</td>
<td>The status of the FAST Cache device. Values are:</td>
</tr>
<tr>
<td></td>
<td>• OK - This cache device is operating normally.</td>
</tr>
<tr>
<td></td>
<td>• Degraded - One drive of this cache device is faulted.</td>
</tr>
<tr>
<td></td>
<td>• Faulted - This cache device cannot operate normally.</td>
</tr>
<tr>
<td></td>
<td>• Expanding - This cache device is expanding.</td>
</tr>
<tr>
<td></td>
<td>• Expansion Ready - This cache device finished expanding.</td>
</tr>
<tr>
<td></td>
<td>• Expansion Failure - This cache device failed to expand.</td>
</tr>
<tr>
<td></td>
<td>• Shrinking - This cache device is shrinking.</td>
</tr>
<tr>
<td></td>
<td>• Shrink Done - This cache device has flushed pages and is removed from FAST Cache.</td>
</tr>
</tbody>
</table>

View FAST Cache storage objects

View a list of all storage objects, including RAID groups and drives, that are in the FAST Cache.

Format

/stor/config/fastcache/so [-id <value>] show
Object qualifier

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-id</td>
<td>Type the ID of the storage object in the FAST Cache.</td>
</tr>
</tbody>
</table>

**Example 1**
The following example shows FAST Cache storage objects on the system.

```bash
uemcli -d 10.0.0.1 -u Local/joe -p MyPassword456! /stor/config/fastcache/so show
```

Storage system address: 10.0.0.1
Storage system port: 443
HTTPS connection

```
1: ID = rg_6
 Type = RAID group
 Stripe length = 2
 RAID level = 1
 Number of drives = 2
 Drive type = SAS Flash 2
 Drives = dae_0_1_disk_1, dae_0_1_disk_2
 Total space = 195400433664 (181.9G)
 Device state = OK
```
CHAPTER 9

Managing FAST VP using the CLI (supported physical deployments only)

This chapter contains the following topics:

- Manage FAST VP pool settings.......................................................... 90
- Manage FAST VP general settings..................................................... 95
Manage FAST VP pool settings

Fully Automated Storage Tiering for Virtual Pools (FAST VP) is a storage efficiency technology that automatically moves data between storage tiers within a pool based on data access patterns.

The following table lists the attributes for FAST VP pool settings.

**Table 16 FAST VP pool attributes**

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pool</td>
<td>Identifies the pool.</td>
</tr>
<tr>
<td>Status</td>
<td>Identifies the status of data relocation on the pool. Value is one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Not started - Data relocation has not started.</td>
</tr>
<tr>
<td></td>
<td>• Paused - Data relocation is paused.</td>
</tr>
<tr>
<td></td>
<td>• Completed - Data relocation is complete.</td>
</tr>
<tr>
<td></td>
<td>• Stopped by user - Data relocation was stopped by the user.</td>
</tr>
<tr>
<td></td>
<td>• Active - Data relocation is in progress.</td>
</tr>
<tr>
<td></td>
<td>• Failed - Data relocation failed.</td>
</tr>
<tr>
<td>Relocation type</td>
<td>Type of data relocation. Value is one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Manual - Data relocation was initiated by the user.</td>
</tr>
<tr>
<td></td>
<td>• Scheduled or rebalancing - Data relocation was initiated by the system because it was scheduled, or because the system rebalanced the data.</td>
</tr>
<tr>
<td>Schedule enabled</td>
<td>Identifies whether the pool is rebalanced according to the system FAST VP schedule. Value is one of the following:</td>
</tr>
<tr>
<td></td>
<td>• yes</td>
</tr>
<tr>
<td></td>
<td>• no</td>
</tr>
<tr>
<td>Start time</td>
<td>Indicates the time the current data relocation started.</td>
</tr>
<tr>
<td>End time</td>
<td>Indicates the time the current data relocation is scheduled to end.</td>
</tr>
<tr>
<td>Data relocated</td>
<td>The amount of data relocated during an ongoing relocation, or the previous relocation if a data relocation is not occurring. The format is:</td>
</tr>
<tr>
<td></td>
<td>&lt;value&gt; [suffix]</td>
</tr>
<tr>
<td></td>
<td>where:</td>
</tr>
<tr>
<td></td>
<td>• value - Identifies the size of the data relocated.</td>
</tr>
<tr>
<td></td>
<td>• suffix - Identifies that the value relates to the previous relocation session.</td>
</tr>
<tr>
<td>Attribute</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Rate</td>
<td>Identifies the transfer rate for the data relocation. Value is one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Low - Least impact on system performance.</td>
</tr>
<tr>
<td></td>
<td>• Medium - Moderate impact on system performance.</td>
</tr>
<tr>
<td></td>
<td>• High - Most impact on system performance.</td>
</tr>
<tr>
<td></td>
<td>Default value is medium.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong></td>
</tr>
<tr>
<td></td>
<td>This field is blank if data relocation is not in progress.</td>
</tr>
<tr>
<td>Data to move up</td>
<td>The amount of data in the pool scheduled to be moved to a higher storage tier.</td>
</tr>
<tr>
<td>Data to move down</td>
<td>The amount of data in the pool scheduled to be moved to a lower storage tier.</td>
</tr>
<tr>
<td>Data to move within</td>
<td>The amount of data in the pool scheduled to be moved within the same storage tiers for rebalancing.</td>
</tr>
<tr>
<td>Data to move up per tier</td>
<td>The amount of data per tier that is scheduled to be moved to a higher tier. The format is:</td>
</tr>
<tr>
<td></td>
<td><code>&lt;tier_name&gt;: [value]</code></td>
</tr>
<tr>
<td></td>
<td>where:</td>
</tr>
<tr>
<td></td>
<td>• <code>tier_name</code> - Identifies the storage tier.</td>
</tr>
<tr>
<td></td>
<td>• <code>value</code> - Identifies the amount of data in that tier to be move up.</td>
</tr>
<tr>
<td>Data to move down per tier</td>
<td>The amount of data per tier that is scheduled to be moved to a lower tier. The format is:</td>
</tr>
<tr>
<td></td>
<td><code>&lt;tier_name&gt;: [value]</code></td>
</tr>
<tr>
<td></td>
<td>where:</td>
</tr>
<tr>
<td></td>
<td>• <code>tier_name</code> - Identifies the storage tier.</td>
</tr>
<tr>
<td></td>
<td>• <code>value</code> - Identifies the amount of data in that tier to be move down.</td>
</tr>
<tr>
<td>Data to move within per tier</td>
<td>The amount of data per tier that is scheduled to be moved to within the same tier for rebalancing. The format is:</td>
</tr>
<tr>
<td></td>
<td><code>&lt;tier_name&gt;: [value]</code></td>
</tr>
<tr>
<td></td>
<td>where:</td>
</tr>
<tr>
<td></td>
<td>• <code>tier_name</code> - Identifies the storage tier.</td>
</tr>
<tr>
<td></td>
<td>• <code>value</code> - Identifies the amount of data in that tier to be rebalanced.</td>
</tr>
<tr>
<td>Estimated relocation time</td>
<td>Identifies the estimated time required to perform the next data relocation.</td>
</tr>
</tbody>
</table>
View FAST VP pool settings

View FAST VP settings on a pool.

**Format**

```
/stor/config/pool/fastvp [{-pool <value> | -poolName <value>}]
show
```

**Object qualifiers**

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-pool</td>
<td>Type the ID of the pool.</td>
</tr>
<tr>
<td>-poolName</td>
<td>Type the name of the pool.</td>
</tr>
</tbody>
</table>

**Example**

The following command lists the FAST VP settings on the storage system:

```
uemcli -d 10.0.0.1 -u Local/joe -p MyPassword456! /stor/config/pool/fastvp -show -detail
```

1: Pool	pool_1
Relocation type	manual
Status	Active
Schedule enabled	no
Start time	2013-09-20 12:55:32
End time	2013-09-20 21:10:17
Data relocated	100111454324 (100G)
Rate	high
Data to move up	4947802324992 (4.9T)
Data to move down	4947802324992 (4.9T)
Data to move within	4947802324992 (4.9T)
Data to move up per tier	Performance: 500182324992 (500G), Capacity: 1000114543245 (1.0T)
Data to move down per tier	Extreme Performance: 1000114543245 (1.0T), Performance: 500182324992 (500G)
Data to move within per tier	Extreme Performance: 500182324992 (500G), Capacity: 500182324992 (500G)
Estimated relocation time	7h 30m

Change FAST VP pool settings

Modify FAST VP settings on an existing pool.

**Format**

```
/stor/config/pool/fastvp [{-pool <value> | -poolName <value>}]
set [-async] -schedEnabled {yes | no}
```

**Object qualifiers**

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-pool</td>
<td>Type the ID of the pool.</td>
</tr>
<tr>
<td>-poolName</td>
<td>Type the name of the pool.</td>
</tr>
</tbody>
</table>
Managing FAST VP using the CLI (supported physical deployments only)

### Start data relocation

Start data relocation on a pool.

**Format**

```
/stor/config/pool/fastvp {-pool <value> | -poolName <value>} start [-async] [-rate {low | medium | high}] [-endTime <value>]
```

**Object qualifiers**

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-pool</td>
<td>Type the ID of the pool to resume data relocation.</td>
</tr>
<tr>
<td>-poolName</td>
<td>Type the name of the pool to resume data relocation.</td>
</tr>
</tbody>
</table>

**Action qualifier**

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-async</td>
<td>Run the operation in asynchronous mode.</td>
</tr>
</tbody>
</table>

**Example**

The following example enables the rebalancing schedule on pool pool_1:

```
uemcli -d 10.0.0.1 -u Local/joe -p MyPassword456! /stor/config/pool/fastvp -pool pool_1 set -schedEnabled yes
```

```
Storage system address: 10.0.0.1
Storage system port: 443
HTTPS connection

Pool ID = pool_1
Operation completed successfully.
```
Simultaneous commands, asynchronous or synchronous, may fail if they conflict in trying to manage the same system elements.

**Note**

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-pool</td>
<td>Type the ID of the pool.</td>
</tr>
</tbody>
</table>
| -endTime  | Specify the time to stop the data relocation. The format is: 

```
[HH:MM]
```

where:

- HH — Hour.
- MM — Minute.

Default value is eight hours from the current time.

<table>
<thead>
<tr>
<th>-rate</th>
<th>Specify the transfer rate for the data relocation. Value is one of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Low — Least impact on system performance.</td>
</tr>
<tr>
<td></td>
<td>• Medium — Moderate impact on system performance.</td>
</tr>
<tr>
<td></td>
<td>• High — Most impact on system performance.</td>
</tr>
</tbody>
</table>

Default value is the value set at the system level.

**Example**

The following command starts data relocation on pool pool_1, and directs it to end at 04:00:

```
uemcli -d 10.0.0.1 -u Local/joe -p MyPassword456! /stor/config/pool/fastvp -pool pool_1 start -endTime 04:00
```

Storage system address: 10.0.0.1
Storage system port: 443
HTTPS connection

Operation completed successfully.

**Stop data relocation**

Stop data relocation on a pool.

**Format**

```
/stor/config/pool/fastvp { -pool <value> | -poolName <value>} stop [-async]
```

**Object qualifiers**

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-pool</td>
<td>Type the ID of the pool.</td>
</tr>
<tr>
<td>-poolName</td>
<td>Type the name of the pool.</td>
</tr>
</tbody>
</table>
## Manage FAST VP general settings

Fully Automated Storage Tiering for Virtual Pools (FAST VP) is a storage efficiency technology that automatically moves data between storage tiers within a pool based on data access patterns.

The following table lists the attributes for FAST VP general settings.

### Table 17 FAST VP general attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paused</td>
<td>Identifies whether the data relocation is paused. Value is one of the following:</td>
</tr>
<tr>
<td>Schedule-enabled</td>
<td>Identifies whether the pool is rebalanced according to the system FAST VP schedule. Value is one of the following:</td>
</tr>
<tr>
<td>Frequency</td>
<td>Data relocation schedule. The format is: Every <code>&lt;days_of_the_week&gt;</code> at <code>&lt;start_time&gt;</code> until <code>&lt;end_time&gt;</code> where:</td>
</tr>
<tr>
<td>Rate</td>
<td>Identifies the transfer rate for the data relocation. Value is one of the following:</td>
</tr>
</tbody>
</table>
Table 17 FAST VP general attributes (continued)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Medium - Moderate impact on system performance.</td>
</tr>
<tr>
<td></td>
<td>• High - Most impact on system performance.</td>
</tr>
<tr>
<td>Note</td>
<td>Default value is medium.</td>
</tr>
<tr>
<td>Data to move up</td>
<td>The amount of data in the pool scheduled to be moved to a higher storage tier.</td>
</tr>
<tr>
<td>Data to move down</td>
<td>The amount of data in the pool scheduled to be moved to a lower storage tier.</td>
</tr>
<tr>
<td>Data to move within</td>
<td>The amount of data in the pool scheduled to be moved within the same storage tiers for rebalancing.</td>
</tr>
<tr>
<td>Estimated scheduled relocation time</td>
<td>Identifies the estimated time required to perform the next data relocation.</td>
</tr>
</tbody>
</table>

Change FAST VP general settings

Change FAST VP general settings.

Format

/stor/config/fastvp set [-async] [-schedEnabled {yes | no}] [-days <value>] [-at <value>] [-until <value>] [-rate {low | medium | high}] [-paused {yes | no}]

Action qualifier

<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-async</td>
<td>Run the operation in asynchronous mode.</td>
</tr>
<tr>
<td>-paused</td>
<td>Specify whether to pause data relocation on the storage system. Valid values are:</td>
</tr>
<tr>
<td></td>
<td>• yes</td>
</tr>
<tr>
<td></td>
<td>• no</td>
</tr>
<tr>
<td>-schedEnabled</td>
<td>Specify whether the pool is rebalanced according to the system FAST VP schedule. Valid values are:</td>
</tr>
<tr>
<td></td>
<td>• yes</td>
</tr>
<tr>
<td></td>
<td>• no</td>
</tr>
<tr>
<td>-days</td>
<td>Specify a comma-separated list of the days of the week to schedule data relocation. Valid values are:</td>
</tr>
<tr>
<td></td>
<td>• mon – Monday</td>
</tr>
<tr>
<td></td>
<td>• tue – Tuesday</td>
</tr>
<tr>
<td></td>
<td>• wed – Wednesday</td>
</tr>
<tr>
<td>Qualifier</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td><strong>l</strong></td>
<td><strong>thu</strong> – Thursday</td>
</tr>
<tr>
<td><strong>l</strong></td>
<td><strong>fri</strong> – Friday</td>
</tr>
<tr>
<td><strong>l</strong></td>
<td><strong>sat</strong> – Saturday</td>
</tr>
<tr>
<td><strong>l</strong></td>
<td><strong>sun</strong> – Sunday</td>
</tr>
</tbody>
</table>

**at**
Specify the time to start the data relocation. The format is:

\[
[HH:MM]
\]

where:
- **HH** – Hour
- **MM** – Minute

Valid values are between 00:00 and 23:59. Default value is 00:00.

**until**
Specify the time to stop the data relocation. The format is:

\[
[HH:MM]
\]

where:
- **HH** – Hour
- **MM** – Minute

Valid values are between 00:00 and 23:59. Default value is eight hours after the time specified with the **at** parameter.

**rate**
Specify the transfer rate for the data relocation. Value is one of the following:
- **low** – Least impact on system performance.
- **medium** – Moderate impact on system performance.
- **high** – Most impact on system performance.

Default value is **medium**.

**Example**
The following command changes the data relocation schedule to run on Mondays and Fridays from 23:00 to 07:00:

```
uemcli -d 10.0.0.1 -u Local/joe -p MyPassword456! /stor/config/fastvp set -schedEnabled yes -days "Mon,Fri" -at 23:00 -until 07:00
```

Storage system address: 10.0.0.1
Storage system port: 443
HTTPS connection

Operation completed successfully.

**View FAST VP general settings**

View the FAST VP general settings.

**Format**

```
/stor/config/fastvp show -detail
```
Example
The following command displays the FAST VP general settings:

```
uemcli -d 10.0.0.1 -u Local/joe -p MyPassword456! /stor/config/fastvp show -detail
```

Storage system address: 10.0.0.1
Storage system port: 443
HTTPS connection

1: Paused = no
Schedule enabled = yes
Frequency = Every Mon, Fri at 22:30 until 8:00
Rate = high
Data to move up = 4947802324992 (1.5T)
Data to move down = 4947802324992 (1.5T)
Data to move within = 4947802324992 (1.5T)
Estimated scheduled relocation time = 7h 30m