CONTENTS

Preface

Chapter 1 Introduction

- Introduction to TimeFinder ... 20
- Mainframe Enablers and TimeFinder .. 20
- TimeFinder/Clone Mainframe Snap Facility .. 21
- Licensing .. 21

TimeFinder/Clone ... 22
- Dataset snap .. 22
- Full-volume snap ... 23
- Remote full-volume snap .. 23
- Simultaneous (parallel) clone ... 24
- VP snaps ... 25
- Clone restore virtual snaps (CRVS) ... 26
- Additional TF/Clone capabilities ... 27
- Working with clone copies ... 27

TimeFinder/Snap ... 28
- Virtual devices .. 28
- Snap pool devices ... 29
- Basic Snap operations ... 29
- Virtual restore operations ... 30
- VP Snap restore to copied clone target (VRTT) 30
- Incremental clone refresh/resnap ... 31
- Persistent restore operations ... 32
- Planning for virtual device implementations 33

TimeFinder/Consistency Group ... 34

Chapter 2 Getting Started

- Prerequisites .. 36
- Running ResourcePak Base (EMCSCF) ... 36
- Software interoperability considerations ... 36
- Running TimeFinder (EMCSNAP) ... 37
- TimeFinder and protection sessions ... 38
- TimeFinder Vary processing exit .. 40
- Parameters ... 40
- Return codes ... 40
- Register contents .. 41

Chapter 3 Configuration

- TimeFinder configuration layers ... 44
- Configuration Layer 1: EMCSNAPO site options 44
- Configuration Layer 2: GLOBAL command parameters 44
- Configuration Layer 3: Parameters on other commands 45
- Editing the EMCSNAPO macro .. 46
- EMCSNAPO site options .. 47
- Summary ... 47
- ACT_SCF_GATEKEEPER .. 54
<table>
<thead>
<tr>
<th>Item</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT_THINPOOL</td>
<td>78</td>
</tr>
<tr>
<td>OPT_VDEV</td>
<td>78</td>
</tr>
<tr>
<td>PARALLEL</td>
<td>78</td>
</tr>
<tr>
<td>PARALLEL.Clone</td>
<td>79</td>
</tr>
<tr>
<td>PERSIST</td>
<td>79</td>
</tr>
<tr>
<td>POOL</td>
<td>79</td>
</tr>
<tr>
<td>POOLUSE</td>
<td>79</td>
</tr>
<tr>
<td>PRECOPY</td>
<td>79</td>
</tr>
<tr>
<td>PREPARE</td>
<td>79</td>
</tr>
<tr>
<td>PROCESS_COPYCYL_DATAMOVER</td>
<td>80</td>
</tr>
<tr>
<td>PURGE</td>
<td>80</td>
</tr>
<tr>
<td>QCAPIMSG</td>
<td>80</td>
</tr>
<tr>
<td>R1FULLCOPY</td>
<td>80</td>
</tr>
<tr>
<td>R1R2SYNC</td>
<td>81</td>
</tr>
<tr>
<td>RECALL</td>
<td>81</td>
</tr>
<tr>
<td>RECVTOC</td>
<td>81</td>
</tr>
<tr>
<td>REMOVE_REMOTE</td>
<td>81</td>
</tr>
<tr>
<td>REPLACE</td>
<td>81</td>
</tr>
<tr>
<td>RESERVE</td>
<td>81</td>
</tr>
<tr>
<td>RESERVE_SERIALIZE</td>
<td>82</td>
</tr>
<tr>
<td>RETAIN_SOURCE_REFTD</td>
<td>82</td>
</tr>
<tr>
<td>RETRY1731</td>
<td>82</td>
</tr>
<tr>
<td>RETRY1756</td>
<td>83</td>
</tr>
<tr>
<td>REUSE</td>
<td>83</td>
</tr>
<tr>
<td>REUSFAIL</td>
<td>83</td>
</tr>
<tr>
<td>SAMEONLY</td>
<td>83</td>
</tr>
<tr>
<td>SAVEFULL</td>
<td>83</td>
</tr>
<tr>
<td>SCRATCH</td>
<td>84</td>
</tr>
<tr>
<td>SESSDETL</td>
<td>84</td>
</tr>
<tr>
<td>SESSDIFF</td>
<td>84</td>
</tr>
<tr>
<td>SESSLIST</td>
<td>84</td>
</tr>
<tr>
<td>SMFRID</td>
<td>84</td>
</tr>
<tr>
<td>SMKSKDS</td>
<td>85</td>
</tr>
<tr>
<td>SMSPASSVOL</td>
<td>85</td>
</tr>
<tr>
<td>SNAPSHOT_LIST</td>
<td>85</td>
</tr>
<tr>
<td>SNAPSHOT_NAME</td>
<td>85</td>
</tr>
<tr>
<td>SNUNUSED</td>
<td>86</td>
</tr>
<tr>
<td>SOFTLINK</td>
<td>86</td>
</tr>
<tr>
<td>SRDFAR1</td>
<td>86</td>
</tr>
<tr>
<td>SRDFAR2</td>
<td>86</td>
</tr>
<tr>
<td>SRDFAR2_PRECOPY</td>
<td>86</td>
</tr>
<tr>
<td>SRDFA_RETRY</td>
<td>87</td>
</tr>
<tr>
<td>SRDFSR1</td>
<td>87</td>
</tr>
<tr>
<td>STORCLAS</td>
<td>87</td>
</tr>
<tr>
<td>STORED_LOG_SIZE</td>
<td>87</td>
</tr>
<tr>
<td>SUBTTNAME</td>
<td>87</td>
</tr>
<tr>
<td>SYSCALL_RETRY</td>
<td>87</td>
</tr>
<tr>
<td>TARGET_WAIT</td>
<td>88</td>
</tr>
<tr>
<td>TDEV_RECLAIM</td>
<td>88</td>
</tr>
<tr>
<td>TERMSSESS</td>
<td>88</td>
</tr>
<tr>
<td>TIMEOUT</td>
<td>88</td>
</tr>
<tr>
<td>TRKALIGN</td>
<td>88</td>
</tr>
<tr>
<td>TRUNC</td>
<td>89</td>
</tr>
<tr>
<td>VALIDATE</td>
<td>89</td>
</tr>
</tbody>
</table>
Chapter 6 Messages and Error Codes
TimeFinder/Mirror messages ... 316
 TimeFinder/Mirror reason code conversion 316
 Example .. 316
User abend codes ... 317
DOIO error codes ... 317
VMAX interface error codes .. 318

Appendix A DFDSS COPY Command Support
Introduction ... 322
Installation considerations ... 322
EMCDSSU parameters ... 323

Appendix B SMF Record Layout
SMF record layout ... 328
SMF record sub-sections and TimeFinder actions 338

Appendix C TimeFinder REXX EXITS
TimeFinder REXX Interface EXITS .. 340
REXX keywords and parameters ... 341
Using REXX EXECs ... 343
REXX Examples ... 349
Examples of REXX statement present in EMCSNAPO 351
FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Simultaneous (parallel) clone</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>Clone restore virtual snaps (CRVS)</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>VP Snap Restore to Target (VRTT)</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>Incremental refresh/resnap of clone</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>SNAP VOLUME using virtual devices</td>
<td>111</td>
</tr>
<tr>
<td>6</td>
<td>Cascaded clone</td>
<td>114</td>
</tr>
<tr>
<td>7</td>
<td>Cascaded clone to cascaded clone emulation</td>
<td>115</td>
</tr>
<tr>
<td>8</td>
<td>Cascaded clone emulation to cascaded clone</td>
<td>115</td>
</tr>
<tr>
<td>9</td>
<td>Cascaded clone emulation to cascaded clone emulation</td>
<td>115</td>
</tr>
<tr>
<td>10</td>
<td>Parallel Snap operation</td>
<td>142</td>
</tr>
<tr>
<td>11</td>
<td>DOIO error code format</td>
<td>317</td>
</tr>
<tr>
<td></td>
<td>TABLES</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Protection session limits ..</td>
<td>38</td>
</tr>
<tr>
<td>2</td>
<td>EMCSNAPO site options ...</td>
<td>47</td>
</tr>
<tr>
<td>3</td>
<td>Phase processing and group status..</td>
<td>120</td>
</tr>
<tr>
<td>4</td>
<td>Summary of multivolume SNAP DATASET scenarios...............................</td>
<td>126</td>
</tr>
<tr>
<td>5</td>
<td>Snapping non-VSAM datasets ..</td>
<td>131</td>
</tr>
<tr>
<td>6</td>
<td>Snapping VSAM datasets ...</td>
<td>131</td>
</tr>
<tr>
<td>7</td>
<td>VSAM dataset share options and the VSAMENQMODE</td>
<td>134</td>
</tr>
<tr>
<td>8</td>
<td>DFDSS masking rules ...</td>
<td>135</td>
</tr>
<tr>
<td>9</td>
<td>Customer task guide for traditional TF commands.............................</td>
<td>151</td>
</tr>
<tr>
<td>10</td>
<td>REPLACE and REUSE effects...</td>
<td>192</td>
</tr>
<tr>
<td>11</td>
<td>Command actions when SOFTLink(YES) is specified...............................</td>
<td>197</td>
</tr>
<tr>
<td>12</td>
<td>Global parameters ...</td>
<td>226</td>
</tr>
<tr>
<td>13</td>
<td>Effect of GLOBAL DEBUG ...</td>
<td>236</td>
</tr>
<tr>
<td>14</td>
<td>Abend codes ..</td>
<td>317</td>
</tr>
<tr>
<td>15</td>
<td>VMAX interface error codes..</td>
<td>318</td>
</tr>
<tr>
<td>16</td>
<td>EXTENTS error codes..</td>
<td>320</td>
</tr>
<tr>
<td>17</td>
<td>EMCDSSU parameters ..</td>
<td>323</td>
</tr>
<tr>
<td>18</td>
<td>SMF Record sub-sections and TimeFinder actions</td>
<td>338</td>
</tr>
<tr>
<td>19</td>
<td>REXX TF command parameters ..</td>
<td>341</td>
</tr>
<tr>
<td>20</td>
<td>ESNAACTV arguments ...</td>
<td>343</td>
</tr>
<tr>
<td>21</td>
<td>ESNANEWD arguments ..</td>
<td>344</td>
</tr>
<tr>
<td>22</td>
<td>ESNASCRA arguments ..</td>
<td>345</td>
</tr>
<tr>
<td>23</td>
<td>SMS Class Name Validation arguments...</td>
<td>346</td>
</tr>
<tr>
<td>24</td>
<td>TDEV Pool Name Validation arguments...</td>
<td>347</td>
</tr>
<tr>
<td>25</td>
<td>VDEV Pool Name Validation arguments...</td>
<td>347</td>
</tr>
<tr>
<td>26</td>
<td>VARY Device Online/Offline arguments...</td>
<td>348</td>
</tr>
<tr>
<td>27</td>
<td>Write SMF arguments..</td>
<td>349</td>
</tr>
</tbody>
</table>
As part of an effort to improve its product lines, EMC periodically releases revisions of its software and hardware. Therefore, some functions described in this document might not be supported by all versions of the software or hardware currently in use. The product release notes provide the most up-to-date information on product features.

Contact your EMC representative if a product does not function properly or does not function as described in this document.

Note: This document was accurate at publication time. New versions of this document might be released on the EMC online support website. Check the EMC online support website to ensure that you are using the latest version of this document.

Purpose

This guide describes how to use the following EMC products:

- TimeFinder/Clone for z/OS
- TimeFinder/Snap for z/OS
- TimeFinder/Consistency Group

Coverage

This document describes TimeFinder/Clone Mainframe Snap Facility for z/OS when used in the following VMAX operating environments supported by Mainframe Enablers 8.0 and higher:

- HYPERMAX OS 5977
- Enginuity 5876
- Enginuity 5773

Note: Refer to prior versions of the TimeFinder/Clone Mainframe Snap Facility Product Guide for information pertaining to other Enginuity levels.

Audience

This guide is intended for the host system administrator, system programmer, or operator who is evaluating, planning for, managing, or using EMC TimeFinder/Clone Mainframe Snap Facility.

1. Enginuity 5773 is not supported in SRDF configurations that include a VMAX system running HYPERMAX OS 5977.
Related documentation

The following documents provide additional information about Mainframe Enablers:

- **Mainframe Enablers Release Notes**
- **Mainframe Enablers Installation and Customization Guide**
- **Mainframe Enablers Message Guide**
- **AutoSwap for z/OS Product Guide**
- **Consistency Groups for z/OS Product Guide**
- **ResourcePak Base for z/OS Product Guide**
- **SRDF Host Component for z/OS Product Guide**
- **TimeFinder SnapVX and zDP Product Guide**
- **TimeFinder Mirror for z/OS Product Guide**
- **TimeFinder Utility for z/OS Product Guide**

The following documents provide additional information:

- **EMC VMAX All Flash Product Guide** — Documents the features and functions of the VMAX All Flash arrays.
- **HYPERMAX OS for EMC VMAX All Flash and EMC VMAX3 Family Release Notes** — Describe new features and any known limitations.
- **EMC VMAX3 Family with HYPERMAX OS Product Guide** — Documents the features and functions of the VMAX3 100K, 200K, and 400K arrays.
- **EMC VMAX Family with Enginuity Product Guide** — Documents the features and functions of the VMAX 10K, 20K, and 40K arrays.
- **E-Lab™ Interoperability Navigator (ELN)** — Provides a web-based interoperability and solution search portal. You can find the ELN at https://elabnavigator.EMC.com.
Conventions used in this document

EMC uses the following conventions for special notices:

![CAUTION]

CAUTION, used with the safety alert symbol, indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

Note: A note presents information that is important, but not hazard-related.

IMPORTANT

An important notice contains information essential to software or hardware operation.

Typographical conventions

EMC uses the following type style conventions in this document:

Normal Used in running (nonprocedural) text for:
- Names of interface elements, such as names of windows, dialog boxes, buttons, fields, and menus
- Names of resources, attributes, pools, Boolean expressions, buttons, DQL statements, keywords, clauses, environment variables, functions, and utilities
- URLs, pathnames, filenames, directory names, computer names, links, groups, service keys, file systems, and notifications

Bold Used in running (nonprocedural) text for names of commands, daemons, options, programs, processes, services, applications, utilities, kernels, notifications, system calls, and man pages

Used in procedures for:
- Names of interface elements, such as names of windows, dialog boxes, buttons, fields, and menus
- What the user specifically selects, clicks, presses, or types

Italic Used in all text (including procedures) for:
- Full titles of publications referenced in text
- Emphasis, for example, a new term
- Variables

Courier Used for:
- System output, such as an error message or script
- URLs, complete paths, filenames, prompts, and syntax when shown outside of running text

Courier bold Used for specific user input, such as commands

Courier italic Used in procedures for:
- Variables on the command line
- User input variables

< > Angle brackets enclose parameter or variable values specified by the user

[] Square brackets enclose optional values

| Vertical bar indicates alternate selections — the bar means “or”

{} Braces enclose content that the user must specify, such as x or y or z

... Ellipses indicate nonessential information omitted from the example
Preface

Where to get help

EMC support, product, and licensing information can be obtained on the EMC Online Support site as described next.

Note: To open a service request through the EMC Online Support site, you must have a valid support agreement. Contact your EMC sales representative for details about obtaining a valid support agreement or to answer any questions about your account.

Product information

For documentation, release notes, software updates, or for information about EMC products, licensing, and service, go to the EMC Online Support site (registration required) at:

https://support.EMC.com

Technical support

EMC offers a variety of support options.

Support by Product — EMC offers consolidated, product-specific information on the Web at:

https://support.EMC.com/products

The Support by Product web pages offer quick links to Documentation, White Papers, Advisories (such as frequently used Knowledgebase articles), and Downloads, as well as more dynamic content, such as presentations, discussion, relevant Customer Support Forum entries, and a link to EMC Live Chat.

EMC Live Chat. Open a Chat or instant message session with an EMC Support Engineer.

eLicensing support

To activate your entitlements and obtain your VMAX license files, visit the Service Center on http://support.EMC.com, as directed on your License Authorization Code (LAC) letter emailed to you.

For help with missing or incorrect entitlements after activation (that is, expected functionality remains unavailable because it is not licensed), contact your EMC Account Representative or Authorized Reseller.

For help with any errors applying license files through Solutions Enabler, contact the EMC Customer Support Center.

If you are missing a LAC letter, or require further instructions on activating your licenses through the Online Support site, contact EMC’s worldwide Licensing team at licensing@emc.com or call:

* North America, Latin America, APJK, Australia, New Zealand: SVC4EMC (800-782-4362) and follow the voice prompts.
* EMEA: +353 (0) 21 4879862 and follow the voice prompts.

Your comments

Your suggestions will help us continue to improve the accuracy, organization, and overall quality of the user publications. Send your opinions of this document to:

VMAXContentFeedback@emc.com
CHAPTER 1
Introduction

This chapter covers the following topics:

- Introduction to TimeFinder ... 20
- TimeFinder/Clone ... 22
- TimeFinder/Snap .. 28
- TimeFinder/Consistency Group ... 34
Introduction

Introduction to TimeFinder

EMC® TimeFinder® is a family of VMAX replication products that allows you to non-disruptively create and manage point-in-time copies of data, enabling simultaneous action of business tasks that were previously sequential. For example, TimeFinder allows you to create a point-in-time copy of critical data while this data continues to be used in production operations.

The ability to access source data during the TimeFinder copy operation can increase the availability of the application. TimeFinder can also shorten backup windows, maintenance windows and improve service levels.

The TimeFinder product family is used in environments configured with the following:

- VMAX All Flash systems (HYPERMAX OS 5977)
- VMAX3 Family systems (HYPERMAX OS 5977)
- VMAX Family systems (Enginuity 5876)
- DMX systems (Enginuity 5773)

This manual provides the command and parameter details for using the TimeFinder/Clone Mainframe Snap Facility, which is a TimeFinder product that supports the z/OS mainframe environment as one of the components of the EMC Mainframe Enablers.

Note: For a comprehensive description of TimeFinder SnapVX, refer to the TimeFinder SnapVX and zDP Product Guide.

Mainframe Enablers and TimeFinder

TimeFinder is one of the EMC Mainframe Enablers. The EMC Mainframe Enablers allow you to monitor and manage your storage and include the following components:

- ResourcePak® Base for z/OS
- SRDF® Host Component for z/OS
- AutoSwap for z/OS
- Consistency Groups for z/OS
- TimeFinder SnapVX
- Data Protector for z Systems (zDP™)¹
- TimeFinder®/Clone Mainframe SNAP Facility
- TimeFinder/Mirror for z/OS
- TimeFinder Utility

When you install the Mainframe Enablers kit, you install the software for all the components.

¹ zDP requires TimeFinder SnapVX but is a separately licensed product.
TimeFinder/Clone Mainframe Snap Facility

TimeFinder/Clone Mainframe Snap Facility is the software foundation for four functional products:

- TimeFinder SnapVX
- TimeFinder/Clone
- TimeFinder/Snap
- TimeFinder/Consistency Group

TimeFinder/Clone Mainframe Snap Facility consists of common code and specific code for each of the functional products.

IMPORTANT
In the documentation, any information that specifically applies to one of these functional products is labeled for that product. Any information that applies to all of the functional products and the common code uses the term “TimeFinder” for TimeFinder/Clone Mainframe Snap Facility.

Licensing

Refer to the following documents for information about licensing:

- Mainframe Enablers Installation and Customization Guide
- VMAX All Flash Product Guide
- VMAX3 Family Product Guide
- VMAX Family Product Guide

1. TimeFinder/Consistency Group should not be confused with Consistency Groups for z/OS. They are separate products. “TimeFinder/Consistency Group” on page 34 describes TF/Consistency Group. The Consistency Groups for z/OS Product Guide describes Consistency Groups for z/OS.
TimeFinder/Clone

TimeFinder/Clone for z/OS (TF/Clone) produces point-in-time copies of full volumes or of individual datasets. TF/Clone operations involve full volumes or datasets where the amount of data at the source is the same as the amount of data at the target.

Note: All TF/Clone commands and syntax are supported with HYPERMAX OS 5977.

In addition to providing real-time, non-disruptive backup and restore, TF/Clone can compress the cycle time for such processes as:

- Application testing
- Software development
- Loading or updating a data warehouse

TF/Clone also provides significant configuration flexibility because clone copies do not require VMAX mirror positions. The clone copies can have any configuration except VDEV (virtual device); that is, they can have any form of RAID protection. The clone target can also be configured as a standard device or as a Business Continuance Volume (BCV).

The source devices can have any configuration except VDEV.

You can use TF/Clone to perform the following operations:

- Dataset snap
- Full-volume snap
- Remote full-volume snap
- Simultaneous (parallel) clone
- VP snaps
- Clone restore virtual snaps (CRVS)

Dataset snap

A dataset snap copies replicas of individual datasets to target datasets. Dataset snap copies the contents of the source dataset to a new or existing target dataset.

Note: “SNAP DATASET (TF/Clone)” on page 272 lists the types of datasets that TF/Clone can snap.

As long as the source and target reside on the same VMAX system, a dataset snap uses Enginuity/HYPERMAX OS to copy the dataset. This allows you to initiate the request, and before the copy process is finished, start using the target.

Requests for snaps between two different VMAX systems can invoke an external datamover to perform the copy. In this case, the target dataset is available when the external copy is completed.
Full-volume snap

A full-volume snap captures a complete replica of the source volume on the target volume in the local VMAX system.

TF/Clone requests that span VMAX devices can invoke an external datamover to accomplish the request. This allows volume placement to be flexible without requiring changes to snap jobs. Parameters you place on the command specify how the VMAX system performs the request.

Remote full-volume snap

A remote, full-volume snap captures a complete replica of the source volume on a target volume in a remote VMAX system that is connected to the local VMAX system by SRDF links. You initiate remote snap commands in a local z/OS system. A local channel-attached VMAX system passes the commands on to the remote VMAX system for execution.

Remote snap requires all VMAX systems involved be running a supported level of Enginuity/HYPERMAX OS. This includes each VMAX system in the SRDF link.

You identify the volumes to be copied by specifying the VMAX internal device number (SYMDV#) rather than by specifying the host channel ID (CCUU or UNIT) or the volume label (VOLSER). All volumes must reside in the same VMAX system and have the same emulation and device geometry (CKD vs. FBA, 3380 vs. 3390, and so forth).

A gatekeeper device is required to send commands and provide access to a remote VMAX system. The gatekeeper device in a local channel-attached VMAX system must be identified by using the REMOTE parameter (UNIT, VOLUME, or DDNAME subparameters).

Additionally, the “path” from the local channel-attached VMAX system to the remote VMAX system must be provided using the REMOTE parameter (RAGROUP subparameter). The path consists of the SRDF group identifiers associated with the SRDF links to the remote VMAX system. The commands to perform the snap operation are sent down this path to the remote VMAX system and then executed on the remote VMAX system.

When there is the possibility of multiple, remote VMAX systems, EMC suggests that you also use the REMOTE parameter (CONTROLLER subparameter) to verify that the remote VMAX system found is the VMAX system you want.

The target volume cannot be relabeled as part of the snap process.

You can use the CONTROLLER parameter in place of the REMOTE parameter if the remote VMAX system is only one or two hops away. The CONTROLLER parameter automatically chooses a local device and the SRDF group to be used to reach the remote VMAX system.
Simultaneous (parallel) clone

Enginuity 5876 and HYPERMAX OS 5977 with both synchronous SRDF and TimeFinder/Clone support simultaneous copies of source (R1) volumes and target (R2) to separate volumes in the respective VMAX systems. This avoids transmission of the clone tracks across the SRDF links. This feature is called parallel clone and is analogous to IBM's remote pair FlashCopy.

SRDF/S creates a synchronous remote image of the production R1 volumes on the R2 volumes.

When conditions are met, a dual clone session is established between the source and target R2 devices, avoiding the secondary SRDF/S transmission of a copied dataset from the target R1 to the corresponding R2 device.

![Simultaneous (parallel) clone diagram](image)

Figure 1 Simultaneous (parallel) clone

With Enginuity 5773, SRDF/S mirroring is used to create remote mirrors of the production R1 volumes and their local replicas.

Enginuity 5876 and HYPERMAX OS 5977 use TF/Clone remote command support to simultaneously create TF/Clone local replicas on both sides of the SRDF links and thus reduce bandwidth consumption.

Note: This feature supports full-device and extent-level TF/Clone operations in SRDF/S configurations. It can be used in Concurrent SRDF solutions on the SRDF/S branch of the concurrent configuration. Parallel clone operations in SRDF/A configurations are not supported.
Parallel clone ensures disaster restartability is intact at all times and is allowed on the SNAP DATASET and the SNAP VOLUME statements, and can also be set as a site option or Global parameter using the PARALLEL_CLONE option.

When enabling this feature, the ACTIVATE CONSISTENT(YES) parameter is also required, and if omitted, the simultaneous TF/Clone operation is still performed and the ESNPF37I message is issued.

When using Parallel clone, the following requirements apply:

- Engineuity 5876 or HYPERMAX OS 5977 is required on both sides of the SRDF/S link.
- The R2 source and target clone volumes are located in the same VMAX system.
- The R2 source and target devices cannot be larger than the R1 devices. Currently, TimeFinder blocks this operation.

Parallel clone does not support:

- Cascaded SRDF devices
- SRDF/Star environments
- FlashCopy
- Virtual Provisioning
- PPRC mode volumes

The following SRDF operations are blocked on Parallel clone devices:

- DELETE and HDELETE
- SWAP and HSWAP
- MOVEPAIR and HMOVEPAIR

Note: The PARALLEL_CLONE parameter should not be confused with the Global PARALLEL parameter for multi-tasking or the Parallel Snap solution.

VP snaps

A VP snap leverages TF/Clone technology to create space-efficient snaps for thin devices by allowing multiple sessions to share allocations within a thin pool. VP Snap provides the efficiency of Snap technology with improved cache utilization and simplified pool management. With VP Snap, tracks can be stored in the same thin pool as the source, or in another pool of your choice.

VP Snap sessions copy data from the source device to the target device only if triggered by a host I/O. Read I/Os to protected tracks on the target device do not result in data being copied.

Note: VP snaps only apply to thin devices with the MODE(VSE) parameter specified for the copy.
Clone restore virtual snaps (CRVS)

TF/Clone supports an incremental restore to a source that has either active or VP snaps.

CRVS only supports a restore to its standard, which is also a virtual/VP Snap source, and does not support a restore to third device.

The example below shows a relationship exists between A and B and another relationship exists between A and C, where C is a VDEV. With CRVS, you now have ability to perform a restore or incremental restore from B to A without terminating the relationship between A and C.

![Clone Restore Virtual Snaps](image)

Figure 2 Clone restore virtual snaps (CRVS)

CRVS requirements/limitations

The following requirements and limitations apply to CRVS actions:

- Requires Enginuity 5876 on VMAX 40K only.
- CRVS does not support a restore to a third device, such as an additional virtual/VP Snap standard.
- A Resnap of the virtual/VP Snap session is not allowed when CRVS is in progress.
- All other restrictions related to “restore in progress” also apply when CRVS is in progress.
- CRVS is not supported for Clone Emulation.
- Incremental resnap of a clone during a persisting TimeFinder cascaded VP Snap session.
- Incremental resnap during a cascaded virtual snap session.
- A restore from a TF Cascaded Virtual Snap to a fully copied clone target.
Additional TF/Clone capabilities

- Differential snap operations require only the changed data be copied on subsequent snaps.
- Compatibility with STK Snapshot Copy and IBM Snap products including reuse of its SIBBATCH syntax.
- Compatibility with TimeFinder Utility for z/OS, which conditions the catalog by relabeling and recataloging entries and thereby avoids the issues associated with duplicate volume serial numbers in the mainframe environment.
- Compatibility with mainframe security mechanisms such as RACF.
- Integration with many mainframe-specific Independent Software Vendors (ISVs) and their products.

Working with clone copies

TF/Clone takes a point-in-time copy of data at the dataset or volume level.

After you issue a TF/Clone command, the TF/Clone process initiates data movement from the source dataset to the target dataset, which is dynamically allocated on a standard or a BCV volume. You can take multiple copies of a dataset. Copies are immediately available for read and write access while the copying process completes as a background task.

Compared to traditional data copying, TF/Clone minimizes the downtime for applications by reducing the time required for copying the data being used by the applications. Replication of the data occurs within the VMAX system and requires minimum resources from the host.
Introduction

TimeFinder/Snap

TF/Snap produces pointer-based replicas where the preimages of changed data are written, along with changes to the snap device.

Note: All TF/Snap commands and syntax are supported with HYPERMAX OS 5977.

TF/Snap is a space-saving, snapshot-copy product available in the enterprise storage arena. Because TF/Snap does not actually create a full copy of the source data, its copies take only a fraction of the space a full-volume snap would.

TF/Snap is ideal when you require fast, temporary, parallel access to production data. However, keep in mind that if your source data is destroyed (for example, because of multiple disk failures), the snap will also be lost and cannot be used for the restore.

Therefore, you should not rely on TF/Snap as the sole means of local replica protection if you need absolute availability nor use it with unprotected source volumes as TF/Snap relies on the availability of the source data.

Virtual devices

Virtual devices (VDEVs) are space-efficient copies that consist of tables and pointers to capture a point in time. Virtual devices can be either CKD or FBA. Virtual devices are host accessible and do not consume physical storage. However, because they are host addressable, virtual devices do consume VMAX device numbers and host addresses.

TimeFinder supports two virtual device methodologies. The original and default method uses a single session for each virtual device in a relationship with a standard device. This allows a maximum of 8 virtual devices, or 16 sessions, per standard device (four datasets, four full volumes, and 8 virtual volumes).

The multi-virtual method (implemented using MULTI_VIRTUAL parameter) uses a single session on the standard device, that allows up to 128 virtual devices to “share” the single device session. Each virtual device is monitored by an independent session that is not associated with the source device.

The MULTI_VIRTUAL parameter is available with Enginuity 5773 and 5876.

With Enginuity 5876, the multi-virtual method is the only method used, so whether the MULTI_VIRTUAL parameter is set to NO or to YES, or whether it is used at all, the system always allows 128 virtual device sessions.

With HYPERMAX OS 5977 and higher, the MULTI_VIRTUAL parameter is not supported. Whether set to YES or NO, the system allows up to 32 virtual device sessions for a single standard device. To overcome this limitation, use the SOFTlink parameter.

VSE FBA

Virtual Space Efficient (VSE) FBA is available allowing THIN FBA devices to use shared allocations. The shared allocation makes it a VSE device.

VSE (thin devices using shared allocation) may have up to 32 sessions that do not use the standard 16 clone session positions. This means that you may have a total of 48 sessions present (32 VSE plus the 16 original) at one time. Only 32 sessions may be VSE sessions.
Snap pool devices

Snap pool devices (SNAPDEVs) are log devices. Unlike VDEVs, they are not host accessible; but, do consume physical storage. Snap pool devices are gathered in snap device pools.

Snap device pools (SNAPPOOLS) are named groups of snap pool devices that provide a pool of physical space used to store pre-update images of tracks changed on the source device or new writes to the virtual devices. As specific virtual device sessions are terminated, the space associated with them is returned to free space in the snap device pools, while the actual snap pool devices are saved.

Note: To perform virtual-device snaps and use SNAPPOOLS, you must configure your VMAX systems with virtual and snap pool devices to use TF/Snap.

Basic Snap operations

Upon creating a session, a virtual snap is activated to capture the point-in-time image. As writes arrive at the source volume, the existing tracks or pre-update images are moved to the snap device pool you specify, to preserve the point in time of the snap.

Subsequently, activated virtual devices for the same source go through the same steps of creating pointers to capture the point-in-time image. As long as a virtual device remains active, its responsibility is to point to tracks, either on the source or snap pool device.

The consumption of storage in the snap device pool (SNAPPOOL) is determined by the new data change rate on a track-by-track basis. This means that the same track updated several times takes only the space for one preimage. This uses far less space in the snap device pool than the same number of updates affecting completely different tracks.

You can create multiple snap device pools to isolate workloads. This alleviates contention for snap pool device space among several sessions and lessens the possibility of a single session consuming all the space.

SNAPPOOL management

The devices for SNAPPOOL device pools come from a special pool called the DEFAULT_POOL. The DEFAULT_POOL contains snap pool devices that have not been assigned to any named pool, but are available for use.

ResourcePak Base provides a set of General Pool Management (GPM) commands that can be executed online or in batch mode. Devices in pool storage are a predefined set of devices that provide a pool of physical space.

Multiple SNAPPOOLS can be created to isolate workloads. This alleviates contention for device space among several users and lessens the possibility of a single pool consuming all the available space.

Devices can also be removed from a SNAPPOOL, but the devices must first be "drained" and disabled. Drained devices will become inactive within their pool and can then be moved out of the pool to be available for other pools.

The ResourcePak Base for z/OS Product Guide describes the GPM commands and provides a complete description of creating pools and managing the pooling process.
Virtual restore operations

Virtual restore allows you to restore a virtual device. There are two types of virtual restore:

- From the virtual device to the original source of the snap.

 The virtual device session being restored of course may exist, but no other sessions are allowed, as identified previously. The virtual snap device referenced in the restore is removed when the restore occurs and can be used for other purposes.

- From a virtual device to a different standard device (STD).

 The virtual snap device referenced in the restore is removed when the restore occurs. The virtual snap device can be used for other purposes.

Virtual restores have the following limitations:

- For a restore from a VDEV to a clone (or clone emulation) source device, the clone session must be active (SPLIT) with NO tracks to be copied.

- The target of the restore cannot be an active target of any SNAP VOLUME or SNAP DATASET.

- The target of the restore cannot be a clone-emulation BCV as long as the clone-emulation relationship exists.

- With HYPERMAX OS 5977, the target of the restore can only be the original source of the snap.

These states can be determined using the QUERY VOLUME command, which reports on the type of sessions currently active for the device.

VP Snap restore to copied clone target (VRTT)

TimeFinder provides ability to do a VP Snap (VSE) Restore to a copied Clone Target (VRTX), when the standard (source) of the VP Snap (VSE) target is also a target of a (fully copied) regular native clone.

The following example shows the clone relationship that exists between A and B, and the VP Snap relationship that exists between B and C.

Figure 3 VP Snap Restore to Target (VRTX)
Previously, you could not restore C to B without terminating the relationship between A and B.

With this VRTT enhancement, the restore of C to B may occur without affecting the relationship between A and B, but A and B must be copied, and all devices must be thin devices.

VR TT requirements and limitations

The following requirements and limitations apply to VRTT actions:

◆ Requires Enginuity 5876 on VMAX 20K and VMAX 40K platforms.
◆ MFE does not support this feature on the VMAX 10K platform, but it is supported by the EMC Solutions Enabler product.
◆ A, B and C are all FBA (B is a clone copy and C is a VSE relationship).
◆ The A to B clone copy must be completed.
◆ B cannot own virtual or multi-virtual snap sessions (VDEV).
◆ No other kind of restore to device B is tolerated when the user issues a VRTT.
◆ When any other restore sessions are in progress, VRTT is rejected.
◆ Resnap of A to B leg is not allowed if a VRTT session exists. A user needs to terminate the VRTT session before resnapping the A to B leg.
◆ All other limitations related to VP Snap Restore apply.

Incremental clone refresh/resnap

With Enginuity 5876 and HYPERMAX OS 5977, you can perform the following incremental clone refresh/resnap operations:

◆ Incremental refresh/resnap of a clone during a persistent TimeFinder cascaded VP Snap session.
◆ Incremental refresh/resnap during a cascaded virtual snap session.
Introduction

These features enable you to do a differential resnap of an intermediate TF/Clone when a cascaded VP Snap session exists. For example, if A→B is a regular clone session, and B→V is an active VP Snap session, then users are allowed to resnap A→B and Enginuity/HYPERMAX OS maintains the persistence of the VP Snap copies from these clones.

![Incremental Refresh of Clone](image)

Figure 4 Incremental refresh/resnap of clone

Incremental clone refresh/resnap requirements and limitations

The following requirements and limitations apply to incremental clone refresh/resnap actions:

- Resnap will not be allowed if B→C VSE/Snap is not active
- A→B resnap session can be activated only when the precopy of A→B completes and the state moves to precopy sync.

Persistent restore operations

Virtual restores cause the virtual device to be removed after the restore. Persistent restore allows you to restore from a virtual device to a standard device, either the original source, a different device, without losing the source virtual device or terminating other snapshots in the session.

You specify persistent restore with the PERSISTENT parameter of the GLOBAL and RESTORE VOLUME commands. The maximum number of virtual devices off a source volume is eight (8). However, persistent restore has a maximum of seven (7).

Note: “GLOBAL” on page 226 and “RESTORE VOLUME (TF/Snap)” on page 266 provide more information.

Persistent restores do not require all of the other VDEV sessions (or virtual devices assigned to the restore device) to be terminated.

Persistent virtual restore to a cloned target

With Enginuity 5876 and HYPERMAX OS 5977, users can perform a persistent virtual restore (PVR) to a cloned target. When performed, this feature is referred to as PTT and can support a restore to the snap source which is also a clone target.
Planning for virtual device implementations

A planning phase is essential for virtual device snap implementations. Consider the following as part of a virtual snap implementation:

- Both virtual devices and snap pool devices need to be configured in the VMAX system.
- The right number of virtual devices must be configured for the intended use.
- Virtual devices must have the same geometry, track size, and number of cylinders as any source device that is going to be used in virtual snaps.
 For example, you can only use a virtual 3390-1 with a real 3390-1. You can only use a virtual 3390-9 with a real 3390-9, and so forth.
- Virtual devices are configured with host addresses (ccuu) and consume VMAX device numbers.
- Snap pool devices are not host addressable but do consume VMAX device numbers.
- Sufficient storage space must be allocated to the snap device pool. This is crucial because if the snap device pool fills up, pre-update images of the newly changed tracks arriving on source volumes that have active virtual device sessions or writes to existing virtual devices are lost. Therefore, point-in-time copies are lost for any source device receiving newly changed tracks or writes to the virtual device if the snap device pool is full.

EMC provides a monitor function within the ResourcePak Base product that advises you if and when you are reaching predetermined thresholds within the snap device pool(s). (All pools can be individually monitored.) User exits can be created based on your site-specific policies.

Note: The *ResourcePak Base for z/OS Product Guide* describes the monitor function in detail.
TimeFinder/Consistency Group

Using the Enginuity Consistency Assist (ECA) feature, TF/Consistency Group allows you to perform consistent snap operations on volumes so that the target is dependent-write consistent.¹ TF/Consistency Group is available for full device, virtual device, remote full device and dataset snaps.

The source and target device pairs must reside in the same VMAX system. Consistency can be preserved over multiple volumes and multiple VMAX systems.

Note: For a consistent dataset snap, you need to have Enginuity 5876 or HYPERMAX OS 5977.

Keep in mind the following device type consistency considerations when performing a remote, full-device, consistent snap.

TF/Consistency Group enforces the consistency parameter (CONSISTENT) in conjunction with the ACTIVATE command. The ACTIVATE command applies to SNAP VOLUME and SNAP DATASET commands preceding it in the input stream. Like a full device snap, you first code all of the SNAP statements and then code the ACTIVATE CONSISTENT(YES) statement.

There are a variety of SNAP statements, involving the following types of devices: local, remote (non-SRDF), remote (SRDF/S), and remote (SRDF/A). Consistency among the various types of devices occurs, but may not be what you expect.

For instance, if you have some local and some remote (non-SRDF) devices in the same ACTIVATE group, the remote devices are consistent with each other, but they may not be consistent with the local devices. Likewise, the local devices are consistent with each other, but they may not be consistent with the remote devices. Basically, devices of the same type are consistent with each other, but not with devices of another type.

¹ Enginuity Consistency Assist (ECA) is a feature of the Enginuity/HYPERMAX OS operating environment. ECA (often called RDF-ECA, a part of SRDF Consistency) provides an enterprise solution for ensuring dependent-write consistency in SRDF/S configurations with more than one SRDF group. ECA requires that you have the TF/Consistency Group Licensed Feature Code (parameter CONSISTENT) installed. The Mainframe Enablers Installation and Customization Guide provides more information.
CHAPTER 2
Getting Started

This chapter describes the main TimeFinder post-installation activities.

◆ Prerequisites.. 36
◆ Running TimeFinder (EMCSNAP) ... 37
◆ TimeFinder and protection sessions ... 38
◆ TimeFinder Vary processing exit .. 40
Prerequisites

Running ResourcePak Base (EMCSCF)

TimeFinder requires that the Mainframe Enablers’ ResourcePak Base (EMCSCF) is installed and running. If EMCSCF is not running, all TimeFinder operations receive the following message:

EMC SCF IS NOT AVAILABLE - reason
IEF450I STON01B EMCSMMF - ABEND=000 U0806 REASON=00000000

Where reason is one of the following:

- SERVICE EMCSAI FAILED
- SERVICE SAICALL FAILED

You can run multiple instances of EMCSCF as separate z/OS sub-systems. You may want to do this when you are testing new versions of EMCSCF or EMCSCF-enabled products. For instructions, refer to the ResourcePak Base for z/OS Product Guide.

Software interoperability considerations

This section provides methods for avoiding possible interoperability problems between TimeFinder and other software products:

- If you plan to run with full IBM SNAPSHOT compatibility, place the EMC supplied SIBBATCH in the search list ahead of the IBM supplied SIBBATCH.

 SIBBATCH uses the same DD statements as SNAPSHOT. If you want any TimeFinder functions, code the statement exactly as it is coded in TimeFinder. For instance, a GLOBAL statement could be added to the input stream.

- If your installation uses the SRS (space management software) from DTS Software, you should exclude TimeFinder from SRS recovery by coding the following rule:

 DEFRULE NOEMC
 IF PGM=EMCSNAP
 THEN EXIT

- IBM 2105 and 2107 controllers are recognized. and IBM FlashCopy is automatically invoked as a datamover, if appropriate. TimeFinder recognizes FlashCopy V2 support and uses FlashCopy V2 to copy dataset extents.

- TimeFinder recognizes whether a VMAX system is FlashCopy capable. It also recognizes when a FlashCopy session is active at the logical volume level.

FlashCopy and Snap sessions can coexist and the value in the site options table for &EMCDSSU_FLASH_SNAP is always used. This means that if the site options table has snap as the preferred copy method (&EMCDSSU_FLASH_SNAP = SNAP) and a FlashCopy session already existed on the device, TimeFinder would use snap.
Running TimeFinder (EMCSNAP)

The interface to TimeFinder is through the program EMCSNAP. You normally execute EMCSNAP as a batch job.

The following is example JCL for running EMCSNAP as a batch job:

```
//EMCSNAP EXEC PGM=EMCSNAP,REGION=0M
//STEPLIB DD DISP=SHR,DSN=your timefinder.library
//SYSABEND DD SYSOUT=* 
//QCOUTPUT DD SYSOUT=* 
//SCF$nnnn DD DUMMY 
//QCINPUT DD * 
```

Where:

- The STEPLIB DD statement is optional if you have copied EMCSNAP to a system LINKLIST library.
- The SCF$nnnn statement is optional. It is used to match the batch job to the SCF task that you would like to run against. If you do not specify it, the default SCF subsystem name is SCF$EMC.
- The QCINPUT DD statement can reference a disk file: DISP=SHR,DSN=dsn.
- The QCOUTPUT file contains the summary report that is produced at the end for each run.

```
RQST RC SOURCE TARGET DISP TRACKS EXTENTS
2 04 SNAP VOLUME U6A236 *6EF7* 16695 
```

Within that report are the following fields:

- **RQST** Maps back to the STATEMENT# when actions are parsed.
- **RC** Is the return code for that statement.
- **SOURCE** Identifies two things: the action being performed and the entity that the action is being performed upon.
- **TARGET** Identifies any target entity
- **DISP** DISP is used with SNAP DATASET requests to identify whether the target dataset was created or already existed. Additionally, if a command is skipped in processing, it says SKIP.
- **TRACKS** Lists the number of SOURCE tracks being operated upon. In the TRACKS column, the following symbols are used to indicate whether the target dataset has more or less tracks than the source dataset:
 - “>” indicates the target dataset has fewer tracks than the source dataset.
 - “<” indicates the target dataset has more tracks than the source dataset.
 - “ ” (blank - no symbol) indicates the target dataset has the same number of tracks as the source dataset.
- **EXTENTS** The number of SOURCE extents and the number of TARGET extents.

- The QCERROR DD statement (optional) aids in resolving any problems you encounter. When you add QCERROR to the EMCSNAP JCL, any error messages generated are written to this file, as well as to the regular QCOUTPUT file.
TimeFinder and protection sessions

For protection sessions, TimeFinder takes the following steps internally:

- Establishes a protection session for the source dataset or volume
- Copies the tracks with a background process

This allows the target to be immediately available without waiting for the copy process to complete. There is a limit of 64 protection sessions within an SSID, further limited by a maximum of 16 protection sessions for any given device. TimeFinder limits the maximum number of sessions it uses to four per logical device for physical TimeFinder and eight for Virtual Device Snapshot.

Table 1 provides details on protection session limits:

Table 1 Protection session limits

<table>
<thead>
<tr>
<th>Protection</th>
<th>Protection Sessions Allowed</th>
<th>Protection Sessions used indirectly</th>
<th>Multi-Virtual sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native Extents</td>
<td>4</td>
<td>Max 4 combined with native extents (differential)</td>
<td>0</td>
</tr>
<tr>
<td>Native Extents (Differential)</td>
<td>3</td>
<td>1 SDDF on source and target for each differential session Max 4 combined with native extents</td>
<td>0</td>
</tr>
<tr>
<td>Full Device Clone</td>
<td>4</td>
<td>1 SDDF on source and target for each differential session</td>
<td>0</td>
</tr>
<tr>
<td>Native Flash Copy</td>
<td>12</td>
<td>1 SDDF on source and target for each differential session</td>
<td>0</td>
</tr>
<tr>
<td>Virtual Device</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Multi-Virtual Device</td>
<td>1 Required</td>
<td>0</td>
<td>With HYPERMAX OS 5977: 32 With Enginuity: 128</td>
</tr>
<tr>
<td>TF/Mirror (native)</td>
<td>8 (Multi-BCV)</td>
<td>N/A</td>
<td>0</td>
</tr>
<tr>
<td>TF/Mirror Clone Emulation</td>
<td>6</td>
<td>1 SDDF on source and target for each clone emulation session</td>
<td>0</td>
</tr>
<tr>
<td>VSE (Virtual Space Efficient)</td>
<td>32</td>
<td>There is a limit of 32 VSE sessions in addition to the existing limit of 16 non-VSE sessions. If differential is used, no more than 16 VSE differential session may be establish because the differential SDDF session occupies one of the 16 non-VSE sessions.</td>
<td>32</td>
</tr>
</tbody>
</table>

a. With HYPERMAX OS 5977, SnapVX is used for Full Device Clone and TF/Mirror Clone Emulation.
Keep in mind that TimeFinder’s use of protection sessions is quite efficient at both the volume and the SSID level. When there is no source extent conflict/overlap, TimeFinder uses the same protection session for multiple snap operations for different datasets on the same source volume as well as across multiple volumes in an SSID.

You can perform a full-device resnap operation while there are still protected and indirect tracks present.

When establishing a session for copying a dataset or volume, TimeFinder Clone is using one of these sessions and must coexist with any regular protection session activities taking place. TimeFinder establishes a session, identifies the tracks to be copied, and then terminates, leaving the actual copy process to complete in the background.

Because TimeFinder is no longer running, cleanup of the TimeFinder protection sessions does not take place when the background copy process completes. Instead, the TimeFinder protection sessions remain registered (although idle) until one of the following events occurs:

- A CLEANUP command is issued.
- Another snap involving the same source device is run.
- The TERMINATE_SESSION_WHEN_COMPLETE parameter is specified. (“DELETE GROUP” on page 313 and “SNAP VOLUME” on page 292 provide more information.)

The CLEANUP command is designed to be executed against the source device and to analyze all of the outstanding requests to be copied. Any requests that have completed are removed and any protection sessions no longer needed are released.

Each time TimeFinder initiates a new request for a source device, it automatically performs the CLEANUP command. This may result in additional protection sessions being released for other uses.

Note that if you use TimeFinder against many source devices within a storage system without using the CLEANUP command, a large number of protection sessions can remain registered for a long period of time until you perform the next TimeFinder request or CLEANUP. While this does not affect the VMAX system, it does impact the availability of the protection sessions for other purposes.
TimeFinder Vary processing exit

The TimeFinder Vary processing exit gives a user exit routine the opportunity to influence the VARY ONLINE and VARY OFFLINE processing that occurs when a complete volume is the target of a SNAP VOLUME request.

The exit routine is called before the VARY command is issued, and may determine whether the VARY command is indeed issued. TimeFinder is an authorized program and the exit routine is authorized when it is invoked. The exit routine should return control to TimeFinder in the same mode as when it was invoked.

The exit must name a CSECT or ENTRY point name of SNAPVARY and must be link edited with the SCFGBLSN load module. A sample exit and the necessary LKED statements are contained in member SNAPVARY in the Mainframe Enablers SAMPLIB.

Parameters

Five parameters are passed to the exit in a standard parameter list. The parameters are:

1. The address of an eight character field containing the word “ONLINE” or “OFFLINE.” This may be used to determine whether a VARY ONLINE or VARY OFFLINE is about to be performed.

2. Address of a 36-character field containing the command string about to be issued. The actual text is something like:

 V ccuu,OFFLINE

 or

 V ccuu,ONLINE

 You can modify this field in which case the modified field is used and not the original.

3. Address of a six-character field containing the volser of the device about to be varied offline or online.

4. Address of the mainframe UCB for the device about to be varied offline or online.

5. Address of a 256-byte work area available to the exit.

Return codes

Three return codes are accepted from the exit. The return code values are:

0 TimeFinder is to continue and issue the command in the field pointed to by the second parameter. The contents of the field may be modified by the user exit routine.

4 TimeFinder is to continue, but no command is to be issued. The exit routine is responsible for ensuring the proper device status.

8 TimeFinder is to stop processing the SNAP VOLUME command and the contents of the 36-character field pointed to by the second parameter is written to the message log.
Register contents

Register contents upon entry to the TimeFinder Vary Processing Exit:

R0 Unknown.
R1 Points to a five word parameter list, the fifth word in the list has the VL indicator set.
R2 - R12 Unknown, these registers must be restored by the exit.
R13 Points to an 18-word save area. The first word of the save area is important and must be restored by the exit.
R14 Contains the entry point address of the exit routine.
R15 Contains the return address for the exit routine.
Getting Started
CHAPTER 3
Configuration

This chapter covers the following topics:

- TimeFinder configuration layers ... 44
- Editing the EMCSNAPO macro ... 46
- EMCSNAPO site options ... 47
TimeFinder configuration layers

TimeFinder has three configuration layers, each of which can override the one above it:

1. EMCSNAPO site options
2. GLOBAL command parameters
3. Parameters on other commands

WARNING

Only the administrator for the site should set and change site options to avoid unforeseen complications and problems with TimeFinder processing and the expected results.

Configuration Layer 1: EMCSNAPO site options

The first configuration layer consists of the TimeFinder site options. You can accept the site option default values or you may permanently change the value to suit your requirements.

For release 8.0 and higher, you also have the option of using the EMC REXX Interface to create scripts to either influence standard EMC processing or to perform related external user-defined processing. To use this option, refer to the Appendix in this manual, “TimeFinder REXX EXITS” on page 339.

The site-specific values are specified in the EMCSNAPO macro in the Mainframe Enablers SAMPLIB (SMP/E DDNAME: MFESAMP). You can change a value by adding the modification to a member in the RIMLIB and then running the EMCSNAPO statement.

The JCL in the RIMLIB specifies that the Mainframe Enablers SAMPLIB as the first dataset in the SYSLIB concatenation for the assembly.

Refer to “EMCSNAPO site options” on page 47 for a list of the site options and a description on how to edit the EMCSNAPO macro.

Configuration Layer 2: GLOBAL command parameters

The second layer consists of the GLOBAL command parameters. The GLOBAL command parameters match many of the site options. GLOBAL command parameters override EMCSNAPO site options. If you need temporarily to change a site option value that has a matching GLOBAL parameter, you can set that GLOBAL parameter to the value you want to use.

GLOBAL parameter values apply only to commands that follow the GLOBAL command in the current job step. They do not affect any commands that precede them in the current job step. After that job step is over, TimeFinder uses the site option value again.

You can set multiple global commands within a job step. In each case, the GLOBAL command applies to the commands that follow unless overridden by another, later GLOBAL command.
Example

In this example, GLOBAL parameter_x applies to both the SNAP DATASET and SNAP VOLUME commands, because it precedes both. GLOBAL parameter_y applies only to SNAP VOLUME because it comes after SNAP DATASET, but before SNAP VOLUME.

```
//QCINPUT DD *
GLOBAL parameter_x
SNAP DATASET
GLOBAL parameter_y
SNAP VOLUME
//
```

In one job step, a GLOBAL command can override a preceding GLOBAL command.

Example

In the following example, GLOBAL parameter_z applies to SNAP DATASET while GLOBAL Newparameter_z (same parameter, different value) applies to SNAP VOLUME.

```
//QCINPUT DD *
GLOBAL parameter_z
SNAP DATASET
GLOBAL Newparameter_z
SNAP VOLUME
//
```

Configuration Layer 3: Parameters on other commands

The third layer consists of the parameters associated with other TimeFinder commands. Many of the TimeFinder commands can take parameters available on the GLOBAL command statement. If you need to override an EMCSNAPO site option or a GLOBAL parameter, you can issue the equivalent parameter with that command.

The value you use is only in force for the duration of the operation of the command to which it is appended. After the command is finished, TimeFinder uses either the GLOBAL parameter value (if one was set) or the site option value again.

Example

In this example, TimeFinder has a &DATAMOVR site option. This option specifies a default datamover utility to be used for SNAP DATASET and SNAP VOLUME operations. The default value for &DATAMOVR is “None.” However, you can set &DATAMOVR to the name of the datamover you normally want to use.

The matching GLOBAL parameter is DataMoverNaMe. If you set DataMoverNaMe to a different value than you set &DATAMOVR, the value you use overrides the &DATAMOVR site option for all the commands that follow in the job step.

If you then want to change the datamover again for a specific SNAP DATASET command, you can specify DATAMOVERNAME as an argument to that SNAP DATASET. TimeFinder uses the datamover you specify for that SNAP DATASET operation.

After that SNAP DATASET is complete, TimeFinder then uses the GLOBAL specification for the rest of the commands in the job step. After the job step completes, TimeFinder returns to the set (or default) value of &DATAMOVR.
Editing the EMCSNAPO macro

The EMCSNAPO macro lists all of the site options you can change. (Many of these site options are also parameters of the GLOBAL command.) For each site option, the macro lists:

- A short form of the site option name with the default value in the form:

 \[&SHORTFORM=DEFAULT\]

- The full name of the site option.

- A list of possible values.

For example, the macro listing for the AUTOMATIC_DEALLOC parameter is:

 \[&AUTODEAL=YES, AUTOMATIC_DEALLOC \quad (Y/N)\]

To change a parameter setting, you use the member #91SNPJB supplied in the RIMLIB and add the parameter to the EMCSNAPO statement and then run the job.

For example, the default value for the macro &AUTODEAL is YES. To change this setting to NO, you would add AUTODEAL=NO to the EMCSNAPO statement.

![WARNING]

The ampersand (&) is used only in the macro definition, but you do not use it when you are adding to the EMCSNAPO statement for execution.

Before:

\[EMCSNAPO \quad DSECT=NO\]

After:

\[EMCSNAPO \quad AUTODEAL=NO, DSECT=NO\]

The #91SNPJB executes the IBM assembler and the EMCSNAPO statement must follow the IBM assembler rules for coding. This especially applies to statement continuation, placing a character in column 72 to indicate continuation and continuing in column 16 of the next line. DSECT=NO must always be present.

For example:

\[
\begin{align*}
\text{v - column 10} & \\
\text{v - column 16} & \\
\text{EMCSNAPO} & \\
\text{DATACLAS=ABC,} & \\
\text{MGMTCLAS=DEF,} & \\
\text{STORCLAS=GHI,} & \\
\text{DSECT=NO} & \\
\text{X} & \\
\text{X} & \\
\text{X} & \\
\text{X} & \\
\end{align*} \]

v - column 72
EMCSNAPO site options

Summary

Table 2 lists the EMCSNAPO site options and their default values together with the corresponding GLOBAL parameters.

<table>
<thead>
<tr>
<th>#</th>
<th>Site option (without the macro “&” designation)</th>
<th>Site option default</th>
<th>Site option valid values</th>
<th>Site option name in QUERY GLOBAL output</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>ACT_SCF_GATEKEEPER</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>54</td>
<td>ACTIVATE_SUBTASK#</td>
<td>3</td>
<td>0-255</td>
<td>ACTIVATE_SUBTASK#</td>
</tr>
<tr>
<td>55</td>
<td>ADMIN</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>55</td>
<td>ALLOFAIL</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>55</td>
<td>ALLOSEQ</td>
<td>DSNAMESIZE</td>
<td>NONE</td>
<td>ALLOCATION_SEQUENCE</td>
</tr>
<tr>
<td>55</td>
<td>ALLOUNIT</td>
<td>SYSALLDA</td>
<td>SYSALLDA</td>
<td>ALLOCATION_UNITNAME</td>
</tr>
<tr>
<td>55</td>
<td>ALLOW_CANCEL_LOCKED</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>55</td>
<td>ALLOW_FBA_META</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>55</td>
<td>ALLOW_SYMDV#</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>55</td>
<td>ALUNUSED</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>55</td>
<td>AUTOACTIVATE</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>55</td>
<td>AUTO_BIND_TDEV</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>55</td>
<td>AUTOCLN</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>55</td>
<td>AUTODEAL</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>55</td>
<td>AUTORLSE</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>55</td>
<td>AUTO_UNBIND_TDEV</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>55</td>
<td>AUTOXPND</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>55</td>
<td>BACKGRND</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>55</td>
<td>BCVONLY</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>55</td>
<td>CATALOG</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>55</td>
<td>CHECKBCV</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>55</td>
<td>CHKONLIN</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>55</td>
<td>CLEAN_R2</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>55</td>
<td>CLEANDIFF</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>55</td>
<td>CMPLT</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
</tbody>
</table>

Configuration
Table 2: EMCSNAPO site options (page 2 of 7)

<table>
<thead>
<tr>
<th>#</th>
<th>Site option (without the macro “&” designation)</th>
<th>Site option default</th>
<th>Site option valid values</th>
<th>Site option name in QUERY GLOBAL output</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>CMPLTMSG</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>59</td>
<td>COLLAPSE</td>
<td>n/a</td>
<td>VSAM</td>
<td>NOVSAM</td>
</tr>
<tr>
<td>59</td>
<td>COMPACT_MISMATCH</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>59</td>
<td>COND VOL</td>
<td>ALL</td>
<td>ALL</td>
<td>DUMP</td>
</tr>
<tr>
<td>59</td>
<td>CONGROUP</td>
<td>IGNORE</td>
<td>IGNORE</td>
<td>REQUIREDSAME</td>
</tr>
<tr>
<td>60</td>
<td>CONGROUP_LDMF</td>
<td>IGNORE</td>
<td>IGNORE</td>
<td>REQUIREDSAME</td>
</tr>
<tr>
<td>61</td>
<td>CONSALL</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>61</td>
<td>CONSIST</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>61</td>
<td>CONS VOLL</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>61</td>
<td>COPYCYL</td>
<td>10</td>
<td>number of I/O operations</td>
<td>COPYCYL COUNT</td>
</tr>
<tr>
<td>61</td>
<td>COPYFAIL</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>62</td>
<td>COPYVOLL</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>62</td>
<td>CSMSDATA</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>62</td>
<td>CSMSMGMT</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>62</td>
<td>CSMSSTOR</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>62</td>
<td>DATACLASS</td>
<td>n/a</td>
<td>classname</td>
<td>DATACLASS</td>
</tr>
<tr>
<td>62</td>
<td>DATAMOVR</td>
<td>n/a</td>
<td>datamover_name</td>
<td>DATAMOVERNAME</td>
</tr>
<tr>
<td>63</td>
<td>DS1DSCHA</td>
<td>LEAVE</td>
<td>SET</td>
<td>RESET</td>
</tr>
<tr>
<td>63</td>
<td>DEALLOC</td>
<td>DEALLOC</td>
<td>taskname</td>
<td>DEALLOC</td>
</tr>
<tr>
<td>63</td>
<td>DEBUG_ERROR</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>63</td>
<td>DEBUG_SDUMP</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>63</td>
<td>DFDSS_ADMIN</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>64</td>
<td>DFDSS_CC</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>64</td>
<td>DFDSS_O</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>64</td>
<td>DIFF</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>64</td>
<td>DIFFDSN</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>64</td>
<td>IMIDCAMS</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>#</td>
<td>Site option (without the macro “&” designation)</td>
<td>Site option default</td>
<td>Site option valid values</td>
<td>Site option name in QUERY GLOBAL output</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>---------------------</td>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>64</td>
<td>EATTR</td>
<td>n/a</td>
<td>NO</td>
<td>OPT</td>
</tr>
<tr>
<td>65</td>
<td>EMCCOPY</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>64</td>
<td>EMCALLOC_TRACE</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>65</td>
<td>EMCDSSU_FLASH_SNAP</td>
<td>SNAP</td>
<td>SNAP</td>
<td>FLASHCOPY</td>
</tr>
<tr>
<td>66</td>
<td>EMCDSSU_TARGET</td>
<td>MATCH</td>
<td>MATCH</td>
<td>IGNORE</td>
</tr>
<tr>
<td>66</td>
<td>EMCONLY</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>66</td>
<td>EMCQCAPI_TRACE</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>66</td>
<td>EMUL_TYPE</td>
<td>ALL</td>
<td>ALL</td>
<td>HARDLINK</td>
</tr>
<tr>
<td>67</td>
<td>ENQFAIL</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>67</td>
<td>ENQSCOPE</td>
<td>REQUEST</td>
<td>REQUEST</td>
<td>STEP</td>
</tr>
<tr>
<td>67</td>
<td>ENQWAIT</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>67</td>
<td>ERRCHK</td>
<td>NORMAL</td>
<td>NORMAL</td>
<td>REDUCED</td>
</tr>
<tr>
<td>67</td>
<td>ERRDISP</td>
<td>DELETE</td>
<td>DELETE</td>
<td>KEEP</td>
</tr>
<tr>
<td>67</td>
<td>ERRREC</td>
<td>NORMAL</td>
<td>NORMAL</td>
<td>ENHANCED</td>
</tr>
<tr>
<td>68</td>
<td>ESNP119</td>
<td>WARNING</td>
<td>WARNING</td>
<td>ERROR</td>
</tr>
<tr>
<td>68</td>
<td>ESNP220</td>
<td>ERROR</td>
<td>ERROR</td>
<td>WARNING</td>
</tr>
<tr>
<td>68</td>
<td>ESNP231E</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>68</td>
<td>EXAMINE</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>68</td>
<td>EXPATHGRP</td>
<td>n/a</td>
<td>pathlist</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>EXPLAIN_VOL_SEL</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>69</td>
<td>EXTADDNEW</td>
<td>n/a</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>69</td>
<td>EXTLALLOC</td>
<td>n/a</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>69</td>
<td>EXTENDED_MISMATCH</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>70</td>
<td>EXTXPAND</td>
<td>n/a</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>70</td>
<td>EXTXPVOL</td>
<td>n/a</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>70</td>
<td>FBA</td>
<td>INCLUDE</td>
<td>EXCLUDE</td>
<td>INCLUDE</td>
</tr>
<tr>
<td>70</td>
<td>FLASH_SNAP</td>
<td>SNAP</td>
<td>FLASHCOPY</td>
<td>SNAP</td>
</tr>
<tr>
<td>70</td>
<td>FORCE</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>70</td>
<td>FORCERCMP</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>71</td>
<td>FREESPC</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>71</td>
<td>FULL</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>#</td>
<td>Site option (without the macro “&” designation)</td>
<td>Site option default</td>
<td>Site option valid values</td>
<td>Site option name in QUERY GLOBAL output</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>---------------------</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>71</td>
<td>GROUP_DEVICE_READY_STATE</td>
<td>AUTO</td>
<td>AUTO</td>
<td>NEVER</td>
</tr>
<tr>
<td>71</td>
<td>GROUP_DSNAME</td>
<td>n/a</td>
<td>dataset name</td>
<td>GROUP_DSNAME(LOCAL)</td>
</tr>
<tr>
<td>71</td>
<td>GROUP_EMCQCAPI_VERIFY</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>72</td>
<td>GROUP_HISTORY_LIMIT</td>
<td>100</td>
<td>number of records</td>
<td>GROUP_HISTORY_LIMIT</td>
</tr>
<tr>
<td>72</td>
<td>HOSTCOPY</td>
<td>OLD</td>
<td>OLD</td>
<td>SHARED</td>
</tr>
<tr>
<td>72</td>
<td>IGNORERDF</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>72</td>
<td>INVALIDATE_PDSE</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>72</td>
<td>MAXDSSU</td>
<td>10</td>
<td>number of asids</td>
<td>MAXDSSU</td>
</tr>
<tr>
<td>73</td>
<td>MAXTASK2</td>
<td>999</td>
<td>number of tasks</td>
<td>MAXTASK(ALL)</td>
</tr>
<tr>
<td>73</td>
<td>MAXTASKR</td>
<td>99</td>
<td>number of tasks</td>
<td>MAXTASK(REQ)</td>
</tr>
<tr>
<td>73</td>
<td>MESSAGE</td>
<td>NONE</td>
<td>DISPLAY</td>
<td>PROMPT</td>
</tr>
<tr>
<td>73</td>
<td>MGMTCLAS</td>
<td>n/a</td>
<td>classname</td>
<td>MANAGEMENTCLASS</td>
</tr>
<tr>
<td>74</td>
<td>MIGRATRC</td>
<td>8</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>73</td>
<td>MINSNAP</td>
<td>n/a</td>
<td>number of tracks</td>
<td>MINSNAP</td>
</tr>
<tr>
<td>74</td>
<td>MLQ</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>74</td>
<td>MRGEXIST</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>74</td>
<td>MULTI_VIRTUAL</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>74</td>
<td>NTFYGRP</td>
<td>n/a</td>
<td>groupname</td>
<td>NOTIFY GROUP</td>
</tr>
<tr>
<td>74</td>
<td>NTFY_LVL</td>
<td>n/a</td>
<td>DATASET</td>
<td>JOB</td>
</tr>
<tr>
<td>75</td>
<td>OFFLINE</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>75</td>
<td>OPEN_SOURCE_RC</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>76</td>
<td>OPT_CKD</td>
<td>INCLUDE</td>
<td>INCLUDE</td>
<td>EXCLUDE</td>
</tr>
<tr>
<td>76</td>
<td>OPT_FBA</td>
<td>INCLUDE</td>
<td>INCLUDE</td>
<td>EXCLUDE</td>
</tr>
<tr>
<td>76</td>
<td>OPT_NOTREADY</td>
<td>INCLUDE</td>
<td>INCLUDE</td>
<td>EXCLUDE</td>
</tr>
<tr>
<td>77</td>
<td>OPT_RAID</td>
<td>ALL</td>
<td>ALL</td>
<td>S</td>
</tr>
<tr>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td>OPT_RAID_10</td>
</tr>
<tr>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td>OPT_RAID_5</td>
</tr>
<tr>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td>OPT_RAID_6</td>
</tr>
<tr>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td>OPT_RAID_ALL</td>
</tr>
<tr>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td>OPT_RAID_FTS</td>
</tr>
<tr>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td>OPT_RAID_NONE</td>
</tr>
<tr>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td>OPT_RAID_5</td>
</tr>
<tr>
<td>77</td>
<td>OPT_READY</td>
<td>INCLUDE</td>
<td>INCLUDE</td>
<td>EXCLUDE</td>
</tr>
<tr>
<td>77</td>
<td>OPT_SAVEDEV</td>
<td>INCLUDE</td>
<td>INCLUDE</td>
<td>EXCLUDE</td>
</tr>
<tr>
<td>#</td>
<td>Site option (without the macro “&” designation)</td>
<td>Site option default</td>
<td>Site option valid values</td>
<td>Site option name in QUERY GLOBAL output</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>---------------------</td>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>78</td>
<td>OPT_TDEV</td>
<td>INCLUDE</td>
<td>INCLUDE</td>
<td>EXCLUDE</td>
</tr>
<tr>
<td>78</td>
<td>OPT_THINPOOL</td>
<td>INCLUDE</td>
<td>INCLUDE</td>
<td>EXCLUDE</td>
</tr>
<tr>
<td>78</td>
<td>OPT_VDEV</td>
<td>INCLUDE</td>
<td>INCLUDE</td>
<td>EXCLUDE</td>
</tr>
<tr>
<td>78</td>
<td>PARALLEL</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>79</td>
<td>PARALLEL.Clone</td>
<td>n/a</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>79</td>
<td>PERSIST</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>79</td>
<td>POOL</td>
<td>n/a</td>
<td>poolname</td>
<td>POOL</td>
</tr>
<tr>
<td>79</td>
<td>POOLUSE</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>79</td>
<td>PRECOPY</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>79</td>
<td>PREPARE</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>80</td>
<td>PROCESS_COPYCYL_DATAMOVER</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>80</td>
<td>PURGE</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>80</td>
<td>QCAPIMSG</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>80</td>
<td>R1FULLCOPY</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>81</td>
<td>R1R2SYNC</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>81</td>
<td>RECALC_FREE</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>81</td>
<td>RECALL</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>81</td>
<td>REFVTOC</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>81</td>
<td>REMOVE_REMOTE</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>81</td>
<td>REPLACE</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>81</td>
<td>RESERVE</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>82</td>
<td>RESERVE_SERIALIZATION</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>82</td>
<td>RETAIN_SOURCE_REFDT</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>82</td>
<td>RETRY1731</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>83</td>
<td>RETRY1756</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>83</td>
<td>REUSE</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>83</td>
<td>REUSFAIL</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>83</td>
<td>SAMEONLY</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>83</td>
<td>SAVEFULL</td>
<td>READY</td>
<td>READY</td>
<td>NOTREADY</td>
</tr>
<tr>
<td>84</td>
<td>SCRATCH</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>84</td>
<td>SESSDETL</td>
<td>NODETAIL</td>
<td>DETAIL</td>
<td>NODETAIL</td>
</tr>
<tr>
<td>#</td>
<td>Site option (without the macro “&” designation)</td>
<td>Site option default</td>
<td>Site option valid values</td>
<td>Site option name in QUERY GLOBAL output</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------------------</td>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>84</td>
<td>SESSDIFF</td>
<td>NODIFF</td>
<td>DIFF</td>
<td>NODIFF</td>
</tr>
<tr>
<td>84</td>
<td>SESSLIST</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>84</td>
<td>SMFRID</td>
<td>0</td>
<td>0</td>
<td>128-255</td>
</tr>
<tr>
<td>85</td>
<td>SMSKSDS</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>85</td>
<td>SMSPASSVOL</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>85</td>
<td>SNAPSHOT_LIST</td>
<td>ALL</td>
<td>ALL</td>
<td>LINKED</td>
</tr>
<tr>
<td>85</td>
<td>SNAPSHOT_NAME</td>
<td></td>
<td>snapshot name</td>
<td>NAME</td>
</tr>
<tr>
<td>86</td>
<td>SNUNUSED</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>86</td>
<td>SOFTLINK</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>86</td>
<td>SRDFAR1</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>86</td>
<td>SRDFAR2</td>
<td>WARNING</td>
<td>WARNING</td>
<td>R1R2SYNC</td>
</tr>
<tr>
<td>86</td>
<td>SRDFAR2_PRECOPY</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>87</td>
<td>SRDFA_RETRY</td>
<td>YES</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>SRDFS_R1</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>87</td>
<td>STORCLAS</td>
<td>n/a</td>
<td>classname</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>STORED_LOG_SIZE</td>
<td>25000</td>
<td>number of lines</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>SUBTNAME</td>
<td>EMCSNAPI</td>
<td>subtask name</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>SYSCALL_RETRY</td>
<td>1600</td>
<td>count</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>TARGET_WAIT</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>88</td>
<td>TDEV_RECLAIM</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>88</td>
<td>TERMSESS</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>88</td>
<td>TIMEOUT</td>
<td>0</td>
<td>number of seconds</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>TRKALIGN</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>89</td>
<td>TRUNC</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>89</td>
<td>VALIDATE</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>89</td>
<td>VALFIRST</td>
<td>0</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>89</td>
<td>VALLAST</td>
<td>n/a</td>
<td>number of tracks</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>VALRANGE_LOCAL</td>
<td>AUTO</td>
<td>AUTO</td>
<td>IGNORE</td>
</tr>
<tr>
<td>90</td>
<td>VALRANGE_REMOTE</td>
<td>AUTO</td>
<td>AUTO</td>
<td>IGNORE</td>
</tr>
<tr>
<td>90</td>
<td>VALSMS</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>#</td>
<td>Site option (without the macro “&” designation)</td>
<td>Site option default</td>
<td>Site option valid values</td>
<td>Site option name in QUERY GLOBAL output</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>---------------------</td>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>90</td>
<td>VARYOFF</td>
<td>AUTO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>90</td>
<td>VARYON</td>
<td>AUTO</td>
<td>AUTO</td>
<td>NEVER</td>
</tr>
<tr>
<td>91</td>
<td>VCLOSE</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>91</td>
<td>VDEV_REUSE</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>91</td>
<td>VDEVWAIT</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>91</td>
<td>VERIFY_OPEN_SOURCE</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>92</td>
<td>VERIFY</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>92</td>
<td>VSAMENQ</td>
<td>NONE</td>
<td>OLD</td>
<td>SHARED</td>
</tr>
<tr>
<td>92</td>
<td>VSAMFAIL</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>92</td>
<td>VTOCIX</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>92</td>
<td>WAIT_OFFLINE_LIMIT</td>
<td>5</td>
<td>number of seconds</td>
<td>WAIT_OFFLINE_TIME</td>
</tr>
<tr>
<td>92</td>
<td>WAIT_ONLINE_LIMIT</td>
<td>5</td>
<td>number of seconds</td>
<td>WAIT_ONLINE_TIME</td>
</tr>
<tr>
<td>93</td>
<td>WAIT_PRECOPY</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>93</td>
<td>WAIT</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>93</td>
<td>WFDEF</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>93</td>
<td>XTENDBNDRY</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
</tr>
</tbody>
</table>
Configuration

ACT_SCF_GATEKEEPER

This option allows you to automatically assign a gatekeeper device from the previously installed and licensed application ResourcePak Base (EMCSCF). EMCSCF is a Mainframe Enablers component and maintains a list of available devices that can be used as gatekeepers.

For detailed information on management, refer to the ResourcePak Base for z/OS Product Guide. For specific sizing recommendations for all VMAX configurations, refer to Knowledgebase article EMC255976 available on EMC Support website.

Note: This parameter cannot be used for group processing.

Syntax

ACT_SCF_GATEKEEPER=YES|NO

Where:

YES

(Default) Assign a gatekeeper from EMCSCF for I/O operations.

NO

Use one of the participating devices in the Snap command.

For example, in this command:

SNAP VOLUME (SOURCE (UNIT(xxxx)) TARGET (UNIT(yyyy)))

If it is followed by an ACTIVATE command, then either xxxx or yyyy is assigned as the gatekeeper.

If you have five "SNAP VOLUME" statements with an ACTIVATE after them all, you have 10 potential devices to be used as the gatekeeper.

ACTIVATE_SUBTASK#

This site option sets the minimum number of VMAX systems being activated to invoke the subtasking feature. The subtasking feature assigns one subtask for each VMAX system to minimize the ECA window when multiple syscalls are required.

When the ECA window is opened, the subtasks are posted to perform the ACTIVATE at the same time. As each subtask completes, it posts to the maintask. Once all subtasks have completed, the maintask closes the ECA window, and the subtasks are terminated.

The number value may be set anywhere from 0 to 255. Zero effectively turns off the feature. When subtasking is used, there is one subtask attached for each VMAX system.

Syntax

ACTIVATE_SUBTASK#=nnn
Where:

\[nnn \]

The minimum number of VMAX systems. The default value is 3.

ADMIN

Refer to "ADMINISTRATOR(YES|NO)" on page 153.

Syntax

\[
\text{ADMIN=YES|NO}
\]

ALLOFAIL

Refer to "TOLERATEALLOCATIONFAILURE(YES|NO)" on page 204.

Syntax

\[
\text{ALLOFAIL=YES|NO}
\]

ALLOSEQ

Refer to "ALLOCATIONSEQUENCE(DATASET|NONE|SIZE)" on page 154.

Syntax

\[
\text{ALLOSEQ=DSNAME|SIZE|NONE}
\]

ALLOWUNIT

This option assigns a default unit name for the dataset location.

Syntax

\[
\text{ALLOWUNIT=SYSALLDA}
\]

Note: SYSALLDA is the default name.

ALLOWCANCELLOCKED

This option allows the execution of the CANCEL command when the device lock is held by a QCAPI instruction.

Syntax

\[
\text{ALLOWCANCELLOCKED=YES|NO}
\]

Where:

\[
\text{YES}
\]

(Default) Allow the CANCEL command even while the device lock is held by a QCAPI instruction.
Configuration

NO

Disable the CANCEL command while the device lock is held in QCAPI instruction.

ALLOW_FBA_META\(^1\)

Refer to "ALLOW_FBA_META(YES|NO)" on page 231.

Syntax

ALLOW_FBA_META=YES | NO

ALLOW_SYMDV#

This option allows you to prevent the SYMDV# parameter from being used. (In some situations where multiple users are sharing the same VMAX system, using the SYMDV# parameter may be considered a security exposure.)

Syntax

ALLOW_SYMDV#=YES | NO

Where:

YES

(Default) Allow full usage of the SYMDV# parameter.

NO

The SYMDV# parameter is not allowed.

ALUNUSED

Refer to "ALLOCATE_UNUSED_SPACE(YES|NO)" on page 153.

Syntax

ALUNUSED=YES | NO

AUTOACTIVATE

Refer to "AUTOMATIC_ACTivate(YES|NO)" on page 232.

Syntax

AUTOACTIVATE=YES | NO

AUTO_BIND_TDEV

Refer to "AUTO_BIND_thin_device(YES|NO)" on page 299.

Syntax

AUTO_BIND_TDEV=YES | NO

1. Available starting with Mainframe Enablers 8.2.
AUTOCLN

Refer to “AUTOMATIC_CLEANup(YES|NO)” on page 154.

Syntax

AUTOCLN=\textsc{YES} | \textsc{NO}

AUTODEAL

Refer to “AUTOMATIC_DEALLOC(YES|NO)” on page 154.

Syntax

AUTODEAL=\textsc{YES} | \textsc{NO}

AUTORLSE

Refer to “AUTOMATIC_RELEASE_hold(YES|NO)” on page 155.

Syntax

AUTORLSE=\textsc{YES} | \textsc{NO}

AUTO_UNBIND_TDEV

Refer to “AUTO_UNBIND_thin_device(YES|NO)” on page 309.

Syntax

AUTO_UNBIND_TDEV=\textsc{YES} | \textsc{NO}

AUTOXPND

Refer to “REUSE_AUTO_expand(YES|NO)” on page 193.

Syntax

AUTOXPND=\textsc{YES} | \textsc{NO}

BACKGRND

Refer to “BACKGROUNDCOPY(YES|NO|NOCOPYRD|VSE)” on page 155.

Syntax

BACKGRND=\textsc{YES} | \textsc{NO} | \textsc{NOCOPYRD} | \textsc{VSE}

BCVONLY

Refer to “BCVOnly(YES|NO)” on page 156.

Syntax

BCVONLY=\textsc{YES} | \textsc{NO}
Configuration

CATALOG
Refer to “CATalog(YES|NO)” on page 156.
Syntax
CATALOG=YES | NO

CHECKBCV
Refer to “CHECKBCVholdstatus(YES|NO)” on page 157.
Syntax
CHECKBCV=YES | NO

CHKONLIN
Refer to “CHECKONLINEpathstatus(YES|NO|NEVER)” on page 157.
Syntax
CHKONLIN=YES | NO | NEVER

CLEAN_R2
Refer to “AUTOMATIC_CLEANUP_R2(YES|NO)” on page 154.
Syntax
CLEAN_R2=YES | NO

CLEANDIFF
Refer to “CLEANup_DIFFerential(YES|NO)” on page 158.
Syntax
CLEANDIFF=YES | NO

CMPLT
Refer to “WAITFORCOMPLETION([YES|NO][hh:mm:ss] [.MESSaGES][.R1R2SYNC] [TIMEOUT(INformational|WARNing|ERRor)])” on page 210, the [YES|NO][hh:mm:ss]] values
Syntax
CMPLT=YES | NO | wait_seconds

CMPLTMSG
Refer to “WAITFORCOMPLETION([YES|NO][hh:mm:ss] [.MESSaGES][.R1R2SYNC] [TIMEOUT(INformational|WARNing|ERRor)])” on page 210, the MeSSaGES option
Syntax

CMPLTMSG=YES | NO

COLLAPSE

Refer to “COLLAPSE_dataset_extents(VSAM|NONVSAM|VSAM,NONVSAM)” on page 158.

Syntax

COLLAPSE=VSAM | NOVSAM

Note: This site option has no default value.

COMPACT_MISMATCH

Refer to “TOLERATE_DATACLASS_COMPACTION_MISMATCH (YES|NO)” on page 251.

Syntax

COMPACT_MISMATCH=YES | NO

CONDVOL

Refer to “CONDitionVOLUME(ALL|LaBeL|DUMP)” on page 158.

Syntax

CONDVOL=ALL | DUMP | LABEL

CONGROUP

This option enforces the use of devices that match ConGroup (Consistency Groups for z/OS) criteria. This site option is for normal TF/Snap activity.

Note: There are two site options that control TimeFinder interaction with ConGroup (Consistency Groups) and z/OS Migrator. They are CONGROUP and CONGROUP_LDMF. Although both site options have the same values, they allow you to set one value for TimeFinder-ConGroup operations and the other for operations when ConGroup was invoked by z/OS Migrator.

Syntax

CONGROUP=option

Where option is one of the following:

IGNORE

(Default) Do not use any special ConGroup processing.
NONE

The target must not be in a consistency group.

REQUIRED_ANY

If the source is in a consistency group, the target must be in a consistency group, but the target does not have to be in the same consistency group as the source.

REQUIREDSAME

If the source is in a consistency group, the target must be in the same consistency group.

REQUIRED_TARGET

The target must be in a consistency group. However, the source does not have to be in a consistency group.

WARNING

Check and issue a warning if the target is not in the same consistency group as the source.

CONGROUP_LDMF

This option enforces the use of devices that match ConGroup (Consistency Groups for z/OS) criteria. This site option is for z/OS Migrator (formerly named LDMF) activity.

Note: There are two site options that control TimeFinder interaction with ConGroup (Consistency Groups) and z/OS Migrator. They are CONGROUP and CONGROUP_LDMF. Although both site options have the same values, they allow you to set one value for TimeFinder-ConGroup operations and the other for operations when ConGroup was invoked by z/OS Migrator.

Syntax

CONGROUP_LDMF=option

Where option is one of the following:

IGNORE

(Default) Do not use any special ConGroup processing for z/OS Migrator.

NONE

The target must not be in a consistency group.

REQUIRED_ANY

If the source is in a consistency group, the target must be in a consistency group; but, the target does not have to be in the same consistency group as the source.

REQUIREDSAME

If the source is in a consistency group, the target must be in the same consistency group.
REQUIRED_TARGET

The target must be in a consistency group. However, the source does not have to be in a consistency group.

WARNING

Check and issue a warning if the target is not in the same consistency group as the source.

CONSALL

Refer to “EXTENT_ALLOCAtion(YES[,CONSOLIDATE_VOLume[,CONSOLIDATE_ALL]]|NO)” on page 170, the CONSOLIDATE_ALL option.

Syntax

CONSALL=YES | NO

CONSIST

Refer to “CONSISTENT(YES|NO)” on page 159.

Syntax

CONSIST=YES | NO

CONSVOL

Refer to “EXTENT_ALLOCAtion(YES[,CONSOLIDATE_VOLume|,CONSOLIDATE_ALL][NO]” on page 170, the CONSOLIDATE_VOLume option.

Syntax

CONSVOL=YES | NO

COPYCYL

This option allows you to specify the number of cylinders used for simultaneous I/O during a datamover cylinder copy operation.

Syntax

COPYCYLCOUNT=number

Where:

number

Simultaneous I/O operations for COPYCYL datamover. The default value is 10.

COPYFAIL

Refer to “TOLERate_COPY_Failure(YES|NO)” on page 205.
Syntax

COPYFAIL=YES|NO

COPYVOL

Refer to “COPYVolid(YES|NO)” on page 161.

Syntax

COPYVOL=YES|NO

CSMSDATA

Refer to “COPYsourceSMSclasses([DATACLASsS] [ManaGeMenTCLASs] [STORageCLASs] [ALL])” on page 160, the DATACLASs option.

Syntax

CSMSDATA=YES|NO

CSMSMGMT

Refer to “COPYsourceSMSclasses([DATACLASsS] [ManaGeMenTCLASs] [STORageCLASs] [ALL])” on page 160, the ManaGeMenTCLASs option.

Syntax

CSMSMGMT=YES|NO

CSMSSTOR

Refer to “COPYsourceSMSclasses([DATACLASsS] [ManaGeMenTCLASs] [STORageCLASs] [ALL])” on page 160, the STORageCLASs option.

Syntax

CSMSSTOR=YES|NO

DATACLAS

Refer to “DATACLASs(classname)” on page 162.

Syntax

DATACLAS=classname

DATAMOVR

Refer to “DaTaMoverNaMe(ADRDSU|COPYCYL|COPYTRK|DFDSS|DSS|FDR|FDRDSF|IDCAS|NONE)” on page 162.

Syntax

DATAMOVR=name
DS1DSCHA

Refer to “DATASET_CHANGEDIndicator(SET|RESET|LEAVE)” on page 164.

Syntax

```
DS1DSCHA=SET | RESET | LEAVE
```

DEALLOC

This option specifies the default task name for the "S DEALLOC" parameter if a device fails to go offline or online.

Syntax

```
DEALLOC=name
```

Where:

- **name**
 - The task name. The default value is DEALLOC.

 Note: If a name other than DEALLOC is used, it must be present in your STC proclib.

DEBUG_ERROR

Refer to “DEBUG(ALL|EXTRA|TRACE|DUMP|ERROR|SDUMP)” on page 235, the ERROR option.

Syntax

```
DEBUG_ERROR=YES | NO
```

DEBUG_SDUMP

Refer to “DEBUG(ALL|EXTRA|TRACE|DUMP|ERROR|SDUMP)” on page 235, the SDUMP option.

Syntax

```
DEBUG_SDUMP=YES | NO
```

DFDSS_ADMIN

Refer to “DFDSS_ADMIN(YES|NO)” on page 164.

Syntax

```
DFDSS_ADMIN=YES | NO
```
Configuration

DFDSS_CC

Refer to “DFDSS_CC(YES|NO)” on page 165.

Syntax

```
DFDSS_CC=YES | NO
```

DFDSS_OP

Refer to “DFDSSLOPTimize(n)” on page 237.

Syntax

```
DFDSS_OP=1 | 2 | 3 | 4
```

DIFF

Refer to “DIFFerential(YES|NO)” on page 165.

Syntax

```
DIFF=YES | NO
```

DIFFDSN

Refer to “DIFFERENTIAL_DATASET(YES|NO)” on page 165.

Syntax

```
DIFFDSN=YES | NO
```

DMIDCAMS

Refer to “DaTaMoverNaMe(ADRDSSU|COPYCYL|COPYTRK|DFDSS|DSS|FDR|FDRDSF|IDCAMS|NONE)” on page 162, the IDCAMS option.

Syntax

```
DMIDCAMS=YES | NO
```

EATTR

Refer to “EATTR(NO|OPT)” on page 166.

Syntax

```
EATTR=NO | OPT
```

Note: This site option has no default value.

EMCALLOC_TRACE

This option determines whether trace is on or off during a EMALLOC operation. Tracing is captured and included in the QCOUTPUT log.
EMCALLOC_TRACE=\text{YES}|\text{NO}

Where:
YES
The trace is on.
NO
\text{(Default)} The trace is off.

EMCCOPY

This option determines whether EMCOPCY microcode can be used with 5x65 Microcode if the source is not a STD or the target is not BCV.

EMCCOPY=\text{YES}|\text{NO}

Where:
YES
EMCCOPY microcode may be used.
NO
\text{(Default)} EMCCOPY microcode may not be used.

EMCDSSU_FLASH_SNAP

This option allows you to specify IBM's FLASHCOPY or EMC's SNAP as the preferred copy method on the device.

EMCDSSU_FLASH_SNAP=\text{SNAP}|\text{FLASHCOPY}

Where:
SNAP
\text{(Default)} Use the SNAP microcode.

FLASHCOPY
Use the FLASHCOPY microcode.
EMCDSSU_TARGET

This option allows you to decide whether EMCQCAPI (EMC's TF Snap interface) or ADRDSSU (IBM datamover utility program) is used for a copy/datamover operation.

Syntax

EMCDSSU_TARGET=MATCH | IGNORE

Where:

MATCH

(Default) The Symmetric source and target volume must match to invoke EMCSNAPI instead of ADRDSSU.

IGNORE

Only the source volume must be a VMAX device to invoke EMCQCAPI.

EMCONLY

Refer to “EXTALLOC_EMCIONLY(YES|NO)” on page 170.

Syntax

EMCONLY=YES | NO

EMCQCAPI_TRACE

This option allows you to turn debug tracing on or off for EMCQCAPI operations. Tracing is captured and included in the QCOUTPUT log.

Syntax

EMCQCAPI_TRACE=YES | NO

Where:

YES

Debug tracing is on.

NO

(Default) Debug tracing is off.

EMUL_TYPE1

Refer to “EMUL_TYPE(ALL|HARDLINK|SNAPVX)” on page 166.

Syntax

EMUL_TYPE=ALL | HARDLINK | SNAPVX

1. Available starting with Mainframe Enablers 8.2.
ENQFAIL

Refer to “TOLerateENQFailure(YES|NO)” on page 205.

Syntax

\[
\text{ENQFAIL} = \text{YES} | \text{NO}
\]

ENQSCOPE

Refer to “ENQSCOPE(REquest|STEP)” on page 166.

Syntax

\[
\text{ENQSCOPE} = \text{REQUEST} | \text{STEP}
\]

ENQWAIT

Refer to “ENQWAIT(YES|NO)” on page 166.

Syntax

\[
\text{ENQWAIT} = \text{YES} | \text{NO}
\]

ERRCHK

Refer to “ERROR_CHECKing(NORmal|REDUCED)” on page 167.

Syntax

\[
\text{ERRCHK} = \text{NORMAL} | \text{REDUCED}
\]

ERRDISP

Refer to “ERRor_DISPosition(DELETE|KEEP)” on page 168.

Syntax

\[
\text{ERRDISP} = \text{DELETE} | \text{KEEP}
\]

ERRREC

This option determines how error recovery is handled when a copy operation fails.

Syntax

\[
\text{ERRREC} = \text{NORMAL} | \text{ENHANCED}
\]

Where:

NORMAL

* (Default) Perform normal error recovery after a copy operation fails.

ENHANCED

Perform enhanced error recovery when a copy operation fails. Used in conjunction with ERROR_CHECKING in order to recover from an error that would normally be caught before the copy operation is processed.
Configuration

ESNP119

Refer to “ESNP119(WARNING|ERROR)” on page 238.

Syntax

```
ESNP119=WARNING | ERROR
```

ESNP220

Refer to “ESNP220(ERROR|WARNING)” on page 168.

Syntax

```
ESNP220=WARNING | ERROR
```

ESNP231E

This is a site-options parameter that has no GLOBAL equivalent. Normally, when the ESNP231E message is issued (dataset not found) during the parse phase, execution of all statements is bypassed.

Syntax

```
ESNP231E=YES | NO
```

Where:

YES

Change the severity of message ESNP231E to ESNP231W and allow the execution of other statements to occur.

NO

(Default) If ESNP231E is issued during the parse phase, skip the execution phase.

EXAMINE

Refer to “EXAMINE(YES|NO)” on page 169.

Syntax

```
EXAMINE=YES | NO
```

EXPATHGRP

Refer to “EXclude_PathGroupID(pathlist)” on page 169.

Syntax

```
EXPATHGRP=pathlist
```

EXPLAIN_VOL_SEL

Refer to “EXplain(VOLUME_SELection(YES|NO))” on page 169.
EXPLAIN_VOL_SEL

Syntax

\[\text{EXPLAIN_VOL_SEL} = \text{YES} | \text{NO} \]

EXTADDNEW

Refer to \[\text{EXTENT_EXPAND(YES|NO,[ADDNEW(YES|NO)][,SAMEVOL][,NEWVOL])}\] on page 171, the ADDNEW option.

Syntax

\[\text{EXTADDNEW} = \text{YES} | \text{NO} \]

Note: This site option has no default value.

EXTALLOC

This option determines if new target datasets are defined through extent allocation or by another means.

Syntax

\[\text{EXTALLOC} = \text{YES} | \text{NO} | \text{OK} \]

Note: This site option has no default value.

Where:

YES

Always use extent allocation to create new target datasets.

NO

Never use extent allocation.

OK

Use IDCAMS/SVC99 or Extent allocation to create new target datasets.

EXTENDED_MISMATCH

Refer to \[\text{TOLERATE_DATACLASS_EXTENDED_MISMATCH(YES|NO)}\] on page 252.

Syntax

\[\text{EXTENDED_MISMATCH} = \text{YES} | \text{NO} \]
Configuration

EXTXPAND

Refer to “EXTENT_EXPAND(YES|NO,[ADDNEW(YES|NO)][SAMEVOL][NEWVOL])” on page 171.

Syntax

```plaintext
EXTXPAND=YES | NO
```

Note: This site option has no default value.

EXTXPVOL

Refer to “EXTENT_EXPAND(YES|NO,[ADDNEW(YES|NO)][SAMEVOL][NEWVOL])” on page 171, the SAMEVOL/NEWVOL options.

Syntax

```plaintext
EXTXPVOL=YES | NO
```

Note: This site option has no default value.

FBA

Refer to “FBA(EXCLUDE|INCLUDE)” on page 171.

Syntax

```plaintext
FBA=INCLUDE | EXCLUDE
```

FLASH_SNAP

Refer to “FLASH_SNAP(FLASHCOPY|SNAP)” on page 171.

Syntax

```plaintext
FLASH_SNAP=FLASHCOPY | SNAP
```

FORCE

Refer to “FORCE(YES|NO)” on page 172.

Syntax

```plaintext
FORCE=YES | NO
```

FORCECMP

Refer to “FORCE_COMPLETION(YES|NO)” on page 172.

Syntax

```plaintext
FORCECMP=YES | NO
```
FREESPC

Refer to “FREESPAC(YES|NO)” on page 172.

Syntax

FREESPC=YES | NO

FULL

This option determines if SNAP is operational on a full device or on a defined extent device.

Syntax

FULL=YES | NO

Where:

YES

Full device microcode SNAP.

NO

(Default) Extent device microcode SNAP.

GROUP_DEVICE_READY_STATE

Refer to “GROUP_DEVICE_ready_state(AUTO|NEVER)” on page 240.

Syntax

GROUP_DEVICE_READY_STATE=AUTO | NEVER

GROUP_DSNAME

Refer to “GROUP_DATaset_name('dataset_name')” on page 240.

Syntax

GROUP_DSNAME=dataset_name

GROUP_EMCQCAPI_VERIFY

Refer to “GROUP_EMCQCAPI_VERIFY(YES|NO)” on page 241.

Syntax

GROUP_EMCQCAPI_VERIFY=YES | NO
GROUP_HISTORY_LIMIT

This option sets a limit for the number of history records that are kept for a group.

Syntax

GROUP_HISTORY_LIMIT=number

Where:

number

The number of history records to keep. The default value is 100.

HOSTCOPY

Refer to “HOSTCOPYMODE(SHARED|EXCLUSIVE|NONE)” on page 173.

Syntax

HOSTCOPY=OLD|SHARED|NONE

IGNORERDF

This option allows you to ignore any R1/R2 relationships in a SNAP operation.

Syntax

IGNORERDF=YES|NO

Where:

YES

Ignore the R1/R2 relationship.

NO

(Default) Take advantage of the R1/R2 relationship.

INVALIDATE_PDSE

Refer to “INVALIDATE_PDSE_buffers(YES|NO)” on page 174.

Syntax

INVALIDATE_PDSE=YES|NO

MAXDSSU

Refer to “MAXIMUM_ADRDSSU_address_spaces(number)” on page 242.

Syntax

MAXDSSU=number_of_asids

Note: The default value is 10.
MAXTASK2

Refer to “MAXIMUM_SUBTASKS(number1,number2)” on page 242, the number1 option.

Syntax

MAXTASK2=number_of_tasks

Note: The default value is 999.

MAXTASKR

Refer to “MAXIMUM_SUBTASKS(number1,number2)” on page 242, the number2 option.

Syntax

MAXTASKR=number_of_tasks

Note: The default value is 99.

MESSAGE

Refer to “MESSages(DISplay|PROMp|NONE|DETAIL)” on page 176.

Syntax

MESSAGE=DISPLAY|PROMPT|NONE|DETAIL

MGMTCLAS

Refer to “ManaGeMenTCLASs(classname)” on page 176.

Syntax

MGMTCLAS=classname

MIGRATRC

Refer to “MiGrate([PURge(YES|NO)] [RECall(YES|NO)])” on page 177.

Syntax

MIGRATRC=4|8

MINSNAP

This option allows you to decide on the minimum number of tracks to be SNAPPED before microcode is used.

Syntax

MINSNAP=number
Configuration

Where:

number

Sets the minimum number of tracks. If the number of tracks is less than this number, then a physical copy of the tracks occurs instead of using microcode to complete the SNAP.

The default value is 5.

MLQ

Refer to “MULTI_LINE_query(YES|NO)” on page 181.

Syntax

MLQ=YES|NO

MRGEXIST

This option allows you to consolidate, or not consolidate, extents on a volume.

Syntax

MRGEXIST=YES|NO

Where:

YES

(Defa ult) Consolidate extents on a volume.

NO

Do not consolidate extents on a volume.

MULTI_VIRTUAL

Refer to “MULTI_VIRTual(YES|NO)” on page 182.

Syntax

MULTI_VIRTUAL=YES|NO

NTFYGRP

Refer to “NOTIFYwhencomplete([(GROUP(name)][DATASET|JOB|STEP|SNAP)])” on page 183, the GROUP option.

Syntax

NTFYGRP=groupname

NTFYLVL

This option allows you to request ResourcePak Base (EMCSFC) to issue a WTO when the SNAP operation is complete.

No notification is performed by default.
Refer to “`NOTIFYwhencomplete[[GROUP(name)][DATASET|JOB|STEP|SNAP]]`” on page 183 for additional information.

Syntax

`NTFYLVL=DATASET | JOB | SNAP | STEP`

Where:

DATASET

EMCSCF issues WTO for each dataset or volume when SNAP is completed.

JOB

EMCSCF issues WTO for all datasets or volumes in the JOB when SNAP is completed.

SNAP

EMCSCF issues WTO for all datasets or volumes in a single SNAP statement when it is completed.

STEP

EMCSCF issues WTO for all datasets or volumes in the JOB STEP when SNAP is completed.

OFFLINE

This option determines whether you can allow offline devices to participate in a SNAP VOLUME operation.

Syntax

`OFFLINE=YES | NO`

Where:

YES

(Default) SNAP VOLUME operation may specify offline devices.

NO

SNAP VOLUME operation may not specify any offline devices.

OPEN_SOURCE_RC

This option lists the message severity (0, 4, or 8) and code type (informational, warning, or error) if the source dataset is open.

Syntax

`OPEN_SOURCE_RC=0 | 4 | 8`

Where:

0

Message severity = 0, message code = I (Informational).

4

(Default) Message severity = 4, message code =W (Warning).
8

Message severity = 8, message code = E (Error).

OPT_CKD

This option allows you to include or exclude CKD devices in the outcome report of a QUERY.

Syntax

OPT_CKD=INCLUDE | EXCLUDE

Where:

INCLUDE

(Default) Include CKD devices in the query report.

EXCLUDE

Do not include CKD devices in the query report.

OPT_FBA

This option allows you to include or exclude FBA devices in the outcome report of a QUERY.

Syntax

OPT_FBA=INCLUDE | EXCLUDE

Where:

INCLUDE

(Default) Include FBA devices in the query report.

EXCLUDE

Do not include FBA devices in the query report.

OPT_NOTREADY

This option allows you to include or exclude NOTREADY devices in the outcome report of a QUERY.

Syntax

OPT_NOTREADY=INCLUDE | EXCLUDE

Where:

INCLUDE

(Default) Include NOTREADY devices in the query report.

EXCLUDE

Do not include NOTREADY devices in the query report.
OPT_RAID

This option allows you to include or exclude all or specific RAID devices in the outcome report of a QUERY.

Syntax

```
OPT_RAID=ALL|N|S|1|5|6|10
```

Where:

- **ALL** *(Default)* Include all RAID devices.
- **N** Do not include any RAID devices.
- **S** Include RAID 'S' devices.
- **1** Include RAID '1' devices.
- **5** Include RAID '5' devices.
- **6** Include RAID '6' devices.
- **10** Include RAID '10' devices.

OPT_READY

This option allows you to include or exclude READY devices in the outcome report of a QUERY.

Syntax

```
OPT_READY=INCLUDE|EXCLUDE
```

Where:

- **INCLUDE** *(Default)* Include READY devices in the query report.
- **EXCLUDE** Do not include READY devices in the query report.

OPT_SAVEDEV

This option allows you to include or exclude SAVEDEV devices in the outcome report of a QUERY.
Configuration

Syntax

QUERYVOL (SAVEDEV) = INCLUDE | EXCLUDE

Where:

INCLUDE

(Default) Include SAVEDEV devices in the query report.

EXCLUDE

Do not include SAVEDEV devices in the query report.

OPT_TDEV

This option determines whether thin devices are to be included in reports generated by the QUERY VOLUME command.

Syntax

OPT_TDEV=EXCLUDE | INCLUDE

Where:

EXCLUDE

Exclude thin devices on QUERY VOLUME reports.

INCLUDE

(Default) Include thin devices on QUERY VOLUME reports.

OPT_THINPOOL

Refer to “THINPOOL(EXCLUDE|INCLUDE)” on page 204.

Syntax

OPT_THINPOOL=INCLUDE | EXCLUDE

OPT_VDEV

This option allows you to include or exclude VDEV devices in the outcome report of a QUERY.

Syntax

QUERYVOL (VDEV) = INCLUDE | EXCLUDE

Where:

INCLUDE

(Default) Include VDEV devices in the query report.

EXCLUDE

Do not include VDEV devices in the query report.

PARALLEL

Refer to “PARallel(YES|NO)” on page 245.
Syntax

PARALLEL=YES | NO

PARALLEL_CLONE

Refer to “PARALLEL_CLONE(YES|NO|PREFerred|REQuired)” on page 184.

Syntax

PARALLEL_CLONE=YES | NO | PREF | REQ

Note: This site option has no default value.

PERSIST

Refer to “PERSISTent(YES|NO)” on page 186.

Syntax

PERSIST=YES | NO

POOL

Refer to “POOL(poolname)” on page 186.

Syntax

POOL=poolname

POOLUSE

Refer to “CHecK_POOL_usable(YES|NO)” on page 157.

Syntax

POOLUSE=YES | NO

PRECOPI

Refer to “PRECOPI(YES|NO)” on page 187.

Syntax

PRECOPI=YES | NO

PREPARE

Refer to “PREPARE_FOR_SNAP(YES|NO)” on page 246.

Syntax

PREPARE=YES | NO
PROCESS_COPYCYL_DATAMOVER

This option controls whether an internal datamover may be used when a snap target device is a z/OS Migrator source device.

Syntax

```
PROCESS_COPYCYL_DATAMOVER=YES|NO
```

Where:

- **YES**
 - Instead of failing the request, use the internal datamover to copy the track images.

- **NO**
 - *(Default)* Fail the request when the snap target device is a z/OS Migrator source device.

PURGE

Refer to “MiGrate([PURge(YES|NO)] [RECall(YES|NO)])” on page 177, the PURGE option.

Syntax

```
PURGE=YES|NO
```

QCAPIMSG

This option allows you to add the job name to each message generated by EMCQCAPI.

Syntax

```
QCAPIMSG=YES|NO
```

Where:

- **YES**
 - *(Default)* Add the job name prefix to each message.

- **NO**
 - Do not add the job name prefix to each message.

R1FULLCOPY

Refer to “R1FULLCOPYonly(YES|NO)” on page 187.

Syntax

```
R1FULLCOPY=YES|NO
```
R1R2SYNC

Refer to “WAITFORCOMPLETION([YES|NO] hh:mm:ss] [,MeSaGeS] [,R1R2SYNC] [TIMEOUT(INformational|WARNing|ERRor)])” on page 210, the R1R2SYNC option.

Syntax

R1R2SYNC=YES|NO

RECALC_FREE

Refer to “RECALCULATE_FREESPACE(YES|NO)” on page 189.

Syntax

RECALC_FREE=YES|NO

RECALL

Refer to “MIGrate([PURge(YES|NO)] [RECall(YES|NO)])” on page 177, the RECall option.

Syntax

RECALL=YES|NO

REFVTOC

Refer to “REFVTOC(YES|NO)” on page 189.

Syntax

REFVTOC=YES|NO

REMOVE_REMOTE

Refer to “REMOVE_REMOTE_extent_sessions(YES|NO)” on page 191.

Syntax

REMOVE_REMOTE=YES|NO

REPLACE

Refer to “REPLace(YES|NO)” on page 192.

Syntax

REPLACE=YES|NO

RESERVE

Refer to “RESERVE(YES|NO)” on page 248.

Syntax

RESERVE=YES|NO
RESERVE_SERIALIZATION

This option allows you to specify the enqueue area when serializing devices for syscalls.

Syntax

```
RESERVE_SERIALIZATION=YES|NO
```

Where:

YES

When serializing devices for syscalls, use a reserve instead of a system enqueue.

NO

(Default) Only use the system enqueue and not a reserve for serialization.

RETAIN_SOURCE_REFDT

This option allows you to keep the original date of the source dataset or reset to the current date.

Syntax

```
RETAIN_SOURCE_REFDT=YES|NO
```

Where:

YES

Retain the original source reference date of the dataset.

NO

(Default) Set the reference date of the dataset to the current date.

RETRY1731

This option allows you to set the retry logic when a 1731 and 1767 type of error is encountered.

Syntax

```
RETRY1731=YES|NO|minutes
```

Where:

YES

Issue a retry message to the console and continue to retry.

NO

(Default) Accept a failure with the error.

`minutes`

Issue a retry message to the console and continue to retry for ## of minutes.
RETRY1756

This options allows you to set the retry logic when a 1756 type of error is encountered.

Syntax

```plaintext
RETRY1756=YES|NO
```

Where:

YES

(Default) Attempt to release the processing hold status and retry the TimeFinder command.

NO

Fail and generate an error.

REUSE

Refer to “REUSE(YES|NO[,WAIT])” on page 193.

Syntax

```
REUSE=YES|NO
```

REUSFAIL

Refer to “TOLERATE_REUS_e_Failure(YES|NO)” on page 204.

Syntax

```
REUSFAIL=YES|NO
```

SAMEONLY

There are several conditions which must be met for SAMEONLY to take effect:

- You must specify SAMEONLY(YES) in the site options table.
- You must select EXTENT_ALLOCATION for allocation. SVC99 and IDCAMS allocation ignore the SAMEONLY site option.
- You must specify DATAMOVERNAME(NONE). If a datamover is specified, then SAMEONLY is ignored.

Syntax

```
SAMEONLY=YES|NO
```

SAVEFULL

Refer to “WHEN_SAVEDEV_FULL(READY|NOTREADY)” on page 213.

Syntax

```
SAVEFULL=READY|NOTREADY
```
Configuration

SCRATCH

With this option, you can choose to delete the dataset when a STOP SNAP TO DATASET command is issued.

Syntax

`SCRATCH=YES|NO`

Where:

YES

Delete the dataset after issuing the STOP SNAP TO DATASET command.

NO

(Default) Do not delete the dataset after issuing a STOP SNAP TO DATASET command.

SESSDETL

Refer to “SESSION_LIST(Yes|No[,DETAIL|NODETAIL|DIFFerential])” on page 194, the DETail option.

Syntax

`SESSDETL=DETAIL|NODETAIL`

SESSDIFF

Refer to “SESSION_LIST(Yes|No[,DETAIL|NODETAIL|DIFFerential])” on page 194, the DIFFerential option.

Syntax

`SESSDIFF=DIF|NODIFF`

SESSLIST

Refer to “SESSION_LIST(Yes|No[,DETAIL|NODETAIL|DIFFerential])” on page 194.

Syntax

`SESSLIST=YES|NO`

SMFRID

Enables SMF records for each command executed. The values for the record ID may be 0, meaning omit this feature, or a valid integer between 128 and 255, inclusive. Since the records are written for EMCSNAP commands, if the command is executed on a non-EMC device, it is still recorded.

Syntax

`SMFRID=number`
Where:

0

(Default) Do not enable recording of SMF records.

128–255

Values for the SMF record ID. (IBM reserves the values 1-127.)

SMSKSDS

With this option you can force the key sequential dataset (KSDS) components to be stored on separate volumes. The INDEX and DATA components is separated.

Syntax

```plaintext
SMSKSDS=YES | NO
```

Where:

YES

Force the KSDS components to be stored on separate volumes.

NO

(Default) Allow SMS to determine how the KSDS is stored.

SMSPASSVOL

This option allows you to pass user suggested volumes to SMS for allocation.

Syntax

```plaintext
SMSPASSVOL=YES | NO
```

Where:

YES

Pass suggested volumes to SMS for allocation

NO

(Default) Let SMS determine the volume candidates.

SNAPSHOT_LIST

Refer to “SNAPSHOT_LIST(ALL|LINKED|NOT_LINKED|SNAPSHOT)” on page 196.

Syntax

```plaintext
SNAPSHOT_LIST=ALL | LINKED | NOT_LINKED | SNAPSHOT
```

SNAPSHOT_NAME

Refer to “NAME(snapshot_name[%date[4|6|8]%][%time[4|6]%])” on page 182.

1. Available starting with Mainframe Enablers 8.2.
SNAPSHOT_NAME

Syntax: \[SNAPSHOT_NAME=\text{snapshot_name}\]

SNUNUSED

Refer to “SNAP_UNUSED_SPACE(YES|NO)” on page 196.

Syntax: \[SNUNUSED=\text{YES} \mid \text{NO}\]

SOFTLINK

Refer to “SOFTlink(YES|NO)” on page 196.

Syntax: \[SOFTLINK=\text{YES} \mid \text{NO}\]

SRDFAR1

Refer to “SRDFA_R1_target(Yes|No|DATAMOVER_NaMe|\text{PHYsical}|INFormationa}l)” on page 199.

Syntax: \[SRDFAR1=\text{YES} \mid \text{NO} \mid \text{PHYSICAL} \mid \text{DATAMOVER_NAME}\]

SRDFAR2

Refer to “SRDFA_R2_sync(WARNING|R1R2SYNC|DATAMOVER)” on page 200.

Syntax: \[SRDFAR2=\text{WARNING} \mid \text{DATAMOVER} \mid \text{R1R2SYNC}\]

SRDFAR2_PRECOPY

This options allows you to determine if the SRDFA/R2 precopy operation can be overridden, allowing the SNAP to occur.

Syntax: \[SRDFAR2_PRECOPY=\text{YES} \mid \text{NO}\]

Where:

YES

(Defa ult) Allow the SRDFA/R2 precopy wait time to be overridden allowing the SNAP to occur.

NO

Do not allow the SNAP unless the precopy has completed. Wait if necessary.
SRDFA_RETRY

Refer to “SRDFACONSISTENT_RETRY(Yes|No|nn)” on page 199.

Syntax

SRDFA_RETRY=YES|NO|nn

Note: The default value is 10.

SRDFSR1

Refer to “SRDFS_R1_target(Yes|No|DATAMOVERNaMe|PHysical|INFormational)” on page 201.

Syntax

SRDFSR1=YES|NO|PHYSICAL|DATAMOVERNAME

STORCLAS

Refer to “STORageCLASs(classname)” on page 201.

Syntax

STORCLAS=classname

STORED_LOG_SIZE

Refer to “STORED_LOG_SIZE(size)” on page 250.

Syntax

STORED_LOG_SIZE=number_of_lines

SUBTNAME

Establish a subtask name or accept the default of EMCSNAPI.

Syntax

SUBTNAME=subtask_name

Where:

subtask_name

The name of the subtask. The default value is EMCSNAPI.

SYSCALL_RETRY

Specifies logic for handling generic syscalls.

Syntax

SYSCALL_RETRY=count
Where:

\textit{count}

Issue a retry message to the console, but only for this number of attempts. The default value is 1600.

TARGET_WAIT

Refer to “TARGET_ENQ_dataset_wait(YES\|NO)\text{hh:mm:ss)” on page 288.

Syntax

\texttt{TARGET_WAIT=\textsc{YES}\textsc{\|NO}}

TDEV_RECLAIM

Refer to “TDEV_RECLAIM(YES\|NO)” on page 203.

Syntax

\texttt{TDEV_RECLAIM=\textsc{YES}\textsc{\|NO}}

TERMSESS

Refer to “TERMINATE_SESSION_when_complete(YES\|NO)” on page 203.

Syntax

\texttt{TERMSESS=\textsc{YES}\textsc{\|NO}}

TIMEOUT

Refer to “TIMEOUT\texttt{(nnn)}” on page 203.

Syntax

\texttt{TIMEOUT=number_of_seconds}

\textbf{Note:} The default value is 0.

TRKALIGN

Specifies whether or not to match the source dataset track alignment.

Syntax

\texttt{TRKALIGN=\textsc{YES}\textsc{\|NO}}

Where:

\textbf{YES}

Match source dataset track alignment.
NO

(Default) Do not match source track alignment.

TRUNC

Refer to “TOLerateTRUNCation(YES|NO)” on page 206.

Syntax

TRUNC=YES | NO

VALIDATE

This option allows you to read and compare all the source and target tracks after a SNAP is executed.

Syntax

VALIDATE=YES | NO

Where:

YES

Read and compare all source and target tracks.

NO

(Default) Do not read and compare source and target tracks.

VALFIRST

This option allows you to read and compare the first track numbers from each extent after the SNAP is started. This overrides the VALIDATE=YES to limit it to just the first number of tracks.

Syntax

VALFIRST=number_of_tracks

Where:

number_of_tracks

Number of tracks to compare. The default value is 0.

VALLAST

This option allows you to read and compare the last track numbers from each extent after the SNAP is started. This overrides the VALIDATE=YES to limit it to just the last number of tracks.

Syntax

VALLAST=number_of_tracks
Configuration

Where:

\[number_of_tracks \]

Number of tracks to compare. The default value is 0.

VALRANGE_LOCAL

Refer to “VALIDATE_RANGE({LOCAL|REMOTE}({AUTO|IGNORE}))” on page 253.

Syntax

\[
\text{VALRANGE_LOCAL=} \text{AUTO} | \text{IGNORE} | \text{FORCE}
\]

VALRANGE_REMOTE

Refer to “VALIDATE_RANGE({LOCAL|REMOTE}({AUTO|IGNORE}))” on page 253.

Syntax

\[
\text{VALRANGE_REMOTE=} \text{AUTO} | \text{IGNORE} | \text{FORCE}
\]

VALSMS

This option allows you to validate SMS class names when supplied by Parser or API.

Syntax

\[
\text{VALSMS=} \text{YES} | \text{NO}
\]

Where:

YES

(Default) Validate class names during parsing.

NO

Do not validate SMS class names during parsing.

VARYOFF

Refer to “VARY_OFFline(AUTO|NEVER)” on page 207.

Syntax

\[
\text{VARYOFF=} \text{AUTO} | \text{NEVER}
\]

VARYON

Refer to “VARY_ONline(AUTO|YES|NO)” on page 207.

Syntax

\[
\text{VARYON=} \text{AUTO} | \text{NEVER}
\]
VCLOSE

Refer to “VCLOSE(YES|NO)” on page 208.

Syntax

VCLOSE=YES | NO

VDEV_REUSE

This option permits you to allow, or prevent, a VDEV from being reused unless a STOP SNAP has been done to the device.

By default, VDEV_REUSE=YES allows multiple, separate SNAP VOLUME to VDEV requests to be issued with the same VDEV specified. TF/Snap automatically detects and reuses the VDEV by internally issuing a STOP SNAP to the VDEV and then letting the SNAP VOLUME continue.

With VDEV_REUSE=NO, TF/Snap fails the new SNAP VOLUME request when it detects that the VDEV is already being used. This forces you to manually issue a STOP SNAP to free the virtual device. After the virtual device is freed, a SNAP VOLUME request is successful.

Syntax

VDEV_REUSE=____ | NO

Where:

YES

(Defa ult) Allow multiple, separate SNAP VOLUME to VDEV requests to be issued with the same VDEV specified. TimeFinder automatically detects and reuses the VDEV by internally issuing a STOP SNAP to the VDEV and then letting the SNAP VOLUME continue.

NO

Do not allow multiple, separate SNAP VOLUME to VDEV requests to be issued with the same VDEV specified. Instead, a STOP SNAP request must be issued to release the VDEV device before another SNAP VOLUME is used with the device.

VDEVWAIT

Refer to “VDEVWAIT(YES|NO)” on page 209.

Syntax

VDEVWAIT=YES | NO

VERIFY_OPEN_SOURCE

Refer to “VERIFY_OPEN_SOURCE(YES|NO)” on page 209.

Syntax

VERIFY_OPEN_SOURCE=YES | NO
VERIFICATION

Refer to “VERIFY(YES|NO|NEVER)” on page 209.

Syntax

VERIFY=YES | NO | NEVER

VSAMENQ

Refer to “VSaMENQMODE(SHAREd|EXClusive|NONE)” on page 210.

Syntax

VSAMENQ=OLD | SHARED | NONE

VSAMFAIL

Refer to “TOLerateVSAMENQFailure(YES|NO)” on page 206.

Syntax

VSAMFAIL=YES | NO

VTOCIX

Refer to “BUILD_VTOCIX(YES|NO)” on page 156.

Syntax

VTOCIX=YES | NO

WAIT_OFFLINE_LIMIT

This option allows you to governs the time to wait for a device to go offline when a VARY OFFLINE command has been issued to a device.

Syntax

WAIT_OFFLINE_LIMIT=time

Where:

time

Number of minutes to wait (0 to infinity). The default value is 5.

WAIT_ONLINE_LIMIT

This option allows you to governs the time to wait for a device to come online when a VARY OFFLINE command has been issued to a device.

Syntax

WAIT_ONLINE_LIMIT=time
Where:

time
 Number of minutes to wait (0 to infinity). The default value is 5.

WAIT_PRECOPY

Refer to “WAIT_FOR_PRECOPY_PASS1(YES|NO)” on page 212.

Syntax

\[\text{WAIT_PRECOPY=\text{YES} | \text{NO}} \]

WAIT

Refer to “WAITforsession(YES|NO|hh:mm:ss)” on page 212.

Syntax

\[\text{WAIT=\text{YES} | \text{NO} | \text{seconds}} \]

WFDEF

Refer to “WAIT_FOR_Definition(YES|NO)” on page 211.

Syntax

\[\text{WFDEF=\text{YES} | \text{NO}} \]

XTNTBNDRY

This options allows you to determine the handling of extent boundaries.

Syntax

\[\text{XTNTBNDRY=\text{YES} | \text{NO}} \]

Where:

YES
 Target extent matches source extent and source extent boundary.

NO
 (Default) Do not worry about extent boundaries.
CHAPTER 4
Operations and Examples

This chapter describes traditional TimeFinder operations and examples.

- Specifying devices ... 96
- Defining a group of statements ... 97
- Performing a SNAP VOLUME copy .. 101
- Performing a SNAP VOLUME using virtual devices ... 111
- Performing Cascaded clone operations ... 114
- Influencing SMS volume selection .. 117
- Selecting volume processing by phases .. 119
- Performing a SNAP DATASET copy ... 122
- Performing a Parallel Snap .. 142
- Performing queries ... 145
- Cleaning up volumes .. 146
- Using SRDF/A R2 Wait for Precopy .. 147

IMPORTANT

Traditional TimeFinder operations refers to the commands, syntax, and processes that require a physical target device to be specified in the command to execute a full volume copy. For information on SnapVX targetless snapshots, refer to the TimeFinder SnapVX and zDP Product Guide.
Specifying devices

SNAP VOLUME and various other TimeFinder commands have a series of keywords that you can use to identify the device on which you want the command to operate. The usual syntax (employed in Chapter 5, “Command Reference”) is as follows:

\[\text{VOLUME(} \text{volser}) \text{ | UNIT(} \text{cuu}) \text{ | SYMDV\#(} \text{symdev\#}) \text{ | GROUP(} \text{grpname[, grpname...]} \text{)} \]

- VOLUME(\text{volser}) and UNIT(\text{cuu}) identify a device that is known to z/OS. When you query z/OS about the device or devices, TimeFinder returns both the device and what VMAX system it is in.

 \textbf{Note:} When predefined and stored in a group, the VOLUME subparameter can be used within the SOURCE parameter, but cannot be used within the TARGET parameter. The UNIT or SYMDV\# subparameter must be used within the TARGET parameter to identify a device when predefined and stored in a group.

- SYMDV\#(\text{symdev\#}) identifies a VMAX device number in a VMAX system. But, it does not identify which VMAX system.

 For that reason, most commands on which you need to specify a particular device require you to use the LOCAL, the REMOTE, or the CONTROLLER parameter to specify the gatekeeper for the SYMDV\# device.

 The LOCAL parameter identifies a gatekeeper in the local VMAX system that allows access to devices in that local VMAX system. The REMOTE parameter identifies a gatekeeper in the local VMAX system that allows access to devices in a remote VMAX system.

 The CONTROLLER parameter specifies the VMAX system to be queried. You can use either the 5 or 12 digit serial number of the VMAX system or a logical VMAX system name if you previously defined that name to ResourcePak Base.

 The CONTROLLER parameter is available as an optional subparameter of the LOCAL and REMOTE parameters. It is also available as a separate parameter. If you use the separate CONTROLLER parameter, do not include the LOCAL and REMOTE parameters.

 For most commands, you only use the LOCAL, REMOTE, and CONTROLLER parameters when you use the SYMDV\# parameter. This is because SYMDV\# identifies only a device, not its location.

 The QUERY commands are different. Because the QUERY commands use a VMAX system as a target, you can use the LOCAL, REMOTE, and CONTROLLER parameters with them without a SYMDV\# parameter being present. The various filtering parameters each QUERY command can take let you isolate the particular devices on which you want to report.

- GROUP(\text{grpname[, grpname,...]}) identifies one or more groups of TimeFinder statements. The commands and parameters you include in these groups identify a particular device or devices in a particular VMAX system.

 \textbf{Note:} “Defining a group of statements” on page 97 provides more information.
Defining a group of statements

TimeFinder allows you to define a group of TF SNAP VOLUME or GLOBAL statements, store them in a group dataset, and then use that group as an argument to ACTIVATE, CLEANUP, CONFIG, SNAP VOLUME, and STOP SNAP TO VOLUME commands.

The steps in defining and using groups are as follows:

1. Specifying the group dataset to store the groups
2. Defining the groups
3. Using the groups as arguments to TimeFinder commands
4. Selecting processing by phases (if applicable)

Specifying the group dataset

Before you define groups, you must define the group dataset. The group dataset can be a partitioned dataset (PDS) or partitioned dataset extended (PDS/E).

The group dataset must have the following characteristics:

- RECFM=FB
- LRECL=80
- BLKSIZE=8880 (Or any valid multiple of 80)

The amount of space needed is entirely dependent on expected usage. EMC does not recommend secondary space.

Two members are maintained for each group:

- The first member to hold the syntax
- The second member to hold the status and history

You should plan to use one directory block for every three groups. If the dataset fills, simply allocate a new dataset and copy all of the members from the old dataset into the new dataset.

You can specify the group dataset in three ways:

- Use the GROUP_DSNAMES (dataset name) parameter of the GLOBAL command.

 Note: “GROUP_DATset_name('dataset_name')” on page 240 provides more information about this parameter.

- Use the DD statement //EMCGROUP DD to point to the group dataset.

 Note: You can concatenate multiple datasets together with EMCGROUP.

- Define GROUP_DSNAMES in the site options table EMCSNAPO.
The format is EMCSNAPO GROUP_DSNAME(dataset name, dataset name,...) You can specify an unlimited number of dataset names. When allocated, they are concatenated in order.

Note: Table 2 on page 47 describes the site options table, EMCSNAPO.

You can override any group dataset specification in the site options table by using a different dataset specification in the GROUP_DSNAME(dataset name) parameter of the GLOBAL command.

Note: If you use a PDS, you are responsible for regularly compressing the dataset. If you use a PDSE, compressing is not necessary.

Each group stores two members into the group dataset. One contains the syntax or source statements. The other contains the group description and history.

Of the two members, one is all uppercase letters and the other is lowercase letters. The uppercase member contains the group history. The lowercase member contains the group syntax.

Each member has a cyclic redundancy check (CRC) calculated. If the CRC doesn’t match, the group is unusable. This process prevents the members from being directly changed without the status also being updated.

Group dataset allocation example

The following example allocates a group dataset.

```
//IEFBR14 EXEC PGM=IEFBR14
//GROUP DD DSN=group.dataset.name,DISP=(NEW,CATLG),
//UNIT=3390,SPACE=(CYL,(3,3,90)),VOL=SER=volser,
//DCB=(RECFM=FB,LRECL=80,BLKSIZE=0)
```

Defining the groups

You now create groups using the GROUP commands. There are four commands for group processing:

- DEFINE GROUP
- END GROUP
- DELETE GROUP
- QUERY GROUP

Note: Do not edit either member of the PDS to change a group definition.

You use DEFINE GROUP to create or change a group definition. TimeFinder stores each group you define in a member in your group dataset under the group name you give it. TimeFinder performs simple syntax validation of the statements in the group when it adds the group to the group dataset library.
Operations and Examples

You cannot edit a group you have already created. Instead, issue the DEFINE GROUP command (with the REPLACE parameter) to re-specify all the commands within the group.

All commands that follow (until an END GROUP command is encountered) are considered to be part of the group definition. Only GLOBAL and SNAP VOLUME commands may be part of the group definition. The END GROUP command ends the group definition, and may be followed by other statements, including statements that refer to the group, or statements defining other groups.

The DELETE GROUP allows you to delete a group from the group dataset. The QUERY GROUP command allows you to display information about a group.

Note: You cannot reference a group that is defined or deleted in the current job step because a group reference is expanded at parse time, but the DEFINE GROUP (or DELETE GROUP) is performed at processing time. This means that the group reference gets the contents of the group at the beginning of the step, before the DEFINE GROUP or DELETE GROUP is processed. Separate the DEFINE GROUP or DELETE GROUP into a different job step. This ensures that the desired group contents are used by the group reference.

Referencing other groups from within a group

You can use `%INCLUDE` in a group definition to reference other groups in that definition. The `%INCLUDE` causes the indicated group to be brought in to replace the actual `%INCLUDE` statement. Nesting is allowed, but recursion is not.

The syntax for `%INCLUDE` is:

```
%INCLUDE GROUP(grpname)
```

Where:

`grpname`

The name of the group.

The group status is handled the same way as when the group is coded on the user commands. This means that all of the group initial statuses must be correct and all of the group statuses are updated after the contents are executed.

Note: You cannot reference a group that is defined or deleted in the current job step because a group reference is expanded at parse time, but the DEFINE GROUP (or DELETE GROUP) is performed at processing time. This means that the group reference gets the contents of the group at the beginning of the step, before the DEFINE GROUP or DELETE GROUP is processed. Separate the DEFINE GROUP or DELETE GROUP into a different job step. This ensures that the desired group contents are used by the group reference.

The following example shows how you can nest multiple group definitions:

```
DEFINE GROUP A
  %INCLUDE GROUP(B)
  %INCLUDE GROUP(C)
```

Defining a group of statements
Using groups as arguments to TimeFinder commands

After you define such a group, you can handle the devices as a group in an argument of the GROUP parameter with the ACTIVATE, CLEANUP, CONFIG, SNAP VOLUME, and STOP SNAP TO VOLUME commands. The GROUP parameter allows you to specify multiple groups at once. This is most important for consistent activate — allowing multiple groups to be activated together.

When TimeFinder encounters the GROUP parameter, it retrieves the definition for the group from the group library, along with the statements and parameters it contains. TimeFinder checks the current status of the group to ensure that the operation is appropriate for the group at that time. TimeFinder then performs the requested operation on all appropriate devices in the group.
Performing a SNAP VOLUME copy

You can copy a volume to a target with the SNAP VOLUME command. SNAP VOLUME creates an exact copy of the source volume on the target volume (requires the TF/Clone Licensed Feature Code).

You can also perform copies to virtual devices. (This requires the TF/Snap Licensed Feature Code).

Options to consider

The SNAP VOLUME command enables you to specify:

- Whether to wait for a session if all four sessions are in use.
- Whether to wait for the volume to be completely copied prior to the program terminating.
- A device to be snapped, identified by volser (SOURCE and VOLUME parameters).
- An existing target device identified by volser (TARGET and VOLUME parameters).
- Whether data from the source device is to overwrite data on the target device (REPLACE parameter).
- Whether the source volser is to be copied to the target with the SNAP (COPYVOLID parameter).
- Whether a background copy begins after the source and target are selected, prior to the activate operation (PRECOPY parameter).
- Whether the snap session should be automatically terminated as soon as the background copy is complete. (TERMINATE_SESSION_WHEN_COMPLETE parameter).
- That diagnostic messages and trace records are to be generated (TRACE and DEBUG parameters).
- Whether to request asynchronous notification upon completion of the SNAP VOLUME operation using the NOTIFY parameter.
- Whether the snap is to a virtual device.
- Whether the snap is differential, which only copies tracks changed since the last differential snap.
- Whether the virtual device is mounted and online at the end of the snap.
- Whether a snap can occur in a remote VMAX system that is connected by network to a local VMAX system (SYMDV# and REMOTE parameters).
Important points

Keep the following points in mind when you use SNAP VOLUME:

- You must define source and target volumes to emulate identical models. For example, you can snap a 3390 volume to another 3390; but, you cannot snap a 3390 to a 3380 device.

- The source and target volumes must be located in the same VMAX system for the internal snap operation to be effective. Otherwise, you must specify, and have available, a datamover utility to perform the actual track copy operation. The target can be a virtual device.

- You can use the COPYVOLID(YES) parameter to copy the source volume label to the target volume and have the target volume varied offline after the snap completes. Use the COPYVOLID(NO) to:
 - Restore the target volume label.
 - Vary online the target volume.

- If you use the MODE(NOCOPY) parameter, you may find it necessary to cause the MODE(NOCOPY) snap to normally complete by running the original snap job (JCL and control cards) and adding PARM='GLOBAL MODECOPYFINISH' to the PGM=SNAP execute statement.

- If a target volume is shared by more than one host, that target volume should be offline to all other hosts but the one from which you issue the command.

- A SNAP VOLUME command places the target volume in a Hold status. To remove the Hold status, use the RELEASE(YES) option on the CONFIG command after the snap is complete or has been stopped. The Hold status cannot be released while there are any indirect tracks on the volume.

 Note: You can use the AUTOMATIC_RELEASE_HOLD parameter to request ResourcePak Base to monitor the background copy and to automatically release the Hold when the copy is complete. “SNAP VOLUME” on page 292 provides more information about the AUTOMATIC_RELEASE_HOLD parameter.

- If the target devices are FBA, they are offline to all mainframe systems. This ensures that the cache information kept on the target volume by other hosts remains unaffected by the snap operation.

- You can replace existing target volumes that contain datasets using optional SNAP VOLUME command parameters.
TimeFinder provides a SRDF/A R2 Wait for Precopy feature with SNAP VOLUME. SRDF/A R2 Wait for Precopy is intended to address a situation when too many protected tracks occur on an SRDF/A R2 device. To minimize any possible issues, TimeFinder now requires that you specify the following parameters to snap from an SRDF/A R2 device:

- PRECOPY(YES)
- MODE(COPY)
- WAIT_FOR PRECOPY_PASS1(YES)

With Enginuity 5876 and HYPERMAX OS 5977, a TF/Clone and TF/Snap off an active SRDF/A R2 device is supported with device level pacing set by SRDF HC commands. Refer to the SRDF Host Component for z/OS Product Guide for more information.

All active TF/Snap operations with SRDF/Metro devices will be blocked.

SNAP VOLUME is blocked if Dynamic Volume Expansion (DVE) is active on a requested device.

Note: You can perform DVE operations using EMC Solutions Enabler or Unisphere for VMAX.

Thick and thin device support

TimeFinder currently supports both thick and thin FBA and CKD devices for clone operations.

For both FBA and CKD devices, TimeFinder allows:

- Thick or thin device to thick or thin device operations
- Thick or thin device to virtual device operations

You can perform these thick and thin device operations with SNAP VOLUME, STOP SNAP VOLUME, and CONFIG. There is no new device syntax. Using regular source and target notation, if a thin device is selected, it is utilized.

Thin devices may be used as gatekeepers in Enginuity 5876 and HYPERMAX OS 5977 TF/Clone and TF/Snap supports operations between thin and non-thin (thick) devices.

There are some restrictions on using thin devices:

- Data devices are not allowed to be the source or target of any TF/Clone or TF/Snap operations.

Note: TimeFinder provides a OPT_TDEV site option that determines whether thin devices are to be included in reports generated by the QUERY VOLUME command. “OPT_TDEV” on page 78 provides more information about this site option.
Extended address volumes

SNAP VOLUME and all TimeFinder components can perform operations against extended address volumes (EAVs).

Diskless SRDF devices

SNAP VOLUME and all TimeFinder components recognize diskless SRDF devices; but, do not perform operations against diskless SRDF devices. If you attempt to issue a command against a diskless SRDF device, TimeFinder logs an error.

Offline volume support

TimeFinder can process offline volumes. The volumes may be CKD or FBA devices. CKD volumes can only be snapped to CKD volumes of the same size or larger. FBA volumes can only be snapped to FBA volumes of the same size.

The syntax of the SNAP VOLUME and STOP SNAP TO VOLUME statements remains unchanged. The CLEANUP [EXTENT TRACK ON] has been enhanced with the UNIT parameter.

When you use the UNIT parameter, the indicated device may be offline. If you use both the UNIT and VOLUME parameter in a SNAP VOLUME request for a CKD device and the volume is offline, the volume label is read and verified before the execution of the snap.

IMPORTANT

You should not use the VOLUME parameter with a FBA device.

TimeFinder ignores the CONDVOL, COPYVOLID, REFVTOC and REPLACE parameters if you specify them when snapping a FBA device. The ADRDSSU, DFDSS, DSS, FDR and FDRDSF DATAMOVERNAMEs do not work correctly if you specify them with FBA devices. A DATAMOVERNAME of COPYCYL or COPYTRK can be used with FBA devices.

SNAP DATASET supports offline source devices when SOURCE_VOLUME_LIST is used. The target device must still be online. Refer to the section “Snaps from offline or cloned volumes” on page 136 for more information.

Full-device resnap operations

A resnap is basically any snap operation of a source dataset, or device to a target dataset, or devices that were the source and target of a previous snap. A requirement of this feature is the original snap operation, as well as subsequent resnap operations that are differential.

You can perform a full-device resnap operation from the same source device to the same target device as used in an original snap operation while there are still protected and indirect tracks present.

However, you cannot perform full-device resnap operations using the original target device as the source device and another device as the target until the original background copy has completed.
For example, you can do a full-device resnap of device A to device B before a previous snap of device A to device B is complete. However, you cannot execute a full-device resnap of device B to device A or to device C before the previous snap of device A to device B is complete.

Reminder regarding license requirements
- To use SNAP VOLUME to perform full-volume snaps, you need to install the TF/Clone licensed feature code.
- To use SNAP VOLUME to perform virtual-device operations, you need to install the TF/Snap licensed feature code.
- To use the TARGET parameter with either a clone or a virtual-device snap, you need to install the TF/Clone licensed feature code.

Incremental clone restore

Although TF/Snap and TF/Mirror both have a RESTORE command, TF/Clone does not have a separate RESTORE command. A TF/Clone restore is achieved by reversing the source and target volumes and performing a “snap back”.

In the situation where you have created a full clone or increment using the DIFF option, and at some point you need to copy the clone target volume back to the original source device, you can take advantage of the automatic restore feature. Enginuity 5876 or HYPERMAX OS 5977 is required, and the background copy must be complete prior to starting the restore.

By executing a SNAP VOLUME with DIFF (YES) in the opposite direction, the need for a differential synchronization is automatically recognized.

For example, if the original SNAP command was:

```
SNAP VOLUME (SOURCE (UNIT(1234))
  TARGET (UNIT (3456))DIFFERENTIAL(YES))
```

Once the copy from the source to the target is complete, and there are no protected or indirect tracks on the source and target drives, you can copy back the volume using SNAP’s incremental clone restore feature by executing the following command:

```
SNAP VOLUME (TARGET (UNIT(1234))
  SOURCE (UNIT (3456))DIFFERENTIAL(YES))
```

After the restore (snap back) is completed, the original SNAP VOLUME statement can be used to reverse the direction again.

Note: When the DIFFERENTIAL keyword is used, a full copy is avoided after the initial synchronization.
Multi-device operations

Standard thin and thick devices are supported for multi-device operations.

TimeFinder has a site option, &AUTOACTIVATE, and parameter, AUTOMATIC_ACTIVATE, that:

- Automatically performs an ACTIVATE operation when there are two or more SNAP VOLUME commands in the input stream and no ACTIVATE command was issued.
- Causes the SNAP VOLUME requests to be processed together.

The default for AUTOMATIC_ACTIVATE is YES. If you do not want to use &AUTOACTIVATE or AUTOMATIC_ACTIVATE, set the value to NO.

Even if you use the YES default, there are some limitations:

- SNAP VOLUME ignores AUTOMATIC_ACTIVATE(YES) for any requests that specify a group name.
- SNAP VOLUME ignores AUTOMATIC_ACTIVATE(YES) for any requests with a VDEV.

Note that AUTOMATIC_ACTIVATE does not provide a consistent activate. For the activate to be consistent, you need to:

- Issue a separate ACTIVATE command with the CONSISTENT parameter.
- Specify the CONSISTENT parameter on the GLOBAL command.

SNAP/FlashCopy coexistence

TimeFinder allows SNAP and FlashCopy sessions to exist on the same volume. Previously, TimeFinder would detect whether a Snap or FlashCopy session already existed and would then use the appropriate method to ensure that the session types were consistent.

Sometimes this procedure would go against the desired session setting in the site options table. For instance if the site options table has Snap as the preferred copy method, but a FlashCopy session already existed on the device, TimeFinder would use FlashCopy. Now that the sessions can coexist, the preferred method for copying as set in the site options table (the &EMCDSSU_FLASH_SNAP option) is always used.

Note: Table 2 on page 47 in this document provides more information about the site options table.
R21 device recognition

TimeFinder recognizes R21 devices. An R21 device is a dual-role SRDF R1/R2 device used in Cascaded SRDF operations.

Cascaded SRDF is a three-site disaster recovery configuration where data from a primary site is synchronously replicated to a secondary site, and then asynchronously replicated to a tertiary site. The core benefit behind a “cascaded” configuration is its inherent capability to continue replicating from the secondary site to the tertiary sites in the event that the primary site goes down. This enables a faster recovery at the tertiary site.

Located at the secondary site, The R21 device simultaneously acts as an R2 device to the primary site and as an R1 to the tertiary site.

Note: Although you can perform a snap from a regular R21 device, you cannot perform a snap from a R21 “diskless” device.

Note: The SRDF Host Component for z/OS Product Guide presents more information about Cascaded SRDF.

Although you can perform snaps from R1, R2 and R21 devices, you cannot perform snaps to an R2 or R21 device, only to an R1 device.

Concurrent R2 (R22) device recognition

With Enginuity 5876 and HYPERMAX OS 5977, TimeFinder recognizes concurrent R2 devices. Concurrent R2 is an Enginuity/HYPERMAX OS feature that allows an R2 device to have two SRDF mirrors. Each R2 mirror is paired with a different R1 mirror and only one of the R2 mirrors can be Read-Write on the link at a time.

Note: The SRDF Host Component for z/OS Product Guide provides more information about diskless R22 devices.

Security considerations

No change is required to your existing security process when implementing the SNAP VOLUME command. DASDVOL requests made to SAF verify access at the device level.

You can also make use of the EMCSAFI Security Interface and the SAF command security. The EMCSAFI Security Interface feature provides additional security checks for environments where multiple groups of users are using different devices in a single VMAX system.

Note: The Mainframe Enablers Installation and Customization Guide provides more information about the EMCSAFI Security Interface.
SNAP VOLUME with the COPYVOLID(NO) parameter

When a full device volume copy is performed, the microcode accepts a simple instruction to copy all of the tracks from the source device to the target device. When COPYVOLID(NO) is specified, it is the intent that the original target volser is retained on the target device. Physically speaking, this cannot happen when all of the tracks are being copied from the source device to the target device. So the retention of the original volser takes place logically, as follows:

- Prior to initiating the copy, the volser of the target device is read and retained in memory.
- Because the target device is physically changing identities, it is varied offline in order to reduce confusion.
- The microcode initiates the copy of the source device to the target device. Physically, this means that the target device now has the same volser as the source device.
- Once the microcode copy is initiated, the target device label is read. The contents are verified to ensure that they match the original source device. Then the target device label is updated with the original target device volser. This restores the target device volser to its original contents.
- The target device is now varied back online with its original volser.

SNAP VOLUME with the COPYV(N) and CONDVOL(ALL) parameters

When you specify COPYV(N) and CONDVOL(ALL) with SNAP VOLUME, the following additional changes are made after successful completion of the SNAP VOLUME command:

- If a VTOC index and VVDS are present and active on the target volume, TF/Snap updates any records for the VTOC index and VVDS files to reflect the new names of these files. VTOC index names have the form SYS1.VTOCIX.volser and VVDS names have the form SYS1.VVDS.Vnnnnn. The volser portion of these names is the same as the volser of the target volumes.
- If the volser begins with a numeric character, the default name for the VTOC index is SYS1.VTOCIX.Vnnnnn, where nnnnn is the final five characters of the target volume volser.
- TF/Snap updates the VTOC records for the VTOC index and VVDS, if present, to reflect the new names for these files with the same naming conventions as for the VTOC index updates.
- If a RESTORE VOLUME command with COPYVOLID(YES) parameter occurs in a JES3 environment, the target volume must be manually varied offline to JES3 after the RESTORE VOLUME completes.

During the RESTORE VOLUME operation with COPYVOLID(NO), the target volume is normally varied offline during the operation and varied online after the RESTORE VOLUME completes. You can link edit a user exit into TF/Snap to be invoked prior to the VARY ONLINE and VARY OFFLINE commands being issued. This exit is available for automating JES3 operations.
GCM support

Geometry Compatible Mode (GCM) allows SRDF relationships to be established between an FBA device on a VMAX system running Enginuity 5876 and an FBA device on a VMAX system running HYPERMAX OS 5977, where the device under HYPERMAX OS 5977 is exactly a half cylinder larger than the device under Enginuity 5876.

During snap copy operations, GCM attributes will be copied from source to target and target to source (restore) automatically.

Examples

Example 1

This example demonstrates snapping a volume:

```
SNAP VOLUME (SOURCE (VOL(USER00)) TARGET (VOL(BKUP75)))
```

Example 2

This example shows both a GLOBAL statement and a SNAP VOLUME statement. In this example:

- The GLOBAL statement sets the maximum acceptable return code to 4 and only issues a warning statement if the target volume is currently ONLINE to any other z/OS image in the complex.
- The SNAP VOLUME statement tells TimeFinder which volumes to use as the source and the target. Both the source and target volumes must be online to this z/OS image.
- The REPLACE(Y) parameter indicates that data on the target volume is to be completely overwritten.
- CONDVOL(ALL) and COPYVOLID(NO) cause the target volume serial number to remain MV3497. In addition, all of the pointers in the VTOC, IXVTOC and VVDS (if applicable on the target volume) are updated for all of the datasets snapped to the target. None of the datasets on the target volume are cataloged.
- The WAITFORCOMPLETION (Y,MESSAGES) cause the SNAP VOLUME step to remain active until the VMAX system completes the background copy of the source volume to the target volume and to issue status messages of the number of remaining tracks to be copied to the target volume.

```
GLOBAL MAXRC(4) CHKO(N)
SNAP VOLUME (SOURCE (VOLUME (MV3417))
              TARGET (VOLUME (MV3497))
              REPLACE(Y)
              CONDVOL(ALL)
              COPYVOLID(NO)
              WAITFORCOMPLETION(Y,MESSAGES)
)
```

Example 3

This example demonstrates a remote full device snap:

- The source volume at VMAX device number 00CE is copied to the target volume at VMAX device number 032E in the remote VMAX system.
- The remote VMAX system is found by using the gatekeeper found by using volume serial UMC001 in a local VMAX system, and then using RAGROUP(21) to determine the remote VMAX system.
◆ The VMAX system serial number is an extra check to make sure the correct VMAX system is being used for the remote full volume snap.

SNAP VOLUME (SOURCE (SYMDV# (00CE)) TARGET(SYMDV#(032E)) - REMOTE(VOLUMC001) RAGROUP(21) CONTROLLER(0001879-90171)))

Example 4

This example employs SNAP VOLUME to snap a volume from source to target. The target volume retains its original volser and is made available to the host.

Note: You can use this example only if you have purchased the licensed feature code for the keyword (parameter) TARGET.

```plaintext
GLOBAL MAXRC(4) CHKO(N) AUTOMATIC_RELEASE_HOLD(YES) CHECKBCVHOLDSTATUS(NO)

SNAP VOLUME (SOURCE (VOLUME (YOUR-SOURCE-VOLUME)) - TARGET(VOLUME (BCV-VOLUME)) - COPYVOLID(NO) ) */
/*

Example 5

This example performs a remote SNAP VOLUME. This is an operational job that shows some of the options.

---

```plaintext
GLOBAL MAXRC(4) CHKO(N) AUTOMATIC_RELEASE_HOLD(YES) CHECKBCVHOLDSTATUS(NO)

SNAP VOLUME (SOURCE (SYMDV# (0000)) - TARGET(SYMDV# (0001)) - REMOTE (RAGROUP(17) CONTROLLER (90132)) - TOLERATEENQFAILURE(YES) COPYVOLID(NO) REPLACE (YES))

THIS STATEMENT AND THE NEXT ONE ARE BOTH COMMENTS..

DATAMOVERNAME (DFDSS) WAITFORSESSION(YES))
*/
/*

//
Performing a SNAP VOLUME using virtual devices

Virtual devices (VDEV) are VMAX devices that are represented by a collection of pointers, as shown in Figure 5.

Figure 5 SNAP VOLUME using virtual devices

Virtual devices have the following characteristics:

- Are configured in the VMAX system
- Have VMAX device numbers and host channel addresses
- Do not reserve space equal to their size
- Share common snap pool devices to store new writes to the source or target virtual device

A virtual device snap creates a point-in-time image of the source device that only consumes space for new writes to either the source or the target virtual device. As a result, virtual device snaps can consume much less space than full device snap.

Tracks that are updated on the source after the snap cause the pre-update image of the updated tracks to be copied from the source to the snap pool device. Tracks that are updated on the virtual device have the updated, or post-image track, written to the snap pool device.

For devices with very low change rates (total number of tracks changed, not total write activity for the volume), virtual devices can provide a space-efficient way to capture one or more point-in-time copies of a logical volume. They are best used as a complement to TF/Clone full volume copies.

Virtual devices that are associated with a source device can be mounted, read from, written to, and varied online or offline. Virtual devices that are not associated with a source device remain offline and not ready.
SNAP VDEVic example

You can use this example only if you have purchased TF/Snap for z/OS and its licensed feature code for the keyword (parameter) VDEV, along with the LFC for ECA.

This example employs SNAP VOLUME VDEVice to snap from a volume to a virtual device. The virtual device has a new volser and is made available to the host.

The example contains two snap operations:

In the first snap operation:
- There is a query of all of the VDEVs (virtual devices) and of all of the snap pool devices before the SNAP VOLUME VDEVice and after the SNAP VOLUME VDEVice.
- The source volume on A00A is snapped to virtual volume A04A.
- The BCV HOLD status is not checked.
- Freespace is not copied from the source to the target.
- If no session is available for the source volume copy, TF/Snap waits for a session.
- The session is completed with messages before the step is completed.
- The new volume ID is UWC0AA.
- The data on A04A is replaced by the data on A00A.

In the second snap operation:
- The source volume at A00B is snapped to a virtual volume at A04B.
- The BCV HOLD status is not checked.
- Freespace is not to be copied.
- If no session is available for the source volume copy, TF/Snap waits for a session.
- The session is completed with messages before the step is completed.
- The new volume ID is UWC04B.
- The data is replaced on the VDEV.

For the ACTIVATE command:
- These two commands are activated at the same time using ECA assist to make sure each volume is consistent.
- A message is displayed to show when consistency is completed.
- An ECA time-out value of 15 seconds maximum is set.
// JOB
// QCOPYRUN EXEC PGM=EMCSNAP,REGION=0M
// STEPLIB DD DISP=SHR, DSN=DS-PREFIX.LINKLIB
// SYSPRINT DD SYSOUT=*
// SYSUDUMP DD SYSOUT=*
// SYSOUT DD SYSOUT=*
// QCOUTPUT DD SYSOUT=*
// QCINPUT DD *
*
QUERY VDEV (LOCAL(UNIT(A04A)))
QUERY SNAPSHOT (UNIT(A04A))
SNAP VOL(SOURCE (UNIT (A00A)) -
CHECKBCVHOLDSTATUS(N) -
FREESPACE(N) -
WAITFORSESSION(Y) -
WAITFORCOMPLETION(Y,MSG) -
NEWVOLID(UWC0AA) -
REPLACE(Y) -
VDEV(UNIT(A04A)))

SNAP VOL(SOURCE (UNIT (A00B)) -
CHECKBCVHOLDSTATUS(N) -
FREESPACE(N) -
WAITFORSESSION(Y) -
WAITFORCOMPLETION(Y,MSG) -
NEWVOLID(UWC0AB) -
REPLACE(Y) -
VDEV (UNIT (A04B)))
ACTIVATE(CONSISTENT(YES) MSG(DIS) TIMEOUT(15))
QUERY VDEV (UNIT(A04B))
QUERY SNAPSHOT (UNIT(A04A))
*/
Performing Cascaded clone operations

With Enginuity 5876 and HYPERMAX OS 5977, TimeFinder allows for cascaded clone operations. This allows a clone operation to take place with a device that is already involved in a clone operation without ending the first clone session.

For instance, as shown in Figure 6, you can use TimeFinder to clone device A to device B. Then, while the relationship between A and B is preserved, clone device B to device C.

![Cascaded clone diagram](image)

Figure 6 Cascaded clone

A cascaded relationship is implied in a snap from A to B and then from B to C. After the A to B snap has finished, the A to B cascaded operation may still be active. In this situation, you can encounter a problem when you try to perform a cascaded-like snap from B to C and then from A to B.

In both cases, B becomes the “middle” of an extended relationship. In the traditional cascaded situation, B is the target of a persistent relationship (like differential). In the second, cascaded-like case, B is the source of a persistent relationship (like differential). Neither situation is allowed by Enginuity/HYPERMAX OS.

TimeFinder always attempts to ensure that both situations work. However, there are times that one must fail. For instance, if C is a virtual device (VDEV), in a snap of B to C and A to B, TimeFinder does not delete virtual device C. C may be used for more than one purpose. Instead, TimeFinder fails the snap of A to B.
Cascaded clone emulation

Enginuity 5876 and HYPERMAX OS 5977 allow a cascaded-like operation for clone emulation. With Enginuity 5876 and HYPERMAX OS 5977, you can cascade from a device involved in a clone operation to a device involved in a clone emulation operation, as shown in Figure 7 on page 115.

Note: Cascaded clone emulation to clone is allowed with Enginuity 5876 or HYPERMAX OS 5977.

Figure 7 Cascaded clone to cascaded clone emulation

However, as shown in Figure 8, you cannot cascade from a device involved in a clone emulation operation to a device involved in a clone operation.

Figure 8 Cascaded clone emulation to cascaded clone

For instance, you can use TimeFinder to clone device xxx to A (an STD device). Then, after the xxx to A copy has completed but while the xxx to A session is still in effect, use TF/Mirror clone emulation to clone A to B (a BCV device). However, you cannot then use TF/Clone Mainframe SNAP Facility to clone B to C.

In addition, as shown in Figure 9, operations A to B and B to C cannot both be clone emulation.

Figure 9 Cascaded clone emulation to cascaded clone emulation
Operations and Examples

Requirements

There are a few requirements to keep in mind:

- There cannot be any indirect tracks on the source device.
- There cannot be any protected tracks on the target device.
- A virtual device (VDEV) cannot have a session with any target device.
- If the new source device is already a target of another operation, the corresponding session must be active.

Limitations

Although circular cascading (A→B→A) is not allowed, devices A and B can have multiple targets. For example: A→B(1)→C(1) and A→B(2) and A→B(3)→C(2).

There is also a limitation on full-volume, Incremental FlashCopy. If A→B is full-volume FlashCopy, device B cannot be used as the source of a FlashCopy command. However, you can use TimeFinder Clone Mainframe SNAP Facility and use B as a source. In other words, FlashCopy can do A→B or B→C, but it cannot do A→B→C.

Example

Consider the following example of cascading three devices:

1. A user issues SNAP VOLUME with the DIFFERENTIAL parameter set to snap device AAA to device BBB.
2. After ensuring that all background copy operations have completed, the user issues SNAP VOLUME with the DIFFERENTIAL parameter set to snap device BBB to device CCC. The user then ensures that all background copy operations have completed.
3. The user then makes changes to the data on devices AAA and BBB.
4. The user issues SNAP VOLUME with the DIFFERENTIAL parameter set to snap device AAA to device BBB.
5. After ensuring that the changes made to device AAA are on device BBB and that all background copy operations have completed, the user issues SNAP VOLUME with the DIFFERENTIAL parameter set to snap device BBB to CCC.
6. After ensuring that the changes made to device AAA are on device CCC, the user issues a STOP SNAP to all volumes.
Influencing SMS volume selection

When the EMC volume preferencing exit routine is activated, TimeFinder attempts to influence SMS volume selection. Volume preferencing causes a target volume to be selected from a device that is on the same VMAX system as the source, even though the SMS storage group contains target volumes on multiple VMAX systems.

The following EMC components are involved when influencing SMS:

- Utility program — used to activate, inactivate, and query the status of the exit routine.
- Exit routine — used to tailor the SMS volume candidate list in an attempt to limit allocations to the VMAX system containing the source dataset/volume.
- TimeFinder — recognizes when the exit routine is active and prepares information about the target allocation and the target VMAX system for use by the exit routine.

EXTENT_ALLOCATION

The result of influencing target device selection is dependent on whether EXTENT_ALLOCATION(YES) is specified or internally selected. Volume preferencing is not used with EXTENT_ALLOCATION. It does not even need to be activated.

Note: When necessary, you may select EXTENT_ALLOCATION internally for some SMS controlled dataset types, such as striped extended format datasets.

When requested or selected, EXTENT_ALLOCATION(YES) causes TimeFinder to attempt to select a target device using the following sequence:

1. Target device in the same VMAX system or control unit as the source device.
2. Target device in any VMAX system.
3. Any eligible device.

If desired, a TimeFinder site default is available, SAMEONLY, to fail the allocation if the target BCV or STD is not in the same VMAX system or control unit.

Note: Table 2 on page 47 lists the site options.

Internal selection

When you do not use EXTENT_ALLOCATION but activate volume preferencing, TimeFinder attempts to:

- Influence the allocation by examining the SMS candidate device list.
- Select the same VMAX system or control unit for the target device as the source device.

This mode of allocation offers no opportunity to fail the request if the same VMAX system condition cannot be met. Eventually, allocation continues on any eligible target device where space is available.
Installation and activation of the EMC volume preferencing exit routine (EMCVLPRF) is performed by executing the utility program (EMCSNPVS). EMCSNPVS accepts its commands through the parameter field and displays its responses on the console. Each execution of EMCSNPVS performs one command.

Exit routine activation should be done automatically after system IPL. It is only necessary to activate the exit routine once after an IPL.

Note: These modules are shipped as LINKLIB members of the EMCSCF component of ResourcePak Base for z/OS.

Query VOLumePREFerencing

SET VOLumePREFerencing

The syntax of the EMCSNPVS volume preferencing commands are:

```
Query VOLumePREFerencing
SET VOLumePREFerencing ( [ STATus ( Active | Inactive ) ]
[ DEBUG ( OFF | ON ) ]
[ TRACE ( OFF | ON ) ] )
```

The QUERY command displays whether the exit routine is installed and enabled. The SET command can activate and inactivate the exit routine. Normally, the exit code is completely removed when the exit routine is deactivated.

Examples

The following example displays the status of the EMC volume preferencing exit:

```
//TSTSNVPS JOB (EMC),,MSGCLASS=X,MSGLEVEL=(1,1),CLASS=A
//VOLPROF EXEC PGM=EMCSNVPS,PARM=' QUERY VOLPREF ' 
//STEPLIB DD   DSN=EMC.SCFvrm.LINKLIB,DISP=SHR
```

The following example activates the EMC volume preferencing exit. Note that the STEPLIB DD-statement must point to the library containing the EMCVLPRF program. This may be run as a batch job stream or a started task:

```
//USRSNVPS JOB (EMC),,MSGCLASS=X,MSGLEVEL=(1,1),CLASS=A
//VOLPROF EXEC PGM=EMCSNVPS,PARM=' SET VOLPREF (STATUS(ACTIVE))'
//STEPLIB DD   DSN=EMC.SCFvrm.LINKLIB,DISP=SHR
```

The following example inactivates the EMC volume preferencing exit:

```
//USRSNVPS JOB (EMC),,MSGCLASS=X,MSGLEVEL=(1,1),CLASS=A
//VOLPROF EXEC PGM=EMCSNVPS,PARM=' SET VOLPREF (STATUS(INACTIVE))'
//STEPLIB DD   DSN=EMC.SCFvrm.LINKLIB,DISP=SHR
```
Selecting volume processing by phases

The SNAP VOLUME and ACTIVATE commands have two parameters, PRESNAP and POSTSNAP, that allow you to select SNAP VOLUME processing by phases:

- Presnap
- Activate
- Postsnap

By using groups, you can run these phases individually to make sure that:

- The correct volume list is used in all phases.
- The processing phases are scheduled appropriately.

For example, before a nightly backup, you can execute the presnap phase and allow the precopy to take place in the background. Then, later, you can execute the short activate phase and follow it with the postsnap phase to make the snapped devices available.

All three phases must complete before the target volume(s) are available; but, this allows them to be scheduled in a way to minimize impact on other workloads.

Note: PRESNAP and POSTSNAP parameters only apply to regular input (after a //QCINPUT DD * JCL statement) SNAP VOLUME statement that references a GROUP, and are only valid if GROUP is also specified. The GROUP parameter identifies a set of stored statements that are to be executed, while the PRESNAP and POSTSNAP indicate some special processing for the GROUP. This is why these parameters cannot be stored within a group definition.

Presnap processing

Presnap processing involves:

1. Validating the request.
2. Taking the target device offline.
3. Making the target device not-ready to the channel.
4. Issuing the Enginuity/HYPERMAX OS request to pair the two devices together.

Usually, you would also specify (or default) the PRECOPY parameter and the background copy would begin after the “establish” is accepted by the VMAX system. The target device would not be available from this point until the postsnap phase is executed.

Activate processing

Activate processing involves making sure that the source and target device pairs have an existing session that has been “established” but not “activated.” Then the “activate” Enginuity/HYPERMAX OS request is used to enable the session.

Note: “ACTIVATE” on page 214 provides more information on the ACTIVATE command.
Postsnap processing

Postsnap processing involves making the target device ready to the channel and performing any label management. If requested, the target device is also varied online.

Phase processing and group status

Table 3 shows how the group status interacts with various phase processing. For instance, postsnap processing is not allowed unless activate has already been performed. As in the past, a simple SNAP VOLUME with no PRESNAP or POSTSNAP parameters performs all three phases together. An ACTIVATE group with PRESNAP and POSTSNAP also performs all three phases together.

<table>
<thead>
<tr>
<th>Group status (before)</th>
<th>Action</th>
<th>PRESNAP</th>
<th>POSTSNAP</th>
<th>Group status (after)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITIAL</td>
<td>ACTIVATE</td>
<td>YES</td>
<td>NO</td>
<td>ACTIVATE</td>
</tr>
<tr>
<td>INITIAL</td>
<td>ACTIVATE</td>
<td>YES</td>
<td>YES</td>
<td>POSTSNAP</td>
</tr>
<tr>
<td>PRESNAP</td>
<td>ACTIVATE</td>
<td>YES –or – NO (Ignored, when PRESNAP is already group status.)</td>
<td>NO</td>
<td>ACTIVATE</td>
</tr>
<tr>
<td>PRESNAP</td>
<td>ACTIVATE</td>
<td>YES –or – NO (Ignored, when PRESNAP is already group status.)</td>
<td>YES</td>
<td>POSTSNAP</td>
</tr>
<tr>
<td></td>
<td>DEFINE GROUP</td>
<td>-N/A-</td>
<td>-N/A-</td>
<td>INITIAL</td>
</tr>
<tr>
<td>-any-</td>
<td>CLEANUP</td>
<td>-N/A-</td>
<td>-N/A-</td>
<td>INITIAL</td>
</tr>
<tr>
<td>-any-</td>
<td>CONFIG</td>
<td>-N/A-</td>
<td>-N/A-</td>
<td>INITIAL</td>
</tr>
<tr>
<td>INITIAL, FAILED, POSTSNAP</td>
<td>SNAP VOLUME</td>
<td>NO</td>
<td>NO</td>
<td>POSTSNAP</td>
</tr>
<tr>
<td>INITIAL, FAILED, POSTSNAP</td>
<td>SNAP VOLUME</td>
<td>YES</td>
<td>NO</td>
<td>PRESNAP</td>
</tr>
<tr>
<td>ACTIVATE</td>
<td>SNAP VOLUME</td>
<td>NO</td>
<td>YES</td>
<td>POSTSNAP</td>
</tr>
<tr>
<td>INITIAL, FAILED, POSTSNAP</td>
<td>SNAP VOLUME</td>
<td>YES</td>
<td>YES</td>
<td>POSTSNAP</td>
</tr>
<tr>
<td>-ANY-</td>
<td>STOP VOLUME</td>
<td>-N/A-</td>
<td>-N/A-</td>
<td>INITIAL</td>
</tr>
</tbody>
</table>
Examples

Example 1 The following example defines the groups TEST and TEST2:

```plaintext
DEFINE GROUP TEST (DESC ('SNAP TWO VOLUMES'))
GLOBAL FREESPACE(YES)
SNAP VOLUME (SOURCE (VOLUME(U6A230)) -
    TARGET(UNIT(6FE6)) NEWVOLID(BAP000) )
SNAP VOLUME (SOURCE (VOLUME(U6A231)) -
    TARGET(UNIT(6FE7)) NEWVOLID(BAP001) )
END GROUP
*
DEFINE GROUP TEST2 (DESC ('MAKE VIRTUAL COPIES'))
SNAP VOLUME (SOURCE (VOLUME(U6A232)) -
    VDEV (UNIT(6DC0)) NEWVOLID(VBAP00) )
SNAP VOLUME (SOURCE (VOLUME(U6A233)) -
    VDEV (UNIT(6DC1)) NEWVOLID(VBAP01) )
END GROUP

Note: You can also use the same source to make up to 8 copies.

Note: In the previous example The VDEV parameter is only available if you purchase the TF/Snap Licensed Feature Code.
```

Example 2 The following example snaps TEST and TEST2 in three separate actions:

```plaintext
SNAP VOLUME ( GROUP ( TEST,TEST2 ) PRESNAP(YES))
**
ACTIVATE ( GROUP ( TEST,TEST2 ) -
    PRESNAP(NO) POSTSNAP(NO) -
    CONSISTENT(YES) MESSAGE(DISPLAY))
**
SNAP VOLUME ( GROUP ( TEST,TEST2 ) POSTSNAP(YES))

The following example stops the snap and performs cleanup on the groups:

STOP SNAP TO VOLUME ( GROUP ( TEST ,TEST2) )
**
CLEANUP EXTENT TRACK FOR GROUP ( TEST ) CLEANDIFF(YES)
**
CONFIG (GROUP(TEST,TEST2) RELEASE(YES))
```
Performing a SNAP DATASET copy

Use the SNAP DATASET command to create a copy of the specified dataset. Source and target devices must be the identical models. That is, you can snap a 3390 device to another 3390 device, but you can not snap a 3390 to a 3380 device.

Supported dataset types

The SNAP DATASET command can snap the following types of datasets:

- Direct access (DA) datasets
- Extended format sequential datasets
- Extended Partitioned datasets (PDSE)
- GDG base names and GDG datasets
- Extended format VSAM Keyed Sequential Datasets (KSDS)
- Partitioned (PO) datasets (TYPE=HFS is not supported)
- Physical Sequential (PS) datasets
- Striped Sequential datasets
- BDAM datasets
- VSAM datasets:
 - Alternate Index (AIX)
 - ESDS
 - KSDS
 - Linear
 - RRDS
 - Spheres (KSDS | ESDS + PATHS + AIX)
 - VRRDS
 - Logical copy operations of IMBED, KEYRANGE and REPLICATE datasets are supported with DATAMOVER(DFDSS)
 - Datasets on offline volumes
- Undefined datasets (only with the FORCE(YES) option on the SNAP DATASET command)

Note: zFS datasets are supported by SNAP DATASET; however, it is recommended to quiesce the zFS file prior to issuing a SNAP DATASET command against it.

Unsupported dataset types

SNAP DATASET does not support snapping the following types of datasets:

- Concatenated datasets
- ISAM datasets
- Individual members of partitioned datasets
- Open Edition HFS datasets
- Page datasets
- VSAM Volume datasets (VVDS)
- VTOCs
- VTOC indexes

The SNAP DATASET command allows you to use either a ddname or dataset name to designate the source dataset and the target dataset. If the target dataset already exists, it may be reused or erased and a new one allocated, depending upon the replace and reuse parameters.
In most circumstances, the SNAP DATASET operation is not affected by the size of a single extent. However, the directory must reside within the first extent of a partitioned dataset. As a performance consideration, SNAP DATASET does not check the member directory size, but issues a warning message when the first extent of the target PDS is smaller than the first extent of the source.

Note: SNAP DATASET is blocked if Dynamic Volume Expansion (DVE) is active on a requested device. You can perform DVE operations using EMC Solutions Enabler or Unisphere for VMAX.

SNAP DATASET options and operations

The following sections discuss SNAP DATASET options and operations.

Source and target datasets

Source datasets are identified by either:
- The SOURCE parameter
- The INDDname parameter

Unless SOURCE_VOLUME_LIST is specified, all datasets identified by the SOURCE parameter must be cataloged. You can only specify uncataloged datasets with the INDDname parameter, or by specifying the SOURCE_VOLUME_LIST parameter.

Target datasets are identified by either:
- The TARGET parameter
- The OUTDDname parameter

A dataset identified by the OUTDDname parameter is always reused. An existing dataset identified by the TARGET parameter may be reused or replaced, depending on the REUSE and REPLACE parameter settings. A new target dataset may be created and not cataloged, except in an SMS environment, where non-cataloged datasets are not allowed.

SMS classes

SNAP DATASET allows you to specify SMS classes. If you specify SMS storage, data, or management classes on the SNAP DATASET command, TimeFinder supplies the classes to DYNALLOC or IDCAMS during allocation. You can use the COPYSOURCESMSCLASSES (COPYSMS) parameter to indicate which classes are to be obtained from the source (SMS managed) dataset.

Note: The *TimeFinder Utility for z/OS Product Guide* provides more information about IDCAMS.

The COPYSMS parameter does not work with TimeFinder and an alternate index dataset. This is because SMS does not record the class information when an alternate index dataset is created.

SMS ACS rules are not modified to accomplish a snap operation.
TimeFinder honors additional IBM Systems Managed Storage volume states, DISNEW and QUINEW.

Note: “Influencing SMS volume selection” on page 117 provides more information regarding volume selection.

WAIT options

SNAP DATASET also allows you to specify wait options. There are three circumstances where a built-in wait may be desirable. Each of these must be addressed individually:

- Waiting for a source dataset enqueue to become available, ensuring that the snap occurs *cleanly*.
- When the volume or dataset has four snaps occurring for the same track range.
- When a background snap operation has started and it is desirable to wait for the background snap operation to complete.

Waiting for a source dataset enqueue

Waiting for a source dataset enqueue only applies to the SNAP DATASET command. By default, the snap operation waits for the source dataset until it becomes available.

The type of enqueue is determined by the HOSTCOPYMODE parameter. You may set this parameter to:

- EXCLUSIVE
- SHARED
- NONE

The parameter ENQWAIT controls whether the enqueue must successfully complete before proceeding. If you specify ENQWAIT(NO) and the HOSTCOPYMODE indicates either EXCLUSIVE or SHARED, then failure to obtain the enqueue results in an action based upon the TOLERATEENQFAILURE parameter.

The following list outlines this flow of events.

1. If you specify HOSTCOPYMODE(NONE), no additional processing is required.
2. If you specify ENQWAIT(YES), an enqueue is issued that must be satisfied before proceeding. After the enqueue is satisfied, no additional processing is required.
3. If you specify ENQWAIT(NO), issue an enqueue to acquire/test the availability of the source dataset.
 - If you acquire the enqueue for the dataset, no additional processing is required.
 - If the enqueue for the dataset is not available, you must test the TOLERATEENQFAILURE parameter.
 - If you specify TOLERATEENQFAILURE(NO), an error message is written and the SNAP DATASET action terminates.
 - If you specify TOLERATEENQFAILURE(YES), a warning message is written and processing continues.
Four snaps occurring in the same track range

A maximum of four snap operations may be active for a range of tracks at any given moment. For example, you can snap a single source dataset to four new datasets without any problems. A fifth snap of that same source dataset may not begin until one of the four previous snaps has completed.

Note: This limitation also applies to SNAP VOLUME.

By default, if a range of tracks is already involved in four snap operations, a request to snap it a fifth time fails. You can control this by using the WAITFORSESSION parameter. The WAITFORSESSION parameter indicates how to handle the fifth and succeeding snap operations. WAITFORSESSION(NO) is the default setting. However, if you wish to wait for one of the prior snap operations to complete, you can specify WAITFORSESSION(YES). In addition, you may indicate a time value and the operation is checked until the time period expires.

For example, WAITFORSESSION(5:0) indicates that the snap operation waits up to 5 minutes for a prior operation to complete. At the end of that time period, if the snap operation is unable to start the new snap operation, it fails with an error message.

TimeFinder may optionally wait for the actual copy operations to complete. This is done by polling the VMAX system periodically and checking the status of the copy operations. You can specify the parameter WAITFORCOMPLETION on:

- The GLOBAL command
- The RESTORE VOLUME command
- The SNAP DATASET command
- The SNAP VOLUME command

At program termination, after all copy operations have been initiated, TimeFinder makes a final check to wait for the copy operations. An optional subparameter indicates whether the remaining tracks to be copied are logged as each check is made. The amount of time between checks is dependent upon the number of tracks remaining to be copied. The more tracks, the longer the time period.

All datasets or volumes are checked one at a time in the same sequence as the original copy operation. After a dataset or volume copy is complete, then the next dataset or volume copy is checked.

Session limit

Under Enginuity 5876 and HYPERMAX OS 5977, TimeFinder no longer strictly enforces the limit of four full-device sessions for any one device. This means that you can create up to 16 simultaneous, full-device copies of a single source device as long as no other sessions exist on the device.

A single device is limited to an absolute maximum of 16 sessions of various types. This does not affect the current limit of four extent sessions or eight virtual device sessions, except to limit the total number of full device sessions for a single volume to 16 or less.

This does not affect the current limit of four full-device sessions of Enginuity 5773.
Multivolume datasets

TimeFinder can snap:

- A single volume source dataset to a single volume target dataset
- A multivolume source dataset to a multivolume target dataset
- A single volume source dataset to a multivolume target dataset
- A multivolume source dataset to a single volume target dataset

Special consideration is required when snapping a multivolume, extended-format, non-VSAM dataset with a stripe count of one. In this situation, the target dataset must have the exact same number of volumes and tracks allocated to each volume, corresponding to the source dataset.

For instance, if the source dataset is allocated to three volumes containing 3000, 2000, and 1000 tracks, the target dataset must also be allocated to three volumes containing 3000, 2000, and 1000 tracks. Otherwise, the snap operation fails.

Multi-stripe datasets must have the same number of stripes for the source and target dataset.

Summary of multivolume SNAP DATASET scenarios

The target attributes of all dynamically allocated datasets are influenced by either z/OS allocation (UNITNAME, BCVGROUP, SCFGROUP, and/or VOLUME parameters) or SMS allocation (STORCLAS, DATACLAS, MGMTCLAS and/or ACS routines).

Table 4 summarizes the various possible SNAP DATASET scenarios.

<table>
<thead>
<tr>
<th>Source</th>
<th>Target</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same VMAX system</td>
<td>Dynamically Allocated</td>
<td>Multivolume dataset on the same VMAX system. Extent sizes may be different from source and may be consolidated.</td>
</tr>
<tr>
<td>Same VMAX system</td>
<td>Preallocated</td>
<td>Multivolume dataset on the same VMAX system. Determined by pre-allocation. If necessary to extend dataset, then z/OS automatically selects the last allocated or next candidate volume.</td>
</tr>
</tbody>
</table>
| Same VMAX system | Extent Allocation | Multivolume dataset on the same VMAX system. Is determined by candidate list. Using EXTENT_ALLOCATION(YES): Each target volume has the same number of tracks used as its respective source volume. Each target extent matches the corresponding source extent. Using EXTENT_ALLOCATION(YES,CONSOLIDATE_VOLUME): Each target volume contains the same number of tracks as the source volume; but, the number and size of extents on the target volume may be different from those on the source volume. Using EXTENT_ALLOCATION(YES,CONSOLIDATE_ALL): The number of target volumes may be different from the number of source volumes and the number and size of the extents on the targets may not match those on the source.
<table>
<thead>
<tr>
<th>Source</th>
<th>Target</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Different VMAX system</td>
<td>Dynamically Allocated</td>
<td>Multivolume dataset on available volumes in one VMAX system. Is determined by candidate list. Extent sizes may be different from source and may be consolidated. A datamover is required to copy extents between different VMAX systems.</td>
</tr>
<tr>
<td>Different VMAX system</td>
<td>Preallocated</td>
<td>Multivolume dataset whose placement is determined by pre-allocation. If necessary to extend dataset, z/OS automatically selects the last allocated or next candidate volume. A datamover is required to copy extents between different VMAX systems.</td>
</tr>
</tbody>
</table>
| Different VMAX system | Extent Allocation | Multivolume dataset on the different VMAX systems. Is determined by candidate list.
Using EXTENT_ALLOCATION(YES):
Each target volume has the same number of tracks used as its respective source volume. Each target extent matches the corresponding source extent. Each target volume is also in the same VMAX system as its respective source volume.
Using EXTENT_ALLOCATION(YES,CONSOLIDATE_VOLUME):
Each target volume contains the same number of tracks as the source volume; but, the number and size of extents on the target volume may be different from those on the source volume. Each target volume is also in the same VMAX system as its respective source volume.
Using EXTENT_ALLOCATION(YES,CONSOLIDATE_ALL):
The number of target volumes may be different from the number of source volumes and the number and size of the extents on the targets may not match those on the source. Each target volume is also in the same VMAX system as its respective source volume. |
| Mixed VMAX system and RVA or ESS | Dynamically Allocated | Multivolume dataset on available volumes in VMAX systems and RVA or ESS. Is determined by candidate list. Extent sizes may be different from source and may be consolidated. A datamover is required to copy extents between units. For RVA or ESS, TimeFinder invokes SNAPSHOT and/or FlashCopy if possible. |
| Mixed VMAX system and RVA or ESS | Preallocated | Multivolume dataset whose placement is determined by pre-allocation. If necessary to extend dataset, z/OS automatically selects the last allocated or next candidate volume. A datamover is required to copy extents between units. For RVA or ESS, TimeFinder invokes SNAPSHOT and/or FlashCopy if possible. |
Table 4 Summary of multivolume SNAP DATASET scenarios (page 3 of 5)

<table>
<thead>
<tr>
<th>Source</th>
<th>Target</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed VMAX system and</td>
<td>Extent Allocation</td>
<td>Multivolume dataset on the different VMAX systems and RVA or ESS. Is determined by candidate list.</td>
</tr>
<tr>
<td>RVA or ESS</td>
<td></td>
<td>Using EXTENT_ALLOCATION(YES):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Each target volume has the same number of tracks used as its respective source volume. Each target extent matches the corresponding source extent.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Each target volume is in the same VMAX system or RVA and/or ESS as its respective source volume. If enough target volumes exist in the respective VMAX systems and/or RVA or ESS and IBM SNAPSHOT is available, it is not necessary to code a datamover. For RVA, TimeFinder invokes SNAPSHOT or FlashCopy if available.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Using EXTENT_ALLOCATION(YES,CONSOLIDATE_VOLUME):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Each target volume contains the same number of tracks as the source volume; but, the number and size of extents on the target volume may be different from those on the source volume.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Each target volume is in the same VMAX system or RVA and/or ESS as its respective source volume. If enough target volumes exist in the respective VMAX systems and/or RVA or ESS and IBM SNAPSHOT is available, it is not necessary to code a datamover. For RVA, TimeFinder invokes SNAPSHOT or FlashCopy if available.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Using EXTENT_ALLOCATION(YES,CONSOLIDATE_ALL):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The number of target volumes may be different from the number of source volumes and the number and size of the extents on the targets may not match those on the source.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Each target volume is in the same VMAX system or RVA and/or ESS as its respective source volume. If enough target volumes exist in the respective VMAX systems and/or RVA or ESS and IBM SNAPSHOT is available, it is not necessary to code a datamover. For RVA, TimeFinder invokes SNAPSHOT or FlashCopy if available.</td>
</tr>
<tr>
<td></td>
<td>Dynamically Allocated</td>
<td>Multivolume dataset on available volumes in VMAX system. Is determined by candidate list. Extent sizes may be different from source and may be consolidated. A datamover is required to copy extents between storage systems.</td>
</tr>
<tr>
<td>Mixed VMAX system and non-VMAX</td>
<td>Preallocated</td>
<td>Multivolume dataset whose placement is determined by pre-allocation. If necessary to extend dataset, z/OS automatically selects the last allocated or next candidate volume. A datamover is required to copy extents between units.</td>
</tr>
</tbody>
</table>
Mixed VMAX system and non-VMAX

Using EXTENT_ALLOCATION(YES):
Each target volume has the same number of tracks used as its respective source volume. Each target extent matches the corresponding source extent.
Each target is in the same VMAX system, RVA and/or ESS or other VMAX system as its respective source volume. A datamover is required to copy extents between non-VMAX system or RVA and/or ESS controllers.

Using EXTENT_ALLOCATION(YES, CONSOLIDATE_VOLUME):
Each target volume contains the same number of tracks as the source volume; but, the number and size of extents on the target volume may be different from those on the source volume.
Each target is in the same VMAX system, RVA and/or ESS or other controller as its respective source volume. A datamover is required to copy extents between non-VMAX system or RVA and/or ESS controllers.

Using EXTENT_ALLOCATION(YES, CONSOLIDATE_ALL):
The number of target volumes may be different from the number of source volumes and the number and size of the extents on the targets may not match those on the source.
Each target is in the same VMAX system, RVA and/or ESS or other controller as its respective source volume. A datamover is required to copy extents between non-VMAX system or RVA and/or ESS controllers.

Same RVA and/or ESS

Dynamically Allocated

Multivolume dataset on the same RVA and/or ESS. Extent sizes may be different from source and may be consolidated. TimeFinder invokes SNAPSHOT and/or FlashCopy to copy extents.

Preallocated

Multivolume dataset on the same RVA and/or ESS. Determined by pre-allocation. If necessary to extend the dataset, z/OS automatically selects the last allocated or next candidate volume. TimeFinder invokes SNAPSHOT and/or FlashCopy to copy extents.
Using EXTENT_ALLOCATION(YES):
Each target volume has the same number of tracks used as its respective source volume. Each target extent matches the corresponding source extent. TimeFinder invokes SNAPSHOT and/or FlashCopy to copy extents.

Using EXTENT_ALLOCATION(YES,CONSOLIDATE_VOLUME):
Each target volume contains the same number of tracks as the source volume; but, the number and size of extents on the target volume may be different from those on the source volume. TimeFinder invokes SNAPSHOT and/or FlashCopy to copy extents.

Using EXTENT_ALLOCATION(YES,CONSOLIDATE_ALL):
The number of target volumes may be different from the number of source volumes and the number and size of the extents on the targets may not match those on the source. TimeFinder invokes SNAPSHOT and/or FlashCopy to copy extents.

Table 4 Summary of multivolume SNAP DATASET scenarios (page 5 of 5)

<table>
<thead>
<tr>
<th>Source</th>
<th>Target</th>
<th>Result</th>
</tr>
</thead>
</table>
| Same RVA and/or ESS | Extent Allocation | Multivolume dataset on the same RVA and/or ESS. Is determined by candidate list.
Using EXTENT_ALLOCATION(YES):
Each target volume has the same number of tracks used as its respective source volume. Each target extent matches the corresponding source extent. TimeFinder invokes SNAPSHOT and/or FlashCopy to copy extents.
Using EXTENT_ALLOCATION(YES,CONSOLIDATE_VOLUME):
Each target volume contains the same number of tracks as the source volume; but, the number and size of extents on the target volume may be different from those on the source volume. TimeFinder invokes SNAPSHOT and/or FlashCopy to copy extents.
Using EXTENT_ALLOCATION(YES,CONSOLIDATE_ALL):
The number of target volumes may be different from the number of source volumes and the number and size of the extents on the targets may not match those on the source. TimeFinder invokes SNAPSHOT and/or FlashCopy to copy extents. |
| Non VMAX or RVA and/or ESS | Dynamically Allocated | Multivolume dataset anywhere. Extent sizes may be different from source and may be consolidated. A datamover is required to copy extents. |
| Non VMAX or RVA and/or ESS | Preallocated | Multivolume dataset anywhere. Determined by pre-allocation. If necessary to extend dataset, z/OS automatically selects the last allocated or next candidate volume. A datamover is required to copy extents. |
| Non VMAX or RVA and/or ESS | Extent Allocation | Multivolume dataset anywhere. Is determined by candidate list.
Using EXTENT_ALLOCATION(YES):
Each target volume has the same number of tracks used as its respective source volume. Each target extent matches the corresponding source extent. A datamover is required to copy extents.
Using EXTENT_ALLOCATION(YES,CONSOLIDATE_VOLUME):
The target volumes contain the same number of tracks as the source volume; but, the number and size of extents on the target volume may be different from those on the source volume. A datamover is required to copy extents.
Using EXTENT_ALLOCATION(YES,CONSOLIDATE_ALL):
The number of target volumes may be different from the number of source volumes and the number and size of the extents on the targets may not match those on the source. A datamover is required to copy extents. |
Volser assignment for multivolume datasets defined with and without guaranteed space

The volser assignment for target multivolume datasets depends on whether the source and target dataset is:

- A VSAM or non-VSAM dataset
- Defined as having guaranteed or nonguaranteed space

The following tables show the resulting allocation following the snap of a multivolume non-VSAM and VSAM dataset where the source and target are either guaranteed space or nonguaranteed space. Table 5 shows results of snapping non-VSAM datasets. Table 6 shows the results of snapping VSAM datasets.

Table 5 Snapping non-VSAM datasets

<table>
<thead>
<tr>
<th>If the source dataset has guaranteed space</th>
<th>and the target dataset has guaranteed space, then</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>has nonguaranteed space, then</td>
</tr>
<tr>
<td></td>
<td>all volumes have specific volser.</td>
</tr>
<tr>
<td></td>
<td>all volumes have specific volser.</td>
</tr>
<tr>
<td>has nonguaranteed space</td>
<td>the first volume has a specific volser.</td>
</tr>
<tr>
<td></td>
<td>The other volumes are candidate volumes.</td>
</tr>
</tbody>
</table>

Table 6 Snapping VSAM datasets

<table>
<thead>
<tr>
<th>If the source dataset has guaranteed space</th>
<th>and the target dataset has guaranteed space, then</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>has nonguaranteed space, then</td>
</tr>
<tr>
<td></td>
<td>all volumes have specific volser.</td>
</tr>
<tr>
<td></td>
<td>all volumes have specific volser.</td>
</tr>
<tr>
<td>has nonguaranteed space</td>
<td>all volumes have specific volser.</td>
</tr>
<tr>
<td></td>
<td>the first volume has a specific volser.</td>
</tr>
<tr>
<td></td>
<td>The other volumes are candidate volumes.</td>
</tr>
</tbody>
</table>

Relative GDGs

You can use TimeFinder to manipulate a relative GDG if you use the INDDname and/or OUTDDname options instead of the SOURCE and TARGET options for snap by dataset. The relative GDG number specified in the INDD or OUTDD parameter are converted to an absolute GDG number by z/OS. When using a relative GDG, then only that generation is considered.

Note: TimeFinder does not create the model GDG statement when using datasets addressed by a relative GDG number.

The following examples illustrate the capabilities available for INDD and OUTDD. These examples are not complete TimeFinder statements (only the input and/or output DD statements are shown); they are samples that show the different capabilities available when versions of a GDG are desired.
The examples are based on the existence of a GDG base for both the source and target datasets, with a limit of 5 generations. The source and target datasets have cataloged generations G0001V00 through G0005V00. The name of the source GDG is EMC.SOURCE, and the name of the target GDG is EMC.TARGET.

Example 1

Use the relative (+0) source dataset and create its associated target dataset.

```plaintext
//STDIN    DD  DISP=SHR,DSN=EMC.SOURCE(+0)
//QCINPUT  DD  *
SNAP       (INDD(STDIN)             -
           TARGET(EMC.TARGET.*)    -
           other SNAP parameters    )
```

Result: EMC.TARGET.G0005V00 is replaced.

Example 2

Create the relative (+1) source dataset and in another step in the same job, create its associated target dataset.

```plaintext
//SNAPSTEP   EXEC  PGM=EMCSNAP
//CREATE        DD    DISP=(NEW, CATLG),DSN=EMC.SOURCE(+1),UNIT=3390,
//      VOL=SER=STDVOL,SPACE=(CYL,(3,1)),....
//*
//STDIN DD      DISP=SHR,DSN=EMC.SOURCE(+1)
//QCINPUT DD      *
SNAP    (INDD(STDIN)           -
         TARGET(EMC.TARGET.*) )    -
         other SNAP parameters
```

Result: EMC.SOURCE.G0006V00 and EMC.TARGET.G0006V00 are created.

Example 3

Create the relative (+1) source dataset and in another step in the same job create a relative (+1) target dataset.

```plaintext
//SNAPSTEP   EXEC  PGM=EMCSNAP
//CREATE        DD    DISP=(NEW, CATLG),DSN=EMC.SOURCE(+1),UNIT=3390,
//      VOL=SER=STDVOL,SPACE=(CYL,(3,1)),....
//*
//STDIN DD      DISP=SHR,DSN=EMC.SOURCE(+1)
//OUTPUT DD      DISP=(NEW, CATLG),DSN=EMC.TARGET(+1),UNIT=3390,
//      VOL=SER=OUTVOL,SPACE=(CYL,(3,1)),....
//QCINPUT DD      *
SNAP    (INDD(STDIN)           -
         OUTDD(OUTPUT )     -
         other SNAP parameters    )
```

Result: Assuming Example 2 completes before Example 3, EMC.SOURCE.G0007V00 and EMC.TARGET.G0007V00 are created.

Note: Keep in mind that Example 2 is a different job from Example 3.

The use of the INDD and OUTDD parameters in TimeFinder allows for many other options for both input to the snap and output from the snap process.
Candidate volume list

SNAP DATASET allows you to specify the ESOTERIC(UNITNAME), VOLUME, SCFGROUP and BCVGROUP parameters together. SNAP DATASET then uses the resulting list of volumes as a candidate volume list.

As SNAP DATASET processes each source and target dataset pair, it chooses the volumes used for target dataset allocation from the candidate volume list. SNAP DATASET determines the eligibility of a particular volume using the following criteria:

- A matching volume is found online.
- The volume is a BCV volume.
- The volume is on the same VMAX system as the source volume.
- The volume is of the same device type as the source volume.
- The volume track size is the same as the source volume track size.

After compiling a list of eligible volumes, SNAP DATASET determines the amount of free space for each of the eligible volumes. Then SNAP DATASET sorts the list based upon the amount of free space. Finally, TimeFinder selects the first VOLUMECOUNT number of volumes for use when allocating the target dataset.

A SNAP DATASET command places the target volume in a Hold status. To remove the Hold status, use the RELEASE option on the CONFIG command after the snap is complete or has been stopped. You cannot release the Hold status while there are any indirect tracks on the volume.

If you used the MODE(NOCOPY) parameter, you may find it necessary to cause the MODE(NOCOPY) snap to complete normally by:

- Running the original snap job (JCL and control cards)
- Adding PARM="GLOBAL MODECOPYFINISH" to the PGM=snap execute statement

Note: In an SMS environment, TimeFinder ignores the candidate volume list.

VSAM ENQ support

If you specify (or default) VSAMENQMODE (NONE) on SNAP DATASET, then TimeFinder performs no testing of the SYSVSAM ENQ.

If you specify VSAMENQMODE (SHARED), an ENQ is issued with the SHR attribute. If you specify VSAMENQMODE (EXCLUSIVE), an ENQ is issued with the EXC attribute. If the ENQ is satisfied, processing continues normally.

After the request is processed, then a DEQ is issued to release the resource.

- If you specified (or defaulted) TOLERATEVSAMENQFAILURE (NO), an error message is issued and processing of the request terminates.
- If you specified TOLERATEVSAMENQFAILURE (YES), a warning message is issued and processing of the request is continues.

After the request is processed, then a DEQ is issued to release the resource. If the ENQ cannot be satisfied, the value of the TOLERATEVSAMENQFAILURE parameter determines what happens.
Operations and Examples

- If you specified (or defaulted) TOLERATEVSAMENQFAILURE (NO), an error message is issued and processing of the request terminates.

- If you specified TOLERATEVSAMENQFAILURE (YES), a warning message is issued and processing of the request continues.

The QNAME used is 'SYSVSAM'. The RNAME used is 'dsname|catalogname|L1|L2|L3|O', the same as used by VSAM for protecting resources opened for update purposes.

Note: IBM documentation provides more information about the QNAME and RNAME.

When a different job attempts to use the VSAM dataset while it is being snapped, results vary depending on the VSAM dataset share options and the VSAMENQMODE. **Table 7** provides more information.

Table 7 VSAM dataset share options and the VSAMENQMODE

<table>
<thead>
<tr>
<th>VSAMENQMODE</th>
<th>Share options</th>
<th>Open mode</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHR</td>
<td>(1,3) or (1,4)</td>
<td>Input</td>
<td>File Open Error – IEC1611 052-084.</td>
</tr>
<tr>
<td>SHR</td>
<td>(1,3) or (1,4)</td>
<td>Update</td>
<td>File Open Error – IEC1611 052-084.</td>
</tr>
<tr>
<td>EXC</td>
<td>(1,3) or (1,4)</td>
<td>Input</td>
<td>File Open Error – IEC1611 052-084.</td>
</tr>
<tr>
<td>EXC</td>
<td>(1,3) or (1,4)</td>
<td>Update</td>
<td>File Open Error – IEC1611 052-084.</td>
</tr>
<tr>
<td>SHR</td>
<td>(2,3) or (2,4)</td>
<td>Input</td>
<td>File opened successfully.</td>
</tr>
<tr>
<td>SHR</td>
<td>(2,3) or (2,4)</td>
<td>Update</td>
<td>File opened successfully.</td>
</tr>
<tr>
<td>EXC</td>
<td>(2,3) or (2,4)</td>
<td>Input</td>
<td>File opened successfully.</td>
</tr>
<tr>
<td>EXC</td>
<td>(2,3) or (2,4)</td>
<td>Update</td>
<td>File Open Error – IEC1611 052-084.</td>
</tr>
<tr>
<td>SHR</td>
<td>(3,3) or (3,4)</td>
<td>Input</td>
<td>File opened successfully.</td>
</tr>
<tr>
<td>SHR</td>
<td>(3,3) or (3,4)</td>
<td>Update</td>
<td>File opened successfully.</td>
</tr>
<tr>
<td>EXC</td>
<td>(3,3) or (3,4)</td>
<td>Input</td>
<td>File opened successfully.</td>
</tr>
<tr>
<td>EXC</td>
<td>(3,3) or (3,4)</td>
<td>Update</td>
<td>File Open Error – IEC1611 052-084.</td>
</tr>
<tr>
<td>SHR</td>
<td>(4,3) or (4,4)</td>
<td>Input</td>
<td>File opened successfully.</td>
</tr>
<tr>
<td>SHR</td>
<td>(4,3) or (4,4)</td>
<td>Update</td>
<td>File opened successfully.</td>
</tr>
<tr>
<td>EXC</td>
<td>(4,3) or (4,4)</td>
<td>Input</td>
<td>File opened successfully.</td>
</tr>
<tr>
<td>EXC</td>
<td>(4,3) or (4,4)</td>
<td>Update</td>
<td>File Open Error – IEC1611 052-084.</td>
</tr>
</tbody>
</table>
VSAM open indicator support

The VSAM open (for update) indicator is located in the VVDS. Whenever you open a VSAM cluster for update, the open (for update) indicator is set. When the VSAM cluster is successfully closed, the open (for update) indicator is reset.

If multiple jobs open the VSAM cluster for update, the last job to close the cluster resets the open (for update) indicator. If the last (or only) job fails, the open (for update) indicator is left set.

It is the responsibility of the next job that opens the VSAM cluster for update to perform a VERIFY. The VERIFY ensures that the meta data for the cluster matches the contents of the VSAM cluster.

A warning message is issued if a VSAM cluster is snapped and the VSAM open (for update) indicator is set.

Note: The number of extents does not matter. You can use the EXTENT ALLOCATION parameter on the GLOBAL or SNAP DATASET commands to snap non-VSAM datasets with a stripe count of one (1).

Dataset name masking

SNAP DATASET supports dataset masking for the SOURCE, EXCLUDE, TARGET, and RENAMEUNCONDITIONAL parameters following the DFDSS masking rules. Table 8 shows the DFDSS masking rules.

Table 8 DFDSS masking rules

<table>
<thead>
<tr>
<th>Character</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>* (single asterisk)</td>
<td>Takes the place of exactly one qualifier or indicates that you are specifying one part of a qualifier.</td>
</tr>
<tr>
<td>** (double asterisk)</td>
<td>Used with other qualifiers, denotes either the nonexistence of leading, trailing and middle qualifiers, or that they play no role in the selection.</td>
</tr>
<tr>
<td>% (percent character)</td>
<td>Indicates a single-character .</td>
</tr>
</tbody>
</table>

Follow these rules when using asterisks in a qualifier:

- The maximum permissible asterisks in a qualifier is two.
- When two asterisks are present in a qualifier, they must be the first and last.

For example:

Valid qualifiers:

`**`
`*A*`

Invalid qualifiers:

`***A*`
`*A*B*`
`*A*B`
`A*B*C`
Keep in mind the following masking rules:

- **SOURCE, EXCLUDE, TARGET** and **RENAMEUNCONDITIONAL (RENUC)** dataset name mask rules are different. The **SOURCE, EXCLUDE** and **RENUC**
 (oldname) allow partial index level masking. For example, while
 EMC.DATA*.ABC** is valid for **SOURCE, EXCLUDE or RENUNC** (oldname), it is not valid as a **TARGET or RENUNC** (newname).
- The **SOURCE, EXCLUDE** and **RENUC** (oldname) dataset name masks follows
 DFDSS rules for dataset selection.

 Note: The first qualifier of the source dataset must not include any wildcards.

- The **TARGET and RENUNC** (newname) masks only allow wild carding for complete
 index levels. For example, while EMC.DATA*.ABC** is invalid for a **TARGET or**
 RENUC (newname), EMC.DATA.* is valid as a target.
- The **TARGET and RENUNC** (newname) dataset follow DFDSS rules for **RENAME**
 processing. The **RENUC** dataset name masks follows DFDSS rules for **RENUC**.

Some examples of valid **TARGET masks** are:

- **A.** Replace the first index level of the source dataset name with “A.”
- **A.B.** Replace the first two index levels of the source dataset name with “A.B.”
- **.*A.** Replace the second index level of the source dataset name with “A.”
- **.BCD** Replace the last index level of the source dataset name with “BCD.”
- **.*FEG** Copy the first two index levels from the source dataset name and make the third index level “FEG.”

Some examples of invalid **TARGET masks** are:

- **.DEF.** INVALID, don’t know which level to replace.
- **A.*BCD** INVALID, the entire index level must be wild, or not at all.

Snaps from offline or cloned volumes

TF/Clone can now perform snaps from devices that are offline or cloned. To do this,
you must identify all of the volumes to be scanned. Then, TF/Clone performs the
following steps:

1. Examines the VVDS and VTOC for each device specified in the
 SOURCE_VOLUME_LIST parameter, looking for datasets that match the
 SOURCE(DATASET (xx)) parameter.

 Note: You can use wild cards for dataset names.

For non-VSAM, primary information is acquired from the VTOC. For VSAM, cluster
and component relationships and names are acquired from the VVDS and VTOC.
The VVDS and VTOC records are cached in memory for future reference, ensuring
code compatibility.
2. Verifies that all pieces of a dataset are present. This includes
 - Checking for missing volumes on multivolume non-VSAM datasets. If the end-of-dataset indicator is not set for a multivolume non-VSAM dataset, the dataset cannot be copied.
 - Analyzing the RBA values for VSAM datasets to ensure that the entire range of RBAs is represented by the components found.
3. Resumes normal processing. Since the VVDS and VTOCIX entries are cached, no further reference to the VTOC or VVDS is made.

A single SNAP DATASET statement may reference catalogued datasets, or datasets on offline volumes, but not both together.

SNAP offline volumes example

This example uses groups to snap multivolume, VSAM KSDS (with AIX) from offline volumes.

1. The example defines a source volume list called OFFVOLS for the offline volumes.
2. The example performs a SNAP DATASET specifying a target of BAP.TESTING.NEWKSDS. It also uses SOURCE_VOLUME_LIST to specify the source volume list created previously.

Note: You can use this example only if you have purchased the licensed feature code for the keyword (parameter) TARGET.

```
* *
* DEFINE *
*
DEFINE SOURCE_VOLUME_LIST OFFVOLS ( -
   UNIT(6EF0) -
   UNIT(6EF6-6EF7) -
   VOL(U6A230) -
   VOL(U6A23*) -
   )
* *
* SNAP *
SNAP DATASET ( SOURCE(BAP.TESTING.TWOKSDS) -
   TARGET(BAP.TESTING.NEWKSDS) -
   HOSTCOPYMODE(NONE) -
   SOURCE_VOLUME_LIST (OFFVOLS) -
   REPLACE(Y) -
   REUSE(N) -
   SPHERE(YES)-
   VOL(U6A231,U6A230) -
   )
```
Cascaded operations

“SNAP/FlashCopy coexistence” on page 106 provides information about cascaded operations with both SNAP VOLUME and SNAP DATASET.

Security considerations

No change is required to your existing security process when implementing the SNAP DATASET command. To verify that the users have proper access to perform the snap, a request is made to SAF with a resource ID of “DATASET” and the dataset name. The source dataset is checked for READ access and the target is checked for ALTER access.

You can also make use of the EMCSAFI Security Interface and the SAF command security. The EMCSAFI Security Interface feature provides additional security checks for environments where multiple groups of users are using different devices in a single storage system.

Note: The Mainframe Enablers Installation and Customization Guide provides more information about the EMCSAFI Security Interface.

Examples

Example 1 This example snaps a dataset:

SNAP DATASET (SOURCE ('PROD.R1.DATA') -
TARGET (PROD.R1.DATA.SNA))

Example 2 This example snaps a dataset to a target to be allocated using the storage class PROJ1. The snap is to proceed even if exclusive serialization is not obtained for the source.

SNAP DATASET (SOURCE ('PROJECT1.OUTPUT.FILE') -
TARGET (SNAP.PROJECT1) STORCLAS (PROJ1) -
TOLENQF (YES))

Example 3 This example snaps a dataset, that is being shared by another job to a target that is allocated on volume PACK01.

SNAP DATASET (SOURCE ('DATA.RVA#1.FILE') -
TARGET (BACKUP.RVA#1.FILE) VOLUME(PACK01) -
HCPYMODE (SHR))

Example 4 This example snaps a VSAM KSDS and its SPHERE records (alternate index and path records). In the example:

◆ Wild cards are used in the RENAMEUNCONDITIONAL statement to make sure only the first two HLQ are changed.

◆ A BCVGROUP and a VOLUME are both used, which allows TF/Clone to choose the best target volume from the combination of the BCVGROUP and the volume statements.

◆ The HOSTCOPYMODE (SHR) allows other users to access the source dataset while the snap is in progress.

◆ The REPLACE(Y) enables the overwriting of target datasets if they exist.
◆ The WAITFORCOMPLETION(YES,MESSAGES) parameter tells TF/Clone to continue this job step until this snap is complete.

◆ The MESSAGES sub-parameter activates a progress report with the number of remaining tracks for the VMAX system to copy. This status report is given from time to time until this snap is finally completed.

Example 5

This example uses wildcards. In the example:

◆ In the SOURCE statement, the % symbol represents a single character. All selected datasets with a suffix of G00x1V00 (where x is a number from 0 to 9 respectively) is selected.

◆ The wild carding in the target dataset changes only the HLQ of the target dataset names to BG5. The rest of the dataset name is like the source dataset name. This is a SMS managed source and target, and the suggested volumes come from BCVGROUP (SMS_GRP1), but the ACS routines determine the DFSMS approved candidate volume or volumes.

◆ The DATACLASS is to be copied from the source dataset. The target dataset is cataloged.

◆ HOSTCOPYMODE(SHARED) means that exclusive control of the source is not required, and the user manages multiple access to the source dataset during the snap operation. The snap tolerates an allocation of the target failure, a target copy failure, and an ENQUEUE failure of the source and completes this operation. The target is to be replaced.

◆ If this job causes more than a maximum of the sessions allowable for a dataset, TF/Clone waits for a completed session before starting another session. If the target dataset already exists, then the old target dataset is deleted and a new one is allocated.

Note: If the GDG base does not exist, a GDG target base is created with the same attributes as the GDG source base. If the GDG target base does exist, it is updated with the GDG source base attributes.

* SNAP MULTI-AIX VSAM KSDS WITH UPGRADE PATH
* SNAP DATASET (SOURCE(STANDARD.MV3404.VSAM.CL1) - TARGET(BCV.MV3424.VSAM.CL1) - VOL (MV3424) - BCVGROUP(BCV_GRP1) - CATALOG(YES) - SPHERE(YES) - RENAMEU((STANDARD.MV3404.**,BCV.MV3424.**)) - HOSTCOPYMODE(SHR) - REPLACE(Y) - WAITFORCOMPLETION(YES,MESSAGES) -) *

Operations and Examples
Operations and Examples

Example 6

The following example uses the DEFINE_SOURCE_VOLUME_LIST to define a list of offline volumes. Then, it uses SNAP DATASET to perform a snap from the volumes.

* DEFINE

* DEFINE SOURCE_VOLUME_LIST OFFVOLS (-
 UNIT(6EF0) -
 UNIT(6EF6-6EF7) -
 VOL(U6A230) -
 VOL(U6A23*) -
)

* SNAP

* SNAP DATASET (SOURCE(BAP.TESTING.TWOKSDS) -
 TARGET (BAP.TESTING.NEWKSDS) -
 HOSTCOPYMODE(NONE) -
 SOURCE_VOLUME_LIST (OFFVOLS) -
 REPLACE(Y) -
 REPLACE(N) -
 SPHERE(YES) -
 VOL(U6A231,U6A230) -
)
Example 7 This example employs SNAP DATASET to snap two datasets from source to target. A BCV group is identified for inclusion in the volume candidate list and existing target datasets may be erased.

```assembler
// JOB
// QCOPYRUN EXEC PGM=EMCSNAP
// STEPLIB DD DISP=SHR, DSN=DS-PREFIX.LINKLIB
// SYSPRINT DD SYSOUT=*  
// SYSDUMP DD SYSOUT=*  
// SYSOUP DD SYSOUT=*  
// QCINPUT DD *
*  
GLOBAL MAXRC(8)  
*  
SNAP DATASET (SOURCE(YOUR-SOURCE-DSN) -  
  TARGET(YOUR-TARGET-DSN) BCVGROUP(SYMBCV) -  
  REPLACE(Y) FORCE(N) HOSTCOPYMODE(NONE) )  
*  
SNAP DATASET (SOURCE(YOUR-SOURCE-DSN1) -  
  TARGET(YOUR-TARGET-DSN1) BCVGROUP(SYMBCV) -  
  REPLACE(Y) FORCE(N) HOSTCOPYMODE(NONE) )  
*/  
// BCVGROUP DD *  
BCVGROUP SYMBCV VOL(BCVVOL1 BCVVOL2 BCVVOL3 BCVVOL4)  
//
```
Performing a Parallel Snap

Note: The PARALLEL SNAP solution should not be confused with the Simultaneous TF Clone feature. Refer to “Simultaneous (parallel) clone” on page 24 for more information on the use of the PARALLEL_CLONE parameter.

Parallel Snap creates a snap copy of a dataset on both sides of an SRDF/S configuration. To allow for Parallel Snap, the configuration must meet the following conditions:

- The snap source volumes are the R1/R2 pair.
- The snap target volumes are non-SRDF devices.
- Data is not replicated across the SRDF link.
- TF/Mirror operations are supported on both sides of the SRDF relationship.

Figure 10 shows a Parallel Snap operation.

Parallel Snap software requirements

The minimum levels of EMC software required for Parallel Snap are:

- TF/Mirror for z/OS, PTF level – ST54009 or higher.
- TimeFinder, PTF level – SN55008 or higher.

Parallel Snap operations

Parallel Snap allows two independent snap operations in the same or different VMAX systems. These operations are driven by two independent SNAP DATASET commands. These commands specify the same source dataset name, but different target dataset names. Serialization can be guaranteed across both commands so as to achieve the same consistent point in time copy on each target dataset.
In a parallel operation, TimeFinder requires a channel to the VMAX system on which the R2 is located. Parallel Snap performs the following steps:

1. Obtains dataset information from the R1 device.
2. Allocates the snap target dataset on both the local and remote VMAX system.
3. After detecting that there is a synchronously mirrored R2 that is a partner of the source R1, performs the snap of the source datasets from the R2 mirror within the remote VMAX system.

In short, the R1 provides the dataset information to drive allocation, and SRDF provides a copy of the data remotely from which to perform the snap. The target dataset is cataloged on the R1 VMAX system, and (assuming the catalog volumes are remotely mirrored as they should normally be) the snap target dataset is properly cataloged and accessible if you need to perform an IPL operation on the z/OS system after a disaster occurs.

To achieve independent dataset snaps at the same point in time from both the R1 and R2 of a mirrored pair, you must write SMS ACS routines to direct the allocation of the snap target datasets to the appropriate VMAX systems.

These routines also need to ensure that the target volumes selected on the local site are not R1 devices. If an R1 device is selected as the snap target a “redundant” copy of the data is propagated across the link, obviating the benefit of this solution.

Invoking Parallel Snap

Invoking Parallel Snap requires proper TimeFinder syntax if BCV operations are to be performed against the snap source or snap target volumes in the R2 VMAX system.

Parallel Snap operation

For both snap targets to represent a consistent point in time image of the source datasets, specify the following parameters:

- For non-VSAM datasets, set TOLERATEENQFAILURE to NO (the default) and set HOSTCOPYMODE(EXCLUSIVE).

 To ensure consistency for the snap target, these settings do not allow read access to occur on the source dataset during snap initiations. You can allow read access with HOSTCOPYMODE(SHARE), but doing so does not guarantee a consistent point-in-time snap.

 For VSAM datasets, set HOSTCOPYMODE(SHARED) with VSAMENQMODE(EXCLUSIVE). Also specify TOLERATEENQFAILURE(NO) and TOLERATEVSAMENQFAILURE(NO).

 Note: VSAM concurrency is controlled by a combination of VSAMENQMODE and the VSAM SHAREOPTIONS settings for the dataset. Consistent, point-in-time copies of a dataset can only be obtained using EXCLUSIVE.

- You must also use the new GLOBAL command parameter:

 GLOBAL ENQSCOPE(STEP)

 This option is required for the ENQ to be set for the dataset that is to be snapped.
Example

The following example shows parameter usage for Parallel Snap operation:

```c
/*****************************************************/
/*                                                   */
/* USER WANTS TO SNAP TO A LOCAL TGT NOT IN THE    */
/* SRDF GROUP, AND AT THE SAME TIME SNAP THE       */
/* SAME DS THRU THE R2 TO A DIFFERENT TARGET     */
/* ON THE REMOTE BOX, ALSO NOT IN THE SRDF GROUP, */
/* ALL OF THIS WHILE AN ESTABLISH/SPLIT            */
/* RELATIONSHIP IS IN PROGRESS ON THE             */
/* REMOTE BOX USING THE R2 AND A BCV THAT IS     */
/* DIFFERENT FROM THE REMOTE SNAP TARGET VOLUME.  */
/*                                                   */
/*****************************************************/
//*****************************************************/
//*         VOLUMES USED FOR SNAP                   */
//*    STD : 6600        R1 VOL LCL SNAP SOURCE   */
//*    STD : D740        R2 VOL RMT SNAP SOURCE   */
//*                                                   */
//*    STD : 6608        LCL SNAP TARGET            */
//*    STD : D750        RMT SNAP TARGET            */
//*****************************************************/
GLOBAL ENQSCOPE(STEP)              -
HOSTCOPYMODE(EXCLUSIVE)     -
VSAMENQMODE(EXCLUSIVE)      -
TOLERATEENQFAILURE(NO)     -
TOLERATEVSAMENQFAILURE(NO) -
*                               - The next 4 parameters ensure
* SNAP FROM R1 TO LOCAL TGT      - consistency of the snaps.
*                               - Same source.
SNAP DATASET ( SOURCE(LCLSRC.MV6600,** )   - Different target.
  TARGET(LCLTGT.MV6608,** )    -
  VOLUME(MV6608                ) -
  REPLACE(Y)                  -
  REUSE(NO )                  -
)                              -
*                               -
* SNAP FROM R1 THRU R2 TO REMOTE TGT
*                               - Same source.
SNAP DATASET ( SOURCE(LCLSRC.MV6600,** )   - Different target.
  TARGET(RMTTGT.MVD750,** )    -
  VOLUME(MVD750                ) -
  REPLACE(Y)                  -
  REUSE(NO )                  -
)                              -
*                               -
```
Performing queries

QUERY GROUP display example

The following example shows the output from a QUERY GROUP command.

```
PROCESSING FOR STATEMENT #2 BEGINNING, QUERY GROUP REQUEST FOR GROUP SNP7310
GROUPNAME - STATUS - DESCRIPTION
SNP7310 - INITIAL - SNP7310 - 8 VOL SNAP

HISTORY:

<table>
<thead>
<tr>
<th>RC</th>
<th>DATE     / TIME</th>
<th>OLD STAT</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFINE</td>
<td>0000</td>
<td>2006-12-02 / 15:28:58</td>
<td>INITIAL</td>
</tr>
<tr>
<td>DEFINE</td>
<td>0000</td>
<td>2006-12-02 / 14:31:45</td>
<td>INITIAL</td>
</tr>
<tr>
<td>SNAP VOL</td>
<td>0008</td>
<td>2006-12-02 / 15:31:50</td>
<td>INITIAL</td>
</tr>
<tr>
<td>SNAP VOL</td>
<td>0008</td>
<td>2006-12-02 / 15:54:59</td>
<td>FAILED</td>
</tr>
<tr>
<td>SNAP VOL</td>
<td>0004</td>
<td>2006-12-02 / 15:57:37</td>
<td>FAILED</td>
</tr>
<tr>
<td>STOP VOL</td>
<td>0000</td>
<td>2006-12-02 / 16:22:34</td>
<td>PRESNAP</td>
</tr>
</tbody>
</table>

STATEMENTS:
+ *
+ SNAP VOLUME (SOURCE (VOLUME(mC0C10)) TARGET (UNIT(0C30)) -
+ NEWVOLID (MV0C30) )
+ SNAP VOLUME (SOURCE (VOLUME(MV0C11)) TARGET (UNIT(0C31)) -
+ NEWVOLID (MV0C31) )
+ SNAP VOLUME (SOURCE (VOLUME(MV0C12)) TARGET (UNIT(0C32)) -
+ NEWVOLID (MV0C32) )
+ SNAP VOLUME (SOURCE (VOLUME(MV0C13)) TARGET (UNIT(0C33)) -
+ NEWVOLID (MV0C33) )
+ SNAP VOLUME (SOURCE (VOLUME(MV0C14)) TARGET (UNIT(0C34)) -
+ NEWVOLID (MV0C34) )
+ SNAP VOLUME (SOURCE (VOLUME(MV0C15)) TARGET (UNIT(0C35)) -
+ NEWVOLID (MV0C35) )
+ SNAP VOLUME (SOURCE (VOLUME(MV0C16)) TARGET (UNIT(0C36)) -
+ NEWVOLID (MV0C36) )
+ SNAP VOLUME (SOURCE (VOLUME(MV0C17)) TARGET (UNIT(0C37)) -
+ NEWVOLID (MV0C37) )
+ *
+ END GROUP

PROCESSING FOR STATEMENT #2 COMPLETED, HIGHEST RETURN CODE ENCOUNTERED IS 0
```

The output is organized as follows:

- The group name (SNP7310), the status (INITIAL) and a description (SNP7310 - 8 VOL SNAP).
- A history of group usage, including:
 - Commands executed
 - Resulting return codes (RC)
 - Date of execution
 - Time of execution
 - Original status (OLD STAT)
 - Resulting status (STATUS)
- The commands in the group.
- The results.
Remote QUERY VOLUME example

This example employs three parameters available for the remote QUERY VOLUME command. Any of the three works.

```
//SNPQUERY EXEC PGM=EMCSNAP
//STEPLIB DD DISP=SHR, DSN=EMC.SSNP.V580.LINKLIB
//MV6C00 DD DISP=SHR, UNIT=3390, VOL=SER=MV6C00
//SYSPRINT DD SYSOUT=*  
//EMCQCAPI DD SYSOUT=*  
//SYSABEND DD SYSOUT=*  
//SYSOUT DD SYSOUT=*  
//QCOUTPUT DD SYSOUT=*  
//QCINPUT DD *  
GLOBAL MAXRC(4)  
*  
* 1. QUERY REMOTE SYMM USING LOCAL VOLUME  
QUERY VOLUME (REMOTE (VOL (MV6C00) RAGROUP(17) ) )  
*  
* 2. QUERY REMOTE SYMM USING LOCAL UNIT  
QUERY VOLUME (REMOTE (UNIT( 6C00) RAGROUP(17) ) )  
*  
* 3. QUERY REMOTE SYMM USING LOCAL DDNAME  
QUERY VOLUME (REMOTE (DDNAME(MV6C00) RAGROUP(17) ) )  
/*  
```

Cleaning up volumes

Use the CLEANUP command to remove each completed extent in the extent track on the indicated volume.

Remote CLEANUP example

This example performs a remote CLEANUP to a source volume.

```
//CLEANUP EXEC PGM=EMCSNAP  
//STEPLIB DD DISP=SHR, DSN=EMC.SSNP.V580.LINKLIB  
//SYSPRINT DD SYSOUT=*  
//EMCQCAPI DD SYSOUT=*  
//SYSABEND DD SYSOUT=*  
//SYSOUT DD SYSOUT=*  
//QCOUTPUT DD SYSOUT=*  
//QCINPUT DD *  
GLOBAL MAXRC(4) CHKO(N) AUTOMATIC_RELEASE_HOLD(YES)  
*  
*   CLEANUP 2 REMOTE VOLUMES USING UNIT AS THE  
*  
CLEANUP REMOTE(UNIT (6C00) RAGROUP(17) CONTROLLER(90132)) SYMDV#(0000)  
CLEANUP REMOTE(UNIT (6C00) RAGROUP(17) CONTROLLER(90132)) SYMDV#(0001)  
*  
/*  
```
Using SRDF/A R2 Wait for Precopy

TimeFinder has a new SRDF/A R2 Wait for Precopy feature. SRDF/A R2 Wait for Precopy is intended to address a situation when too many protected tracks occur on an SRDF/A R2 device. To minimize any possible issues, TimeFinder now requires that you specify the following parameters to snap from an SRDF/A R2 device:

- PRECOPY(YES)
- MODE(COPY)
- WAIT_FOR PRECOPY_PASS1(YES)

With Enginuity 5876 and HYPERMAX OS 5977, a TF/Snap off an active SRDF/A R2 device is supported with group and device level pacing set by SRDF Host Component commands. Refer to the *SRDF Host Component for z/OS Product Guide* for more information.
Operations and Examples
This chapter provides a reference for the TimeFinder commands.

- Conventions ... 150
- Traditional TimeFinder commands 151
- General Pool Management commands (TF/Snap) 311
Conventions

This chapter provides reference sections for the TimeFinder commands. In the following sections:

◆ Those commands that apply to both TF/Clone and TF/Snap have headings that consist only of the command name.

◆ Those commands that only apply to TF/Clone have headings that consist of the command name and the term: (TF/Clone).

Note: Any command that is noted as (TF/Clone) requires a TF/Clone License before you can use it.

◆ The commands that only apply to TF/Snap have headings that consist of the command name and the term: (TF/Snap).

Note: Any command that is noted as (TF/Snap) requires a TF/Snap License before you can use it.

◆ The descriptions of parameters that are only available if you install the appropriate licensed feature code have notes that explain which licensed feature code is needed.

Note: When entering commands, do not code fields past column 71.

Syntax conventions

The commands in this chapter follow these syntax conventions:

◆ CAPITALIZATION = must be typed

◆ [] = optional entry

◆ Italic = argument

◆ | = alternative argument values

◆ Default values are indicated by an underline. For example, if the parameter has the following option, *(YES|NO)* , the underlined NO indicates the default value.
Traditional TimeFinder commands

Traditional TimeFinder TF/Clone and TF/Snap commands require a physical target device to be specified in the command to execute a full volume copy.

While still supported for downward compatibility, the traditional TimeFinder commands now use the SnapVX architecture under the covers. It is recommended to use SnapVX commands whenever possible.

Note: SnapVX commands are covered in the *TimeFinder SnapVX and zDP Product Guide*.

IMPORTANT

Some traditional TimeFinder commands may have parameters related to SnapVX. For a description of such parameters, refer to the *TimeFinder SnapVX and zDP Product Guide*.

Customer task guide for traditional TF commands

The customer task guide table allows you to quickly find the corresponding command for TimeFinder tasks. Follow the page references for a more complete description of each command.

Table 9 Customer task guide for traditional TF commands

<table>
<thead>
<tr>
<th>Task</th>
<th>Associated TF Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determine when the preceding SNAP VOLUME or SNAP DATASET actions take place. Optionally specify whether the SNAP actions are to be performed using Enginuity Consistency Assist (ECA) to form consistent point-in-time volume snaps.</td>
<td>“ACTIVATE” on page 214</td>
</tr>
<tr>
<td>Check each extent track on the indicated volume to determine whether it is complete, and then remove each completed extent in the extent track.</td>
<td>“CLEANUP [EXTENT TRACK ON]” on page 217</td>
</tr>
<tr>
<td>Specify RELEASE, NR, and READY conditions for BCV and STD devices.</td>
<td>“CONFIG (TF/Clone)” on page 220</td>
</tr>
<tr>
<td>Define a group of SNAP VOLUME and GLOBAL statements.</td>
<td>“DEFINE GROUP” on page 311</td>
</tr>
<tr>
<td>Create a list of offline devices, and then specify that list (as an argument to the SOURCE_VOLUME_LIST parameter) to the QUERY DATASET and SNAP DATASET commands.</td>
<td>“DEFINE SOURCE_VOLUME_LIST (TF/Clone)” on page 224</td>
</tr>
<tr>
<td>Delete an existing group, that was defined with the DEFINE GROUP command.</td>
<td>“DELETE GROUP” on page 313</td>
</tr>
<tr>
<td>Complete the definition of a group. You must enter an END GROUP after you finish entering the SNAP VOLUME and GLOBAL statements that define the group.</td>
<td>“END GROUP” on page 313</td>
</tr>
<tr>
<td>Specify parameters that apply to all following commands, unless you override them using optional parameters specified for an individual command.</td>
<td>“GLOBAL” on page 226</td>
</tr>
<tr>
<td>Get dataset status information.</td>
<td>“QUERY DATASET (TF/Clone)” on page 256</td>
</tr>
</tbody>
</table>
Display both the site options table and any GLOBAL overrides that have been specified in the input stream.

"QUERY GLOBAL" on page 257

Query the contents of one or all groups.

"QUERY GROUP" on page 257

Get information about the status of virtual devices in one or more VMAX systems.

"QUERY VDEVICE (TF/Snap)" on page 258

Get information about the status of devices in one or more VMAX systems.

"QUERY VOLUME" on page 259

Restore the contents of a virtual device (VDEV) to a Standard (STD or BCV) volume.

"RESTORE VOLUME (TF/Snap)" on page 266

Create a copy of the specified dataset. Source and target devices must be the identical models.

"SNAP DATASET (TF/Clone)" on page 272

Duplicate a single volume to another volume. You can snap only between devices of the same device type and model.

"SNAP VOLUME" on page 292

Stop the copy to a specified target dataset.

"STOP SNAP TO DATASET (TF/Clone)" on page 306

Stop the copy to a specified target volume.

"STOP SNAP TO VOLUME" on page 307

Note: If your command span multiple lines, add a dash (-) at the end of each command line except the last one.
Common parameters

ACTIVATE_SUBTASK# (nnn)

This parameter sets the minimum number of VMAX systems being activated to invoke the subtasking feature. The subtasking feature assigns one subtask for each VMAX system to minimize the ECA window when multiple syscalls are required.

When the ECA window is opened, the subtasks are posted to perform the ACTIVATE at the same time. As each subtask completes, it posts to the main task. Once all subtasks have completed, the main task closes the ECA window, and the subtasks is terminated.

nnn is the number of VMAX systems. The number value may be set anywhere from 0 to 255. The default value is 3. Zero effectively turns off the feature. When subtasking is used, there is one subtask attached for each VMAX system.

The ACTIVATE_SUBTASK# parameter has a matching site option.

ADMINISTRATOR (YES | NO)

When you use DFDSS (ADRDSSU) as a datamover, it queries RACF for each dataset being copied. The ADMINISTRATOR parameter determines whether DFDSS avoids RACF calls. This action can make the DFDSS processing faster.

YES Specifies passing the ADMINISTRATOR parameter to DFDSS.

NO (Default) Specifies not passing the ADMINISTRATOR parameter.

Note: DFDSS requires that you have certain RACF privileges for ADMINISTRATOR to be accepted.

If you specify ADMINISTRATOR(YES), DFDSS_ADMIN(YES) is implied.

The ADMINISTRATOR parameter with a NO value instructs TimeFinder not to use the ADMINISTRATOR parameter.

Note: The IBM publication, *Implementing ESS Copy Services with IBM eServer zSeries* (SG24-5680) provides more information.

The ADMINISTRATOR parameter has a matching site option, &ADMIN.

ALLOCATE_UNUSED_SPACE (YES | NO)

The ALLOCATE_UNUSED_SPACE parameter determines whether the target dataset is allocated using the total space, both used and unused, of the source dataset or just the used space:

YES (Default) Specifies allocating the target dataset large enough to contain both the used and unused space of the source dataset.

NO Specifies allocating the target dataset only large enough to contain the used space of the source dataset.

This parameter only applies to sequential and standard partitioned datasets.

The ALLOCATE_UNUSED_SPACE parameter has a matching site option, &ALUNUSED.
ALLOCATION_SEQUENCE (DATASET | NONE | SIZE)

The ALLOCATION_SEQUENCE parameter specifies the processing order of datasets (VSAM clusters and non-VSAM files) in a wildcarded request:

- **DATASET** *(Default)* Specifies processing VSAM clusters and non-VSAM files in ascending name sequence.
- **NONE** Specifies processing VSAM clusters and non-VSAM files in the order they are selected for processing. This may appear random.
- **SIZE** Specifies processing VSAM clusters and non-VSAM files in descending size sequence. The largest datasets are processed first and the smallest are processed last.

ALLOSEQ is an alias of ALLOCATION_SEQUENCE.

The ALLOCATION_SEQUENCE parameter has a matching site option, &ALLOSEQ.

AUTOMATIC_CLEANup (YES | NO)

The AUTOMATIC_CLEANUP parameter allows or disallows an automatic cleanup to be run as part of the RESTORE VOLUME command prior to the restore occurring. This cleans up the device and prevents some related errors from occurring.

- **YES** *(Default)* CLEANUP is automatically run against the device.
- **NO** CLEANUP is not automatically run against the device.

The AUTOMATIC_CLEANUP parameter has a matching site option, &AUTOCLN.

AUTOMATIC_CLEANUP_R2 (YES | NO)

This parameter ensures that when an active R1 device with an R2 device is cleaned, the R2 device is cleaned also. This parameter works when the CLEANUP command specifies devices using UNIT, VOLSER or SYMDV# parameters.

The default value is YES.

CLEANUP_R2 is an alias of AUTOMATIC_CLEANUP_R2.

The AUTOMATIC_CLEANUP_R2 parameter has a matching site option, &CLEAN_R2.

AUTOMATIC_DEALLOC (YES | NO)

The AUTOMATIC_DEALLOC parameter allows or disallows automatic issuance of an S DEALLOC command to z/OS when a device VARY ONLINE or VARY OFFLINE appears to be hung. z/OS sometimes requires a job to go through allocation to handle these situations.

- **YES** *(Default)* Allow TimeFinder to automatically issue an S DEALLOC.
- **NO** Prevent TimeFinder from automatically issuing an S DEALLOC.

The AUTOMATIC_DEALLOC parameter only applies to locally addressable volumes. AUTOMATIC_DEALLOC is ignored if you specify it on actions with the SYMDV#, LOCAL or REMOTE parameters.

AUTO_DEAlloc is an alias of AUTOMATIC_DEALLOC.

The AUTOMATIC_DEALLOC parameter has a matching site option, &AUTODEAL.

Example

AUTO_DEAL(NO)
AUTOMATIC_RELEASE_HOLD(YES|NO)

The AUTOMATIC_RELEASE_HOLD parameter allows the Hold to be automatically released when the background snap of a volume is complete:

YES Allow Hold to be automatically released.
NO (Default) Disallow Hold from being automatically released.

This only applies to SNAP VOLUME. This feature is provided through the SNAP NOTIFY feature in EMCSCF.

If requested, then the SNAP NOTIFY subtask in EMCSCF monitors the volume progress and issues the CONFIG RELEASE command to the volume when the snap is complete.

The AUTOMATIC_RELEASE_HOLD parameter only applies to locally addressable volumes. AUTOMATIC_RELEASE_HOLD is ignored if you specify it on actions with the SYMDV# or LOCAL or REMOTE parameters.

AUTOMATIC_RELEASE is an alias of AUTOMATIC_RELEASE_HOLD.

The AUTOMATIC_RELEASE_HOLD parameter has a matching site option, &AUTORLSE.

Example

AUTOMATIC_RELEASE(YES)

BACKGROUNDCOPY(YES|NO|NOCOPYRD|VSE)

The BACKGROUNDCOPY parameter specifies the background copy mode:

NO Establishes a snap relationship where tracks are copied from the source to the target either when tracks are updated on the source or target or read on the target. Additional updates to the same source track are not copied.
NOCOPYRD Specifies that the background copy occurs only when a track is changed either on the source or target. This causes the original source track to be copied to the target. Additional updates to the same source track are not copied to the target. A read of the source or target track does not cause the track to be copied.

You can specify the NOCOPYRD keyword as:

- NOBACKGROUNDCOPYONREAD
- NOBGCOPYONREAD
- NOCOPYONREAD
- NOCOPYRD

VSE This option allows you to run a background copy function when in VSE copy mode. This option is the same as MODE(VSE).

YES (Default) Enables background copy.

The BACKGROUNDCOPY and MODE parameters serve the same purpose and cannot be specified at the same time. They are mutually exclusive.

“MODE(COPY|NOCOPY|NOCOPYRD|VSE)” on page 177 provides additional information.

The BACKGROUNDCOPY parameter has a matching site option, &BACKGRND.
BCVOnly (YES|NO)

The BCVONLY parameter restricts allocation of new target devices to BCV devices:

- **YES** Only BCV devices are to be considered for new target devices or datasets.
- **NO** *(Default)* Either STD or BCV devices are to be considered for new target devices or datasets.

Note: This optional parameter is only valid when you do not specify the TARGET parameter using the SYMDV#, UNIT or the VOLUME parameter.

Exceptions to BCVONLY(YES) specification:

- If you specify a STD device in a BCVGROUP, TimeFinder honors BCVONLY(YES) and ignores STD devices.
- If you specify a specific target using the UNIT, SYMDV#, or VOLUME parameter on the command, then TimeFinder ignores the BCVONLY(YES) request.
- If a target dataset is being reused, then TimeFinder ignores the volume type.
- If volume preferencing is used to influence SMS volume selection, then TimeFinder honors BCVONLY(YES) and relegates STD devices to the secondary list.

The BCVONLY parameter has a matching site option, &BCVONLY.

BUILD_VTOCIX (YES|NO)

The BUILD_VTOCIX parameter is employed when extent allocation is used and the device in question does not have a VTOC INDEX present on the device. If you specify BUILD_VTOCIX(YES), then extent allocation attempts to create a VTOC INDEX on the device.

If extent allocation is successful, the allocation proceeds normally.

Possible values are:

- **YES** *(Default)* Attempt to create a VTOC INDEX on a device that does not have one.
- **NO** Do not attempt to create a VTOC INDEX on a device that does not have one.

The BUILD_VTOCIX parameter has a matching site option, &VTOCIX.

CATalogue (YES|NO)

The CATALOG parameter determines whether the new target dataset created by the SNAP DATASET command is to be cataloged:

- **YES** *(Default)* Specifies that the allocated target dataset is to be cataloged.
- **NO** Specifies that the allocated target dataset is not to be cataloged.

TF/Clone supports Integrated Catalog Facility (ICF) catalog entries.

The CATALOG parameter only applies to new non-VSAM datasets. Existing datasets is not cataloged. VSAM datasets are always be cataloged. Datasets managed by SMS are always be cataloged, because SMS allows only the creation of cataloged datasets on SMS-managed volumes.

The CATALOG parameter has a matching site option, &CATALOG.
CHECKBCVHOLDstatus(YES | NO)

The CHECKBCVHOLDSTATUS parameter determines whether the snap operation honors the Hold status of a BCV. Hold indicates that the BCV was either a source or target of a previous snap operation.

YES (Default) Specifies that the snap operation honors the Hold status of a BCV.
NO Specifies that the snap operation does not honor the Hold status of a BCV.

The CHECKBCVHOLDSTATUS parameter has a matching site option, &CHECKBCV.

CHECKONLINEpathstatus(YES | NO | NEVER)

The CHECKOnlinepathstatus parameter checks to see if paths from other CPUs to the target device are offline or online before performing a VOLUME SNAP:

NEVER Specifies that for all commands, no check or report is issued to indicate that the device is online to other systems.
NO Specifies that if there are paths to the target device that are online to other CPUs, issue a warning message and proceed with the snap to the target volume.
YES (Default) Specifies that if there are paths to the target device that are online to other CPUs, issue an error message and do not snap to the target volume.

The CHECKOnlinepathstatus parameter has a matching site option, &CHKONLIN.

CHECK_POOL_usable(YES | NO)

If CHECK_POOL_USABLE(YES) is specified, then the pool name and pool usability is checked during the parse phase to ensure that the pool is a valid name. Pool usability is defined by at least one enabled device, with one or more free tracks, with the same geometry as the virtual device (3380, 3390, fba512, fba520).

If CHECK_POOL_USABLE(NO) is specified, then the pool name and pool usability is not checked until the VDEV (or thin device if AUTO_BIND_UNBIND(YES) is specified) is actually being created in the VMAX device.

Note: The AUTO_BIND and AUTO_UNBIND parameters are only compatible with Enginuity 5876 and 5773.

Default value

NO

The CHECK_POOL parameter has a matching site option, &POOLUSE.

CKD(EXCLUDE | INCLUDE)

The CKD parameter includes or excludes CKD devices from a QUERY VOLUME device list:

EXCLUDE Exclude CKD devices from QUERY VOLUME device list.
(Default) Include CKD devices on QUERY VOLUME device list.
CLEANup_DIFFerential(YES|NO)

The CLEANUP_DIFFERENTIAL parameter is used to make sure that differential sessions are cleaned up.

YES CLEANUP should examine and remove differential sessions.

NO (Default) CLEANUP should ignore differential sessions.

When run without CLEANUP_DIFFERENTIAL, a CLEANUP command ignores differential sessions.

If you specify CLEANUP_DIFFERENTIAL(YES), then CLEANUP also examines and removes differential sessions, if all tracks have been copied.

The CLEANUP_DIFFERENTIAL parameter has a matching site option, &CLEANDIFF.

COLLAPSE_dataset_extents(VSAM|NONVSAM|VSAM,NONVSAM)

If EXTENT_ALLOCATION is not requested, TimeFinder uses a simple two-pass approach to allocation. The first pass attempts to allocate the dataset as one large single extent. Often this fails because z/OS is not able to find such free space on the available volume list. If the first pass fails, then a second attempt is made by:

1. Allocating a single small extent (approximately equal in size to the first extent of the source dataset).

2. Expanding the dataset until it is as large as the source dataset.

This parameter indicates whether the first pass should be attempted. Possible values are:

- **VSAM**: Both passes are used for VSAM datasets.
- **NONVSAM**: Both passes are used for non-VSAM datasets.
- **VSAM,NONVSAM** (Default) Both passes are used for all dataset types.

The COLLAPSE_DATASET_EXTENTS parameter has a matching site option, &COLLAPSE.

CONDitionVOLume(ALL|LaBeL|DUMP)

The CONDitionVOLume parameter is used with COPYVOLID(NO) to condition the new target volume so that the target volume can remain online with its original volser, or with the newvolid, if specified:

- **ALL** (Default) Specifies that the label, VTOC, VTOCIX and VVDS of the target volume are to be conditioned so that the volume can remain online with its original volser. Datasets on this volume may be cataloged or re-cataloged with no problem.

- **DUMP** Specifies that the label of the target volume is updated so that it retains the original and the copied volser. No changes are made to the copied VTOC, VTOCIX, and the VVDS. This is equivalent to an ADRDSSU COPY VOLUME command with the DUMPCONDITIONING parameter.

- **LaBeL** Only the label of the target volume is to be retained and no changes are made to the copied VTOC, VTOCIX and VVDS. The VTOC, VTOCIX and VVDS are the same as the original source volume. This is equivalent to an ICKDSF REFORMAT command with the VOLID parameter.

The CONDitionVOLume parameter has a matching site option, &CONDVOL.
The CONDitionVOLUME parameter only applies to locally addressable volumes. CONDitionVOLUME is ignored if you specify it on actions with the SYMDV# or LOCAL or REMOTE parameters.

When you specify COPYV(N) and CONDVOL(ALL), the following additional changes are made after successful completion of the SNAP VOLUME command:

- If a VTOC index and VVDS are present and active on the target volume, TF/Snap updates any records for the VTOC index and VVDS files to reflect the new names of these files. VTOC index names have the form SYS1.VTOCIX.volser and VVDS names have the form SYS1.VVDS.Vnnnnn. The volser portion of these names is the same as the volser of the target volume.
- If the volser begins with a numeric character, the default name for the VTOC index is SYS1.VTOCIX.Vnnnnn, where nnnnn is the final five characters of the target volume volser.
- TF/Snap updates the VTOC records for the VTOC index and VVDS, if present, to reflect the new names for these files with the same naming conventions as for the VTOC index updates.
- If a RESTORE VOLUME command with COPYVOLID(YES) parameter occurs in a JES3 environment, the target volume must be manually varied offline to JES3 after the RESTORE VOLUME completes. During the RESTORE VOLUME operation with COPYVOLID(NO), the target volume is normally varied offline during the operation and varied online after the RESTORE VOLUME completes. You can link edit a user exit into TF/Snap to be invoked prior to the VARY ONLINE and VARY OFFLINE commands being issued. This exit is available for automating JES3 operations.

CONSISTENT(YES | NO)

The CONSISTENT parameter determines whether you use Enginuity Consistency Assist (ECA) for consistent SNAP VOLUME operations:

- YES Use ECA for consistent SNAP VOLUME operations.
- NO (Default) Do not use ECA for consistent SNAP VOLUME operations.

You cannot use the CONSISTENT parameter unless you have installed the TF/Consistency Group Licensed Feature Code.

The CONSISTENT parameter has a matching site option, &CONSIST.

CONSISTENT(YES) with zBoost™ PAV Optimizer

For Enginuity 5876 and HYPERMAX OS 5977, issuing an TF/Clone ACTIVATE command with the CONSISTENT(YES) parameter suspends zBoost PAV Optimizer write processing before enabling ECA to achieve consistency. When ECA is disabled, the write processing is resumed.

CONTROLLER ([xxxxxxx-] xxxxx | name)

You can use CONTROLLER as a separate parameter to identify the VMAX system and automatically provide the address of the gatekeeper device and SRDF group.
This means that you can use the CONTROLLER parameter instead of the LOCAL
and REMOTE parameters. It allows you to verify that the VMAX system found
using the gatekeeper (and RAGROUP if REMOTE), where the request is to take
place, is the VMAX system you want. When you use the separate CONTROLLER
parameter, you do not include the LOCAL and REMOTE parameters.

[xxxxxxxx-xxxx]

You may specify either a five-digit (xxxxx) or a 12 digit (xxxxxxxx-xxxxx) serial
number.

name

A logical VMAX system name of up through 64 characters that was already
assigned through ResourcePak Base. If the logical VMAX system name has a
simple format (single-word string of uppercase letters), then you may enter the
VMAX system name without quotation marks. If the logical VMAX system name
is made up of mixed case characters or contains spaces, then you need to
enclose it in quotation marks.

Note: The ResourcePak Base for z/OS Product Guide provides more
information about the VMAX system naming facility.

The CONTROLLER parameter is available on the following commands:

- CLEANUP {EXTENT TRACK ON]
- CONFIG
- QUERY VDEVICE
- QUERY VOLume
- RESTORE VOLume
- SNAP VOLume
- STOP SNAP TO VOLume

Default value

None

COPYsourceSMSclasses([DATACLASs] [ManaGeMenTCLASs] [STORageCLASs] [ALL])

The COPYsourceSMSclasses parameter determines whether SMS class values are
to be used from the existing source dataset:

DATACLASs Use dataclass.
ManaGeMenTCLASs Use management class.
STORageCLASs Use storage class.
ALL Use all classes.

You may supply SMS class information on the action statement, or copy it from the
source dataset.

The COPYsourceSMSclasses parameter is honored only while creating new
datasets. If you reuse a dataset, the existing DATA, MANAGEMENT, and STORAGE
class values are not affected. Any class value coded on the GLOBAL or SNAP
DATASET statement overrides the ability to copy the class value from the source
dataset (that is, DATACLASs parameter takes precedence over the
COPYSMS(DATACLASs) parameter).
The COPYSMS parameter is not valid when using TF/Clone with alternate index datasets. This is because SMS does not record the class information when an alternate index dataset is created.

The COPYsourceSMSclasses parameter with the ManaGeMenTCLASs option has a matching site option, &CSMSMGMT.

The COPYsourceSMSclasses parameter with the DATACLASs option has a matching site option, &CSMSDATA.

The COPYsourceSMSclasses parameter with the STORageCLASs option has a matching site option, &CSMSSTOR.

Default value
None

Example

COPYSMS(DATACLAS STORCLAS)

COPYVolid(YES|NO)

The COPYVolid parameter determines whether the source volume volser is copied to the target volume:

YES (Default) Specifies that the volser of the source volume is to be retained in the snap and the target volume is to be made unavailable to the host (that is, TimeFinder issues a VARY OFFLINE against the target volume).

NO Specifies that the original volser of the target volume is to be retained and the target volume is to be made available to the host (that is, TimeFinder issues a VARY ONLINE against the target volume).

The COPYVolid parameter has a matching site option, ©VOL.

The COPYVOLID parameter only applies to locally addressable volumes. TimeFinder ignores COPYVOLID if you specify it on actions with the SYMDV#, LOCAL, or REMOTE parameters.

When you specify COPYV(N) and CONDVOL(ALL), the following additional changes are made after successful completion of the SNAP VOLUME command:

- If a VTOC index and VVDS are present and active on the target volume, TimeFinder updates any records for the VTOC index and VVDS files to reflect the new names of these files. VTOC index names have the form SYS1.VTOCIX.volser and VVDS names have the form SYS1.VVDS.Vnnnnn. The volser portion of these names is the same as the volser of the target volume.

- If the volser begins with a numeric character, the default name for the VTOC index is SYS1.VTOCIX.Vnnnnn, where nnnnn is the last five characters of the volser of the target volume.

- TimeFinder updates the VTOC records for the VTOC index and VVDS, if present, to reflect the new names for these files with the same naming conventions as for the VTOC index updates.

- If you enter a SNAP VOLUME command with COPYVOLID(YES) in a JES3 environment, the target volume must be manually varied offline to JES3 after the SNAP VOLUME completes.
During the SNAP VOLUME operation with COPYVOLID(NO), the target volume is normally varied offline during the operation and varied online after the SNAP VOLUME completes.

You can link edit a user exit into TimeFinder to be invoked before the VARY ONLINE and VARY OFFLINE commands are issued. This exit is available for automating the JES3 operations.

Example

COPYV(YES)

DATACLASs(classname)

The DATACLASs parameter specifies the SMS data class to be assigned to the target dataset after TF/Clone dynamically allocates the target dataset.

classname

Specifies a locally defined data class to be assigned to the target dataset. Your storage administrator determines the valid data class names.

You must have SAF or equivalent authorization for the data class specified.

Local SMS ACS routines may place the target dataset in a data class other than that specified by this parameter. As with all SMS datasets, specifying data class is only a suggestion to SMS, and may or may not be accepted by SMS.

TF/Clone does not assign the source data class to a target dataset automatically unless you specify COPYSMS(DATACLAS). You must ensure that the correct data class is assigned to the target dataset by using the DATACLASS parameter or ACS selection.

If an existing target dataset is reused, the data class information associated with the target dataset is not changed.

The DATACLASs parameter has a matching site option, &DATACLAS.

Default value

None

DataMoverName(ADRDSSU|COPYCYL|COPYTRK|DFDSS|DSS|FDR|FDRDSF|IDCAMS|NONE)

Normally, the source and target dataset must reside within the same physical VMAX system for the operation to be performed. In some situations, this is not feasible. The DataMoverName parameter allows you to specify a datamover utility program that can actually copy the physical tracks.

- ADRDSSU
- FDRDSF

ADRDSSU (also DFDSS, DSS) is an IBM utility program which may be invoked to copy physical tracks between physical control units. The utility control statement used to invoke ADRDSSU is:

COPY TRACKS() OUTTRACKS() INDYNAM() OUTDYNAM() CANCELERROr OPTIMIZE(4)
FDRDSF (also called FDR) is a utility program from INNOVATION which may be invoked to copy physical tracks between physical control units. The utility control statement used to invoke FDRDSF is:

```
COPY TYPE=DSF SELECT FROM( ) TO( ) VOL= NEWTOCYL= NEWTOTRK= NVOL=
```

Possible values are:

ADRDSSU|DFDSS|DSS Specifies that ADRDSSU is to be used to copy physical tracks between physical control units or in non-VMAX control units. ADRDSSU is used to copy physical tracks within a VMAX system that TF/Clone is not able to handle. DFDSS can be used to perform a logical dataset copy for dataset types such as IMBED, REPLICATE and KEYRANGE.

COPYCYL Specifies that the internal copy utility COPYCYL is to be used. COPYCYL reads/writes a full cylinder at a time (fewer if necessary).

Note: PRESNAP(YES) parameter cannot be specified when COPYCYL is involved in processing.

COPYTRK Specifies that the internal copy utility COPYTRK is to be used. COPYTRK reads/writes three tracks at a time (fewer if necessary).

Note: PRESNAP(YES) parameter cannot be specified when COPYTRK is involved in processing.

FDRDSF|FDR Specifies that FDRDSF is to be used to copy physical tracks between physical control units or in non-VMAX control units. FDRDSF is used to copy physical tracks within a VMAX system that regular TimeFinder is not able to handle.

Note: For correct work of DFDSS and FDR datamovers, both source and target devices have to be ONLINE. PRESNAP processing makes the target devices NOT-READY to the channel, so PRESNAP(YES) parameter cannot be specified when DFDSS/FDR are involved in processing.

IDCAMS Specifies that IDCAMS may be used to perform a logical dataset copy for going between differing VSAM organizations, differing stripe counts, STRIPE=1 with differing track counts or volume counts, and going to/from extended format.

Note: IDCAMS is a secondary datamover, so it can be used with any other datamover as coded above. IDCAMS is invoked to copy the logical records from the source to the target if there is a compatibility problem, such as a different stripe count between source and target. The *TimeFinder Utility for z/OS Product Guide* provides more information about IDCAMS.

NONE *(Default)* Specifies that an error occurs if regular TF/Clone is not able to handle the requested copy operation.

The DataMoverNaMe parameter applies only to locally addressable volumes. DataMoverNaMe is ignored if you specify it on actions with the SYMDV#, LOCAL, or REMOTE parameters.
To duplicate datasets, an appropriate datamover must be selected. When the source and target datasets are both in the same VMAX system, TimeFinder may be used according to the Enginuity/HYPERMAX OS level.

If the source and target datasets or volumes are both in the same RVA and the IBM SNAPSHOFT software is available, it is automatically used.

When the source and target datasets or volumes are in separate VMAX systems, an appropriate datamover must be selected. DFDSS, FDRDSF, COPYCYL, or COPYTRK works.

If the source and target datasets or volumes are in VMAX systems not supported by TF/Clone or IBM SNAPSHOFT, an appropriate datamover must be selected. DATA_MOVER_NaMe and DATAmover are aliases of DataMoverNaMe.

The DataMoverNaMe parameter has a matching site option, &DATAMOVR.

Example

```
DATAmover(COPYCYL)
DataMoverNaMe(DFDSS, IDCAMS)
```

DATASET_CHANGED_indicator(SET|RESET|LEAVE)

Specifies the value of the data-set-changed indicator (DS1DSCHA bit in the format-1/8 dataset control block) that a target dataset should have after a SNAP DATASET command:

- **LEAVE** (Default) Sets the DS1DSCHA bit to the source dataset change bit value.
- **RESET** Sets the DS1DSCHA bit to 0.
- **SET** DS1DSCHA bit to a 1.

DSCHI, DS1DSCHA, DSCHA are aliases of DATASET_CHANGED_indicator.

The DATASET_CHANGED_indicator has a matching site option, &DS1DSCHA.

DEBUG(ON|OFF)

The DEBUG parameter controls the logging of diagnostic messages:

- **OFF** (Default) Disable diagnostic message generation.
- **ON** Enable diagnostic message generation.

The DEBUG parameter enables or disables diagnostic message logging. It would normally be used at the request of EMC Customer Support.

The information resulting from specifying DEBUG(ON) may be of use only to an EMC customer support representative.

Example

```
DEBUG(ON)
```

DFDSS_ADMIN(YES|NO)

The DFDSS_ADMIN parameter determines whether the ADMINISTRATOR parameter is passed to DFDSS to avoid the RACF calls for each dataset. This can make the DFDSS processing faster.

- **YES** Specifies passing the ADMINISTRATOR parameter to DFDSS.
- **NO** (Default) Specifies not passing the ADMINISTRATOR parameter to DFDSS.
DFDSS does require you to have certain RACF privileges for ADMINISTRATOR to be accepted.

Note: The IBM publication, *Implementing ESS Copy Services with IBM eServer zSeries* (SG24-5680) provides more information.

If ADMINISTRATOR(YES) is specified, DFDSS_ADMIN(YES) is implied.

The DFDSS_ADMIN parameter has a matching site option, &DFDSS_ADMIN.

DFDSS_CC (YES|NO)

The DFDSS_CC parameter determines whether ADRDSSU establishes a concurrent copy session while performing the track copy:

- **YES** *(Default) Directs ADRDSSU to use concurrent copy to protect tracks being copied.*
- **NO** Directs ADRDSSU not to use concurrent copy to protect tracks being copied.

A concurrent copy session allows a more *point-in-time* type of copy operation to occur. This optional parameter is valid only when the DATAMOVERNAME specifies ADRDSSU.

When you use DFDSS_CC(Y), the DFDSS_CC parameter has some implications when using an IBM RVA.

Note: The IBM publication, *Implementing ESS Copy Services with IBM eServer zSeries* (SG24-5680) provides more information.

The DFDSS_CC parameter is also available as a site option, &DFDSS_CC.

Example

```
DFDSS_CC(NO)
```

DIFFerential (YES|NO)

The DIFFERENTIAL parameter determines whether the Differential Snap feature is used:

- **YES** Use Differential Snap.
- **NO** *(Default) Do not use Differential Snap.*

The Differential Snap feature creates a relationship so that, after the initial snap, only changed tracks are moved for subsequent snaps of the same source/target volume pair. Always specify DIFFerential for a Differential Snap.

You need to have purchased and installed the TF/Clone licensed feature code to perform full-volume snaps.

TimeFinder automatically supports the snapback operation by performing a SNAP VOLUME with DIFF(YES) in the opposite direction. There is no need to specify a RESTORE operation.

The DIFFERENTIAL parameter has a matching site option, &DIFF.

Example

```
DIF(NO)
```
DIFFERENTIAL_DATASET (YES | NO)

The DIFFERENTIAL_DATASET parameter enables or disables the Differential Dataset Snap feature:

YES Enables the Differential Dataset Snap feature.
NO (Default) Disables the Differential Dataset Snap feature.

With Differential Dataset Snap, a dataset’s contents are copied in their entirety when that dataset is snapped for the first time.

When you set DIFFERENTIAL_DATASET(YES), only the changed tracks are copied when the dataset is snapped again.

This feature is only effective if REPLACE(YES) and REUSE(YES) are also specified.

The DIFFERENTIAL_DATASET parameter has a matching site option, &DIFFDSN.

EATTR (NO | OPT)

EATTR is an IBM parameter that specifies whether the dataset can support extended attributes or not. These datasets must be allocated on an extended address volume (EAV).

Values include:

NO Extended attributes are not allowed, and the dataset cannot reside in EAS space on EAV devices.
OPT Extended attributes are allowed. The dataset may also reside in EAS space on EAV devices.

EATTR is also a site option.

Default value

- ‘NO’ for non-VSAM files
- ‘OPT’ for VSAM files

EMUL_TYPE (ALL | HARDLINK | SNAPVX) ⁴

The EMUL_TYPE parameter is used to restrict the list of snapshots to one or more emulation types.

ALL (Default) List snapshots of all emulation types.
HARDLINK List hardlink snapshots.
SNAPVX List SnapVX (softlink) snapshots.

The EMUL_TYPE parameter is also available as a site option, &EMUL_TYPE.

1. Available starting with Mainframe Enablers 8.2.
ENQSCOPE (REQUEST | STEP)

The ENQSCOPE parameter determines when and for how long the source dataset ENQ is held:

REQUEST (Default) Specifies that, at the beginning of request, the source dataset ENQ is obtained. When the request is completed, the source dataset ENQ is released (DEQ).

STEP Specifies that all source dataset ENQ is obtained after the parse phase, but before any requests are processed. After ALL requests have completed, the source dataset ENQ is released (DEQ).

The ENQSCOPE parameter has a matching site option, &ENQSCOPE.

ENQWAIT (YES | NO)

The ENQWAIT parameter is used with HOSTCOPYMODE. If you specify HOSTCOPYMODE(NONE), ENQWAIT is ignored.

If you specify HOSTCOPYMODE(EXCLUSIVE) or HOSTCOPYMODE(SHARED), ENQWAIT determines the action to take if exclusive or shared access is not immediately available for a source dataset.

If you specify ENQWAIT(YES), the action waits until the source dataset becomes available. If you specify ENQWAIT(NO), the action continues or fails based upon the TOLERATEENQFAILURE parameter setting.

Values can be:

YES (Default) Processing waits until the source dataset becomes available.

NO Processing continues. The action may continue or fail based upon the TOLERATEENQFAILURE parameter setting.

The ENQWAIT parameter does not apply to datasets specified by INDDname or OUTDDname.

The ENQWAIT parameter has a matching site option, &ENQWAIT.

ERROR_CHECKING (NORMAL | REDUCED)

The ERROR_CHECKING parameter specifies special error handling.

NORMAL (Default) The extents are checked and an attempt to resolve all “protected and indirects” occurs before the establish.

Protected and indirects are the EMC terms for the controlled relationship of tracks that is established between a source and a target. Source tracks are “protected” before being copied to a target’s “indirects”, or the tracks locations dedicated to receive the data.

NORMAL is how error checking has always worked. It is still recommended for a mixed SNAP DATASET and SNAP VOLUME environment.

REDUCED The checks before the establish are skipped and TimeFinder simply issues the establish.

REDUCED would be used in circumstances where you believe that there shouldn’t be any reason for the establish to fail.

You can abbreviate the ERROR_CHECKING parameter name as ERRCHK.

The ERROR_CHECKING parameter has a matching site option, &ERRCHK.

Table 2 on page 47 lists the site options and their possible values.

Normally, you would use the two error handling parameters, ERROR_CHECKING and ERROR_RECOVERY in the following combinations.
• ERROR_CHECKING(NORMAL) and ERROR_RECOVERY(NORMAL)

• ERROR_CHECKING(REDUCTED) and ERROR_RECOVERY(ENHANCED)

Other combinations do not work well. Since ERROR_CHECKING(NORMAL) performs checking before the establish, it would be very difficult for ERROR_RECOVERY(ENHANCED) to help because the checking was already performed. ERROR_CHECKING(REDUCTED) and ERROR_RECOVERY(NORMAL) would not perform before any checking, either before the establish or when the establish fails.

Example

ERROR_CHECKING(REDUCTED)

ERRor_DISPosition(DELete|KEEP)

The ERROR_DISPOSITION parameter specifies what to do with the target datasets when a SNAP DATASET request fails:

DELete (Default) Delete the target datasets if a SNAP DATASET request fails.
KEEP Keep the target datasets if a SNAP DATASET request fails.

The normal action is to delete any target datasets. An alternative is to keep the target datasets.

Note: The ERROR_DISPOSITION parameter can also be used in the shorter form, ERR_DISP.

The ERROR_DISPOSITION parameter has a matching site option, &ERRDISP.

ERROR_RECovery(NORmal|ENHanced)

ERROR_RECOVERY parameter specifies how TimeFinder should handle recovery in an error situation:

NORmal (Default) If the establish fails, so does the request.
 NORMAL is how error checking has always worked in the past.

ENHanced With ENHANCED, if the establish fails, TimeFinder attempts to resolve protection and indirects.

Normally, you would use the two error handling parameters, ERROR_CHECKING and ERROR_RECOVERY in the following combinations.

• ERROR_CHECKING(NORMAL) and ERROR_RECOVERY(NORMAL)

• ERROR_CHECKING(REDUCTED) and ERROR_RECOVERY(ENHANCED)

Other combinations do not work well. Since ERROR_CHECKING(NORMAL) performs checking before the establish, it would be very difficult for ERROR_RECOVERY(ENHANCED) to help because the checking was already performed. ERROR_CHECKING(REDUCTED) and ERROR_RECOVERY(NORMAL) would not perform before any checking, either before the establish or when the establish fails.

You can abbreviate the ERROR_RECOVERY parameter name as ERRREC.

The ERROR_RECOVERY parameter has a matching site option, &ERRREC.
ESNP220 (ERROR|WARNING)

Determines whether message ESNP220 is a warning or error message:

- **ERROR** (Default) Message is issued and processing stops.
- **WARNING** Message is issued as a warning and processing continues.

The following ESNP220 message involves dataset extents and has two different outcomes that can be set.

SOURCE DATA SET HAS NO EXTENTS

It can be a warning message, where the extent discovery that caused the message is identified and the processing is continued, or it can be set as an error condition where the processing is stopped.

Example

ESNP220 WARNING

EXAMINE (YES|NO)

The EXAMINE parameter causes TimeFinder to do an IDCAMS EXAMINE on the target VSAM dataset:

- **YES** Directs TimeFinder to do an IDCAMS EXAMINE on the target VSAM dataset.
- **NO** (Default) Directs TimeFinder not to do an IDCAMS EXAMINE on the target VSAM dataset.

Note: The TimeFinder Utility for z/OS Product Guide provides more information about IDCAMS.

The EXAMINE parameter has a matching site option, &EXAMINE.

EXclude_PathGroupID(pathlist)

Normal processing of SNAP VOLUME requests ensure that the target volume is not online (path group established) to any other LPAR or system. A parameter already exists (CHECK_ONLINE_PATH_STATUS) that allows the severity of the situation to be changed from an error to a warning.

The EXCLUDE_PATHGROUPID parameter allows certain LPARs or systems to be ignored. No error or warning message are issued if encountered.

pathlist

Specifies a list of one or more entries. Each entry is made up of the first 14 characters in a 22-character path group ID. (The remaining, right most, eight characters are the timestamp.)

Note: The SRDF Host Component for z/OS Product Guide provides more information about timestamps.

Each digit may be a valid hexadecimal character or a wild card mask character. Valid wild card mask characters are ‘*’ or ‘%’. Both mean that a single digit is masked.

You can specify up to 127 path group IDs.
EX_PGID is an alias of EXCLUDE_PATHGROUPID.

The EXCLUDE_PATHGROUPID parameter has a matching site option, &EXPATHGRP.

Default value

None

Example

If the complete path group ID is: 880002A75C2084C173D526
then, you would enter as a list entry: EX_PGID(880002A75C2084)

EXPlain(VOLUME_SELECTION(YES|NO))

As each potential volume is examined to determine whether it can be a candidate for dataset allocation, a line is written with an explanation. Messages ESNP0A0I or ESNP0A1I are issued.

Depending on the number of devices, this parameter can generate a lot of output.

This parameter has a matching site option, &EXPLAIN_VOL_SEL.

Default value

NO

EXTENT_ALLOCATION(YES[,CONSOLIDATE_VOLUME|CONSOLIDATE_ALL]|NO)

The EXTENT_ALLOCATION parameter specifies whether operations should use extent allocation for target datasets in snap operations:

CONSOLIDATE_ALL

Force extent allocation to consolidate the extents across all volumes. The number of volumes used may not match the source and the number and size of the extents on the targets may not have any relationship to the source. For multi-volume datasets, the CONSOLIDATE_ALL option will not affect the total number of volumes (PRIME/CANDIDATE) available for the dataset to expand onto.

CONSOLIDATE_VOLUME

Force extent allocation to consolidate the extents on each volume. Each volume contains the same number of tracks, but the individual number and size of the extents on the target may not match the source.

NO

(Default) Do not use extent allocation.

YES

Use extent allocation.

To maximize the possibility of successful snaps of EMC VMAX devices and IBM RVA devices, YES specifies that as long as appropriate candidate volumes are available, the target dataset should have the same number and size of extents as the source.

Some dataset types always use extent allocation. All dataset types are supported by this method.
Because extent allocation bypasses the normal SVC99 and IDCAMS allocation methods, internal SMS storage group resolution and eligible volume determination is provided. TimeFinder invokes the SMS ACS routines and exits. Then TimeFinder builds a list of candidate volumes using selected storage groups.

Note: The *TimeFinder Utility for z/OS Product Guide* provides more information about IDCAMS.

The **EXTENT_ALLOCATION** parameter has the following matching site options:

- &EXTALLOC = EXTENT_ALLOCATION(YES|NO)
- &CONSSALL = EXTENT_ALLOCATION(YES, CONSOLIDATE_ALL)
- &CONSVOL = EXTENT_ALLOCATION(YES, CONSOLIDATE_VOL)

Example

EXTENT_ALLOCATION(YES, CONSOLIDATE_VOL)

EXTALLOC_EMC_ONLY (YES | NO)

EXTALLOC_EMC_ONLY controls whether only EMC-manufactured devices are to be used as possible candidates for extent allocation.

- **YES** Only use EMC-manufactured devices as candidates for extent allocation.
- **NO** (Default) Use any device as a candidates for extent allocation.

The **EXTALLOC_EMC_ONLY** parameter has a matching site option, &EMC_ONLY.

EXTENT_EXPAND (YES | NO, [ADDNEW (YES | NO)] [, SAMEVOL] [, NEWVOL])

The **EXTENT_EXPAND** parameter controls how extent allocation allocates a dataset. When allocating a dataset, extent allocation normally makes every attempt to create a new dataset that, extent-wise, looks the same. This means that a multi-volume target dataset is created to look just like a multi-volume source dataset, down to the size of each extent and the number of volumes.

Extent allocation also requires that the dataset be allocated from scratch. That means that the existing dataset must be deleted first.

The option values determine the method of extent allocation used:

- **ADDNEW** A value of YES allows new volumes to be added to the existing dataset. A value of NO does not allow new volumes to be added to an existing dataset.
- **NEWVOL** When the existing dataset cannot be expanded on the current volume, it is removed from the current volume and an attempt is made to create the dataset on a new candidate volume.
- **NO** Extent allocation is not used to adjust the size of an existing dataset to match the size of the source dataset.
- **SAMEVOL** New extents must be found on the same volume.
- **YES** Extent allocation is used to adjust the size of an existing dataset to match the size of the source dataset. This means that existing extent sizes may change. New extents may be created and existing extents may be removed.

The **EXTENT_EXPAND** parameter has several matching site options:

- &EXTADDNEW to specify the ADDNEW option value.
- &EXTXPVOL to specify the SAMEVOL and NEWVOL option value.
- &EXTXPAND to specify EXTENT_EXPAND (YES|NO).

Default value

None

FBA (EXCLUDE | INCLUDE)

The FBA parameter includes or excludes FBA devices from a QUERY VOLUME device list:
- EXCLUDE (Default) Exclude FBA devices from QUERY VOLUME device list.
- INCLUDE Include FBA devices on QUERY VOLUME device list.

The FBA parameter has a matching site option, &FBA.

FLASH_SNAP (FLASHCOPY | SNAP)

FLASH_SNAP determines whether FlashCopy or TimeFinder operations is used by default. Values are:
- FLASHCOPY FlashCopy is used by default.
- SNAP (Default) TimeFinder is used by default.

The FLASH_SNAP parameter has a matching site option, &FLASH_SNAP.

You should not change the value of this parameter unless you are directed to do so by EMC.

FORCE (YES | NO)

The FORCE parameter establishes the FORCE parameter for all SNAP DATASET operations. It allows you to snap a dataset that was created as absolute track (ABSTR) or as unmovable (PSU, POU or DAU). TF/Clone makes no attempt to ensure that the target dataset is accessible. TF/Clone does not allocate absolute track locations.

Possible values are:
- YES Specifies that an unmovable or absolute track dataset can be snapped to a different physical track location on another device. This option is required to snap an unmovable or absolute track dataset.
- NO (Default) Specifies that an unmovable or absolute track dataset is not to be snapped.

The FORCE parameter has a matching site option, &FORCE.

FORCE_COMPLETION (YES | NO)

The FORCE_COMPLETION parameter specifies that CLEANUP does not complete until all source extents and sessions on the device are completed. Any NOCOPY extents and sessions are changed to copy. After all of the extents and sessions are completed, the source extent track is also removed. Values can be:
- YES CLEANUP does not complete until all source extents and sessions on the device complete.
- NO (Default) CLEANUP may complete before all source extents and sessions on the device complete.

You can abbreviate FORCE_COMPLETION as FORCE_CMP.
FORCE_COMPLETION is also available as a site option, &FORCECMP.

The prime use for FORCE_COMPLETION is for conversion of native extents.

The two formats of the extent track entries are mutually exclusive.

FREESPACE (YES | NO)

When a SNAP VOLUME request is processed, the FREESPACE parameter specifies whether to snap unallocated space. When you use the default NO, snapping unallocated space can only occur if the source volume is online and the z/OS VTOC services are available. After the snap is initiated for the complete volume, an internal STOP SNAP TO VOLUME is issued for all of the unallocated space. Possible values are:

- **YES** Specifies snapping the freespace.
- **NO** *(Default)* Specifies that after the snap has initiated, stop the snap to freespace areas on the volume.

Note: Under certain conditions, FREESPACE(YES) can overlay existing data on the target volume, but this is dependent on a number of variables, such as the timing and the size of the volume.

The FREESPACE parameter only applies to locally addressable volumes. FREESPACE is ignored if specified on actions with the SYMDV#, LOCAL or REMOTE parameters.

TimeFinder ignores the FREESPACE parameter with differential snap.

The FREESPACE parameter has a matching site option, &FREESPC.

GROUP(grpname[, grpname, ...])

See “CONTROLLER([xxxxxxx-]xxxxx|name)” on page 159.

The GROUP parameter specifies one or more groups of TimeFinder statements that contain information about devices on which you want to perform the operation.

The *grpname* values are the names you have previously defined with the DEFINE GROUP command. You can specify up to 127 group names, separated by commas.

Note: “DEFINE GROUP” on page 311 provides more information about the DEFINE GROUP command.

When TimeFinder encounters the GROUP parameter, it retrieves the definition for the group from the group library, along with the statements and parameters.

TimeFinder checks the current status of the group to ensure that the operation is appropriate for the group at this time. The requested operation is then performed on all appropriate devices in all groups named as if they were a single group.

Default value

None
HostcoPYMODE(SHaRed|EXclusive|NONE)

The HOSTCOPYMODE parameter specifies whether and what type of disposition is used with dynamic allocations for all SNAP DATASET operations:

- **EXCLUSIVE** Specifies use of the dynamic allocations with disposition of OLD. Exclusive control offers better protection of data integrity than shared control. Choose this option for exclusive control over the source during a snap operation.
- **NONE** No disposition used.
- **SHARED** Specifies the use of dynamic allocations with a disposition of SHR. Choose this option to modify the source during a snap operation.

If you are attempting to snap a dataset previously opened within a Database Management System (DBMS) for which update activity has not been quiesced, you cannot obtain exclusive control because the database has not been closed or deallocated. In this case, choosing the SHARED option actually provides user managed exclusive control.

Use the HOSTCOPYMODE(SHARED) or HOSTCOPYMODE(none) parameter if you know that the dataset is shared by another job because this option would use less overhead than using the TOLERATEENQFAILURE(YES) parameter.

HOSTCOPYMODE does not apply to datasets specified by INDDname or OUTDDname.

The HOSTCOPYMODE parameter has a matching site option, &HOSTCOPY.

Default value

None

INVALIDATE_PDSE_buffers(YES|NO)

The INVALIDATE_PDSE_buffers parameter causes or prevents the flushing of the PDSE buffers when a SNAP DATASET or SNAP VOLUME command is processed:

- **YES** *(Default)* Causes the PDSE buffers to be flushed when a SNAP DATASET or SNAP VOLUME command is processed
- **NO** Prevents the PDSE buffers from being flushed when a SNAP DATASET or SNAP VOLUME command is processed.

The situation in which you need to flush the PDSE buffers needs further explanation. The PDSE buffers need to be flushed if they are being cached, which only happens if the SMS parameters PDSE_BUFFER_BEYOND_CLOSE or PDSE1_BUFFER_BEYOND_CLOSE are set to YES.

This can cause unwanted results. If you do choose to leave the SMS parameters and INVALIDATE_PDSE_BUFFERS set to YES and one or more of the PDSEs is open, the flush fails and you receive one or more messages (ESNPX10W-ESNPX12W).

To avoid the flush and the possibility of an error, set the two SMS parameters (&SMSKSDS and &SMSPASSVOL) and INVALIDATE_PDSE_BUFFERS to NO.

Note: The current version of the IBM publication, *z/OS DFSMS Technical Update* (SG25-7435-00) provides more information about the SMS parameters PDSE_BUFFER_BEYOND_CLOSE and PDSE1_BUFFER_BEYOND_CLOSE.
The INVALIDATE_PDSE_BUFFERS parameter is also available as a site option, &INVALIDATE_PDSE.

LIST([[[NO]STATements] [[NO]HIStory]])

The LIST parameter is used with QUERY GROUP commands to list or not list syntax statements ([NO]STATements) and/or recent action and resulting statuses ([NO]HIStory) associated with a specified group:

- **NOSTAtements**: QUERY GROUP does not list the syntax statements associated with the specified group.
- **STATements**: QUERY GROUP lists the syntax statements associated with the specified group.
- **NOHIStory**: QUERY GROUP does not list the recent action and resulting statuses associated with the specified group.
- **HIStory**: QUERY GROUP lists the recent action and resulting statuses associated with the specified group.

Default value

None

LOCAL(UNIT(cuu) | VOLUME(volser) | DDNAME(ddname) [CONTROLLER([xxxxxxx-]xxxxx|name)])

The LOCAL parameter identifies a gatekeeper in the local VMAX system that allows access to devices in that local VMAX system.

- **UNIT(cuu)**

 Specifies the unit address of the gatekeeper.

 Note: The MVS device number cannot be the unit address of a VDEV.

- **VOLUME(volser)**

 Specifies the volser of the gatekeeper.

 Note: VOLUME(volser) allows only a single device.

- **DDNAME(ddname)**

 Identifies the DD statement that refers to the gatekeeper.

CONTROLLER

Optional. If using the LOCAL parameter, then it would be a LOCAL VMAX system. The purpose of specifying the CONTROLLER subparameter inside the LOCAL parameter is to verify the serial number of the VMAX where the action is to take place.

You may specify either a five-digit (xxxxx) or a 12 digit (xxxxxxxx-xxxxx) serial number. Or, you may specify a logical VMAX system name if you previously defined that name to ResourcePak Base.

If the logical VMAX system name is simple in format (single-word string, all upper case and no more than 64 characters), you can specify the VMAX system name without quotation marks.
If the logical VMAX system name is mixed case or contains spaces, you must enclose it in single quotation marks.

One of the following values must be present: UNIT, VOLUME, or DDNAME. UNIT and VOLUME can be specified together, or DDNAME may be used instead.

You cannot use the LOCAL and REMOTE parameters in the same command.

Cleanup of extent track contents (dataset level versus cleanup of full device sessions) requires the UNIT (CCUU) or VOLUME parameter, and extent track cleanup (dataset level) is not performed when the SYMDV# is used.

Default value

None

LOGINDYNAM(volume[,volume...])

The LOGINDYNAM parameter specifies a list of volumes to be used for comparison purposes when selecting source datasets.

The criteria you want to apply to volumes in a LOGINDYNAM list before processing selection can take place are specified using the SELECTMULTI parameter.

volume

Volume specification.

Default value

None

MESSages(DISplay|PROmpt|NONE|DETAIL)

The MESSAGES parameter controls console messages before and after the activation of a snap volume:

DETAIL Displays console messages before and after, and also adds message EQCA921I. There will be one statement for each VMAX system where SRDF/A is suspended.

DISplay Display console messages before and after.

NONE (Default) No console messages.

PROmpt Display WTOR on console and wait for reply before proceeding.

The MESSAGES parameter also works with SNAP DATASET to interface with automation systems.

MSGs is an alias of MESSages.

The MESSages parameter has a matching site option, &MESSAGE.

ManaGeMenTCLASs(classname)

The MANAGEMENTCLASS parameter establishes a default management class to be used for all new dataset allocations. This overrides the COPYSMS(MANAGEMENTCLASS) parameter.

classname

Specifies a logically defined management class to be assigned to the target dataset. Your storage administrator determines the valid management class names for your site.
You must have SAF or equivalent authorization for the management class specified.

Local SMS ACS routines can place the target dataset in a management class other than that specified by MANAGEMENTCLASS. As with all SMS datasets, specifying management class is only a suggestion to SMS. SMS may or may not accept it.

TF/Clone does not assign the source management class to a target dataset automatically unless you specify COPYSMS(MGMTCLASS). You must ensure that the correct management class is assigned to the target dataset by using the MANAGEMENTCLASS parameter or ACS selection.

If an existing target dataset is reused, the management class information is not changed.

The MANAGEMENTCLASS parameter is also available as a site option, &MGMTCLAS.

Default
None

MIGrate(\text{[PURge(YES|NO)] \ [RECall(YES|NO)]})

Normally a snap operation fails if either the source or target dataset is migrated. The MIGrate parameter allows the source dataset to be automatically recalled and any existing migrated target dataset to be purged:

- \text{PURge(NO)} (Default) If the target dataset is migrated, then the snap operation fails.
- \text{PURge(YES)} If the target dataset is migrated, then it is deleted and a new target dataset allocated.
- \text{RECall(IGNORE)} If the source dataset is migrated, the dataset is not recalled, an error is not generated, and the dataset is ignored.
- \text{RECall(NO)} (Default) If the source dataset is migrated, then the snap operation fails.
- \text{RECall(YES)} If the source dataset is migrated, then the snap operation is suspended and a recall is performed for the source dataset. After the source dataset is recalled, the snap operation continues.

The RECall subparameter applies only to the source dataset and the PURGE subparameter applies only to target datasets.

A recall operation may take several minutes to complete.

Internally, the equivalent of a HDELETE and HRECALL is performed.

The MIGRATE parameter has two matching site options:

- MIGRATE(PURGE) has &PURGE.
- MIGRATE(RECALL) has &RECALL.

Example
MIG(PUR(Y) \ RE(Y))

MODE (COPY|NOCOPY|NOCOPYRD|VSE)

The MODE parameter specifies when the background copy from source to target occurs. MODE is available on the following commands:

- CONFIG
GLOBAL
SNAP DATASET
SNAP VOLUME

The MODE and BACKGROUNDCOPY parameters serve the same purpose. You may specify these parameters interchangeably; but, you cannot specify both at the same time. They are mutually exclusive.

COPY

(Default) Specifies that the source to target background copy should begin immediately after the snap is issued.

Use MODE(COPY) for:
- A snap to an R1 device (even if you also specify MODE(NOCOPY) or MODE(NOCOPYRD))
- A snap from an SRDF/A R2 device
- A differential snap.

Note: The COPY option is not valid for virtual devices.

NOCOPY

Specifies that the background copy task does not copy any tracks that are marked protected (NOCOPY). A read of the source does not cause the source track image to be copied to the target device. However, the source track image is copied when the track on the target is an indirect.

Note: Enginuity/HYPERMAX OS no longer distinguishes between NOCOPY and NOCOPYRD, as both have the same result, which is NOCOPYRD.

With MODE(NOCOPY), the source and target of the snap are available for processing after the snap is activated. Updates to the target remain intact as of the last update to the target.

When used with the CONFIG command, MODE(NOCOPY) allows you to change MODE(NOCOPY) dynamically to MODE(COPY) without requiring a resnap or a “stop snap” (STOP SNAP TO DATASET or STOP SNAP TO VOLUME) operation.

Otherwise, the snap relationship between the source and target remains until either:
- A “stop snap” is issued against the target
- All of the tracks on the source have been updated, creating a complete original source image on the target
- In a dataset snap relationship, the target dataset is deleted.

Note: The NOCOPY option is not valid for virtual devices.
Restrictions

The only restriction to MODE(NOCOPY) is that the source and target must be in the same VMAX system. The current limit on the number of active TimeFinder sessions for any one source (either dataset or full volume) is four (4). This means that after a source dataset or volume has been snapped four times with the MODE(NOCOPY) option, it cannot be snapped again until one of the previous sessions completes or is stopped.

If all of the snapped tracks are not accessed, MODE(NOCOPY) snaps may never complete. To cause the MODE(NOCOPY) snap to normally complete, run the original TimeFinder job (JCL and control cards), adding PARM="GLOBAL MODECOPYFINISH" to the PGM=EMCSNAP execute statement. If you use STOP SNAP *, the target of a MODE(NOCOPY) snap is indeterminate because all the source tracks may not have been copied. If the target is accessed after a STOP SNAP * data checks results when referencing tracks that have not been copied.

NOCOPYRD

Specifies that the background copy occur only when a track is either changed on the source or target. This causes the original source track to be copied to the target. Additional updates to the same source track are not copied to the target. Read of the source or target track does not cause the track to be copied.

Note: Enginuity/HYPERMAX OS no longer distinguishes between NOCOPY and NOCOPYRD, as both have the same result, which is NOCOPYRD.

You can specify the NOCOPYRD keyword as:
- NOBACKGROUNDCOPYONREAD
- NOBGCOPYONREAD
- NOCOPYONREAD
- NOCOPYREAD
- NOCOPYRD

Note: The NOCOPYRD option is not valid for virtual devices.

Advantages

The main benefit of MODE(NOCOPYRD) comes when your system is under stress conditions. For example, if volumes are copied with TF/Clone and a consistent copy is produced, you can back up the copy to tape and give up the copy after it resides on tape. In this situation, NOCOPYRD may be desirable because the target device is being read, not written, and there is no long term desire to create a “hardened copy” of the data on the target device.

A “hardened” copy is one where the data contents exist on the actual device.

With predictive read ahead in the control unit, you can maximize cache for read-ahead track images, instead of holding track images that must be destaged (written) to the target device, as would happen with regular MODE(NOCOPY).
This cache advantage also benefits the source device. Regular production traffic on the source devices are not impacted by a potential cache shortage which occurs with the track images that must be destaged (written) to the target devices.

Cautions

One possible caution with MODE(NOCOPYRD) is in situations where you intend to retain the copy for any period of time and expect that copy to be a truly “hardened” copy.

- With NOCOPY, a read of the target device or a write of the source or target device causes the track image to be copied to the target device. Over time, most or all track images are copied to the target device.

- With NOCOPYRD, only write operations cause the track image to be copied to the target device. If a failure was to occur on a source device, the target device may not be accurate.

Another possible caution is in situations where you are using both SNAP DATASET and SNAP VOLUME. These two request types, when intermixed, regularly conflict, especially if you specify NOCOPY. There are several situations where copying track images is not allowed if either the source or target track is involved in a NOCOPY relationship. This is currently handled in host software, typically by reading the indirect track that is marked NOCOPY.

With NOCOPY, a read of the track actually causes the track to be destaged so that it is no longer indirect. With NOCOPYRD, if a track is involved in a NOCOPYRD relationship and a SNAP DATASET or SNAP VOLUME request bumps into that track, the request fails. If SNAP VOLUME is used with NOCOPYRD and the device then used with SNAP DATASET as either source or target, SNAP DATASET fails.

VSE

Note: The VSE parameter is only available for the SNAP VOLUME command.

With MODE(VSE), device allocations are shared for THIN FBA devices and requires both the source and target device to be THIN FBA.

MODE(VSE) works the same as MODE(NOCOPY) and specifies that the background copy task does not copy any tracks that are marked VSE for thin FBA devices. A read of the source does not cause the source track image to be copied to the target device. However, any read or write of the target causes the source track image to be written to the target device.

Restrictions

- The VSE parameter is supported only on Enginuity 5876 or HYPERMAX OS 5977.

- The source and target must be in the same VMAX system. Both devices must be THIN FBA devices. MODE(VSE) is limited to 32 sessions. No more than 16 VSE differential sessions may be established.

Note: The limits do not apply to HYPERMAX OS 5977.
The persistent preallocation feature is not supported for VP Snap (formerly Clone VSE).

- If there is a persistent preallocation associated with a device, a VP Snap (Clone VSE) session cannot be created using that device as a target.
- If a device is the target of a VP Snap (Clone VSE) session, persistent preallocation cannot be used on that device.
- If MODE(VSE) is used together with SOFTLINK(YES), the mode will be changed to NOCOPY.

MULTI_LINE_query(YES|NO)

The MULTI_LINE_query parameter specifies a new multi-line query option that displays additional detail lines beyond the single summary line for each device:

- **YES** Display multiple lines of information for each device.
- **NO** *(Default)* Display only the single summary line of information for each device.

For example, some EMCSNAP commands operate differently depending on the SRDF type. The multi-line query shows the SRDF type (A/S/PPRC/XRC) and whether it is an R1, R2, R11, or other device designation. Additionally, it shows if certain features are in use on the device, such as parallel clone, inhibit outboard copy, hold, and more.

In addition, each mirror position is shown along with its attributes (adaptive copy, sync or not, ready state, write state).

The single summary line displays information such as device number, CCUU, device attribute (STD, BCV, TDEV, etc.), CKD or FBA, number of cylinders, ready state, and primary RAID protection.

The multiple line query displays message ESNPP36I, which contains the following information for each device:

- Remote device type (R1, R11, R21, R2, R22 or blank)
- Parallel Clone status (PC or blank)
- Inhibit Outboard Copy status (IOC or blank)
- Hold status (HOLD or blank)
- PPRC/XRC status (PPRC or XRC)
- ECA status (ECA)
- Meta Setting (META-HEAD)

For each mirror position, the following information is available:

- NCNFG if not configured. R1, R2 or LCL if mirror is configured.
- For remote mirrors, Sync or Async indicator (-S or -A), Adaptive Copy indicator (-ADCOPY and /WPO, /DISK or /WP). RAGROUP value (RAG=(xx)).
- Ready status (RDY or NRDY)
- Read/write status (R/W or R-ONLY)
Aliases for this parameter includes MULTILINEquery and MLQ.

This parameter as a matching site option, &MLQ.

MULTI_Virtual (YES|NO)

The MULTI_VIRTUAL parameter specifies the method of handling virtual devices (VDEVs):

YES Allows for the newer method of allowing multiple virtual devices (up to 128) to share a single standard device session.

NO *(Default)* Assigns the default method of allowing a single virtual device to share a maximum of 8 sessions.

The MULTI_VIRTUAL parameter is available with Enginuity 5773 and 5876.

With Enginuity 5876, the multi-virtual method is the only method used, so whether the MULTI_VIRTUAL parameter is set to NO or to YES, or whether it is used at all, the system always allows 128 virtual device sessions.

With HYPERMAX OS 5977 and higher, the MULTI_VIRTUAL parameter is not supported. Whether set to YES or NO, the system allows up to 32 virtual device sessions for a single standard device. To overcome this limitation, use the SOFTlink parameter.

The two methods, default multi-virtual (NO) and multi-virtual (YES), are not allowed to be intermixed on a single standard device.

Once a session is created on a standard device, all subsequent sessions must be the same type. When a standard device has no virtual device relationships, either method can be used.

MULTI_VDEV is an alias of MULTI_VIRTUAL.

The MULTI_VIRTUAL parameter has a matching site option, &MULTI_VIRTUAL.

NAME(snapshot_name[%date[4|6|8]%][%time[4|6]%%])

Specifies the 1-32 character snapshot name. snapshot_name allows upper and lower case alpha, numerics, and underscore (_). Embedded spaces and dashes (-) are not allowed.

This parameter is required to allow using native SnapVX syscalls to create, activate, and link a snapshot from the source device to the target all with just one SNAP VOLUME command.

Note: If the NAME(snapshot_name) parameter is specified in the GLOBAL command, it is not required in the SNAP VOLUME command.

The snapshot name must be unique per source device. Specifying the NAME command only, as a GLOBAL parameter, will allow for only 1 snapshot per source device until the snapshot name is changed.

To ensure a unique snapshot name per source device, append the snapshot_name with date and time variables:

- %date% — Substitutes the current date in MM-DD-YY format.
- %date4% — Substitutes the current date in MMDD format.
%date6% — Substitutes the current date in MMDDYY format.
%date8% — Substitutes the current date in MMDDYYYY format.
%time% — Substitutes the current time in HH_MM_SS format.
%time4% — Substitutes the current time in HHMM format.
%time6% — Substitutes the current time in HHMMSS format.

This parameter has a matching site option, &SNAPSHOT_NAME.

NEWVOLID(volser)

The NEWVOLID parameter specifies a new volser on the target.

volser

Specifies the new volser for the target.

NOTIFYwhencomplete{([GROUP(name)] [DATASET|JOB|STEP|SNAP])}

After all of the requested snap operations have started, the snap step ends. The actual copy operation continues within the VMAX system without host intervention. You can use the NOTIFYwhencomplete parameter to signal when the actual copy operation completes. The NOTIFYWHENCOMPLETE parameter requests asynchronous notification upon completion of TimeFinder operations:

DATASET

Issue a completion message for each dataset or volume as the background snap is completed.
The DATASET, JOB, STEP and SNAP subparameters are mutually exclusive.

GROUP(name)

You can use the GROUP name to supply identifying information in the completion message. You may specify this value alone or with the other parameter values.

name is a completion message that you want to include. name can be up to 44 characters in length. If name includes blanks, you must enclose name in double quotation marks.

JOB

Issue a completion message when the background snap for all datasets or volumes (requesting notification and with the same GROUP name, if specified) in a job have completed.
The DATASET, JOB, STEP and SNAP subparameters are mutually exclusive.

SNAP

(Default) Issue a completion message when the background snap for all datasets or volumes (requesting notification and with the same GROUP name, if specified) in this statement have completed.
If you do not specify any subparameters, NOTIFY(SNAP) is the default.
The DATASET, JOB, STEP and SNAP subparameters are mutually exclusive.

STEP

Issue a completion message to the console when the background snap for all datasets or volumes (requesting notification and with the same GROUP name, if specified) in a job step has completed.
The DATASET, JOB, STEP and SNAP subparameters are mutually exclusive.

The NOTIFYWHENCOMPLETE parameter applies only to locally addressable volumes. NOTIFYWHENCOMPLETE is ignored if you specify it with the SYMDV#, LOCAL, or REMOTE parameters.
The NOTIFYWHENCRCOMPLETE parameter has to poll the box to determine when the copy is complete. The poll is performed with a one-second wait (default) between checks. However, the overhead varies based on the number of extents and how long it takes the background copy to complete.

When the number of extents is large, you can add a parameter to the SCF INI file that allows a larger delay between polls, such as an interval of 60 seconds or more. The parameter is "SCF.SNAP.NOTIFY_POLLTIME" and the value is in seconds.

Note: The notify message is issued from the EMCSCF address space, and requires EMCSCF 5.1 or higher.

Any extents copied by a datamover other than by TimeFinder are automatically considered complete after the datamover has finished copying the tracks.

You can use the NOTIFYWHENCRCOMPLETE parameter with the following commands:

- **GLOBAL**
- **SNAP VOLUME**
- **RESTORE VOLUME**
- **SNAP DATASET**

The NOTIFYWHENCRCOMPLETE parameter has a matching site option, &NTFYLVL.

Default value

None

Example

GLOBAL NOTIFY
GLOBAL NOTIFY(GROUP("TESTING NOTIFY"))
GLOBAL NOTIFY(GROUP(MY_SNAP_IS_DONE) STEP)
SNAP DATASET(SOURCE(EMC.**) TARGET (EMCT.**) –
NOTIFY(GROUP (COPY_MY_DATASETS) JOB)

NOTREADY (EXCLUDE | INCLUDE)

The NOTREADY parameter includes or excludes devices that are not ready from a QUERY VOLUME device list:

- **EXCLUDE** Exclude devices that are not ready from the device list.
- **INCLUDE** *(Default)* Include devices that are not ready from the device list.

The NOTREADY parameter has a matching site option, &OPT_NOTREADY.

PARALLEL_CLONE (YES | NO | PREFERRED | REQUIRED)

The PARALLEL_CLONE parameter is used to invoked the Simultaneous TF/Clone feature (if available). When conditions are met, a dual clone session is established between the source and target R2 devices, avoiding the secondary SRDF/S transmission of a copied dataset from the target R1 to the corresponding R2 device.

This feature ensures disaster restartability is intact at all times.
Possible values are:

- **NO**
 Disables parallel cloning. Parallel Clone is not attempted, even if the devices have the potential to take advantage of the parallel clone function.

- **PREFERred**
 Parallel clone is enabled, but if there is a reason why the device cannot execute the simultaneous TF/Clone microcode feature, then the request continues using non-parallel clone methods.

- **REQuired**
 Parallel clone is enabled for the appropriate devices (for example, source and target are both R1 devices in a common VMAX system, and the matching R2 devices are also in a common VMAX system). If there is some reason why the request cannot be completed using parallel clone, then the request fails.

- **YES**
 Enables parallel cloning.

Requirements and restrictions

- The ACTIVATE CONSISTENT(YES) parameter is required. If omitted, the parallel clone operation is still performed and the following informational message is issued:

  ```
  ESNPF371 PARALLEL_CLONE(YES) DETECTED, CONSISTENT(YES) ASSUMED.
  ```

- SRDF/S is required.

- Enginuity 5876 or HYPERMAX OS is required on both side of the link.

- R2 source and target snap volumes are in the same VMAX system.

- The R2 source and target snap volumes cannot be larger than the R1 volumes. TimeFinder blocks this operation.

- Not supported:
 - Cascaded SRDF devices.
 - SRDF/Star environments.
 - Flashcopy
 - Virtual Provisioning (VDEV)

- The following SRDF operations are blocked on Simultaneous TF/Clone (PARALLEL_CLONE) devices:
 - Delete and Half Delete
 - Swap and Half Swap
 - Move Group and Half Move Group

Note: The PARALLEL_CLONE parameter should not be confused with the Global PARALLEL parameter for multi-tasking or the PARALLEL SNAP solution. PARALLEL_CLONE invokes the Simultaneous TF/Clone feature with Enginuity 5876 and HYPERMAX OS 5977.

This parameter is also allowed on the SNAP DATASET and the SNAP VOLUME statements, and can be set as a site option.

Default value

None
Example

```
PARALLEL_CLONE(YES)
SNAP_VOLUME...
...
ACTIVATE CONSISTENT(YES) MESSAGES(DISPLAY)
```

PERSISTENT (YES|NO)

The PERSISTENT parameter is only used on VDEV’s and determines whether a standard virtual restore or a persistent virtual restore is performed:

- **YES** Perform persistent virtual restore.

 With PERSISTENT(YES), you do not have terminate any other VDEV session or virtual device assigned to the restore device in order to proceed with a RESTORE VOLUME.

- **NO** (Default) Perform standard virtual restore.

 With PERSISTENT(NO), you must terminate any other VDEV session or virtual device assigned to the restore device in order to proceed with a RESTORE VOLUME.

The PERSISTENT parameter has a matching site option, &PERSIST.

Example

```
PERSISTENT(YES)
```

POOL(poolname)

The POOL parameter is only used on VDEVs and allows multiple pools to be selected, each with specific snap pool devices. When virtual devices are created, you can associate them with a particular pool.

Note: Pools are used with TF/Snap only. You do not use pools with TF/Clone.

The POOL parameter has a matching site option, &POOL.

Default value

None

POSTSNAP (YES|NO)

The POSTSNAP parameter indicates whether SNAP VOLUME post processing should be automatically performed after the ACTIVATE command is executed or as part of the SNAP VOLUME command processing:

- **Yes** Perform SNAP VOLUME post processing automatically after the ACTIVATE command.
- **No** Perform SNAP VOLUME post processing as part of SNAP VOLUME processing.

“Postsnap processing” on page 120 provides more information about post processing.
This parameter may be only used if GROUP is also specified.

Note: PRESNAP and POSTSNAP parameters only apply to regular input (after a `/QCINPUT DD * JCL statement) SNAP VOLUME statements that reference a GROUP. The GROUP parameter identifies a set of stored statements that are to be executed, while the PRESNAP and POSTSNAP indicate special processing for the GROUP. This is why these parameters cannot be stored within a group definition.

Default value

None

PRECOPY (YES | NO)

The SNAP VOLUME command causes three operations to be performed:

- The first is to create the snap session on the source device.
- The second is to protect the source and mark the target as indirect.
- The third is to activate and make it all effective.

The PRECOPY parameter allows the background copy to begin after the source and target have been marked, prior to the activate operation:

- **YES** *(Default)* Specifies to initiate the background copy prior to the activation operation.
- **NO** Specifies not to initiate background copying.

The PRECOPY parameter has a matching site option, &PRECOPY.

PRESNAP (YES | NO)

The PRESNAP parameter indicates whether SNAP VOLUME preprocessing should be automatically performed before the ACTIVATE command is executed or performed as part of the SNAP VOLUME command processing:

- **Yes** Perform SNAP VOLUME preprocessing automatically before the ACTIVATE command.
- **No** Perform SNAP VOLUME preprocessing as part of SNAP VOLUME processing.

“Presnap processing” on page 119 provides more information about preprocessing.

This parameter may only be used if GROUP is also specified.

Note: PRESNAP and POSTSNAP parameters only apply to regular input (after a `/QCINPUT DD * JCL statement) SNAP VOLUME statements that reference a GROUP. The GROUP parameter identifies a set of stored statements that are to be executed, while the PRESNAP and POSTSNAP indicate special processing for the GROUP. This is why these parameters cannot be stored within a group definition.

Default value

None

R1FULLCOPYonly (YES | NO)

In the situation where you specify MODE(NOCOPY) and perform a snap to an R1 device, the data may never be copied to the R1 (because of NOCOPY) or be copied to the corresponding R2 device.
The R1FULLCOPYonly parameter is designed to handle this situation. Works with the MODE(NOCOPY) parameter as it applies to R1 devices. If R1FULLCOPYonly is enabled, TimeFinder ignores MODE(NOCOPY) when the target of the snap is an R1 device. Possible values are:

- **YES** *(Default)* Ignore MODE(NOCOPY) when the target of the snap is an R1.
- **NO** Perform MODE(NOCOPY) when the target of the snap is an R1.

The R1FULLCOPYonly parameter has a matching site option, &R1FULLCOPY.

Example

R1FULLCOPY (NO)

RAID (ALL | NONE | RAIDS | RAID1 | RAID5 | RAID6 | RAID10 | FTS)

The RAID parameter is used to restrict the list of devices to one or more types of RAID device. (You can specify multiple arguments.) The RAID parameter is a specification of RAID types desired. For example, if you specify RAID(ALL) on the GLOBAL command and RAID(RAID1,RAID10) on a QUERY VOLUME command, your output is limited to RAID 1 and RAID 10 devices.

Possible values are:

- **ALL** *(Default)* List all types of RAID devices.
- **FTS** List FTS devices.
- **NONE** Do not list RAID devices.
- **RAID1** List RAID 1 devices.
- **RAID10** List RAID 10 devices.
- **RAID5** List RAID 5 devices.
- **RAID6** List RAID 6 devices.
- **RAIDS** List RAID S devices.

READY (EXCLUDE | INCLUDE)

The READY parameter includes or excludes ready devices from a QUERY VOLUME device list:

- **EXCLUDE** Exclude ready devices from the QUERY VOLUME device list.
- **INCLUDE** *(Default)* Include ready devices on the QUERY VOLUME device list.

The *Ready* status indicates devices on a channel that are available for any valid operation.

The READY parameter has a matching site option, &OPT_READY.

READY (YES | NO)

The READY parameter specifies whether the target device is made ready to the host:

- **YES** *(Default)* Specifies that the target device is made Ready to the host.
- **NO** Specifies that the target device is made Not Ready to the host.

The *Ready* status indicates the devices on a channel are available for any valid operation.
If a QUERY command is issued immediately after you execute a SNAP VOLUME with the READY parameter either set (YES) or cleared (NO), the status of the target device may show AVAILB for up to 5 seconds.

Example

```
READY (N)
```

RECALCULATE_FREESPACE (YES | NO)

The RECALCULATE_FREESPACE parameter determines whether freespace is recalculated only on effected volumes or on all candidate volumes after the current SNAP DATASET operation:

- **YES** Recalculate freespace on all candidate volumes.
- **NO** *(Default)* Recalculate freespace only on affected volumes.

Normally, after any allocation of a new dataset occurs, the free space amount is recalculated only on the affected volumes. If you specify RECALCULATE_FREESPACE(YES), the free space amount is recalculated on all candidate volumes.

This is especially useful when allocations are occurring in other jobs simultaneously with the execution of TimeFinder (for example: running multiple simultaneous TimeFinder jobs using the same target volumes).

The RECALCULATE_FREESPACE parameter as a site option, &RECALC_FREE.

Example

```
RECALCULATE_FREESPACE (YES)
```

REFVTOC (YES | NO)

The REFVTOC parameter enables or prohibits automatic running of ICKDSF for all SNAP VOLUME operations:

- **YES** ICKDSF automatically runs when the target volume is larger than the source volume.
- **NO** *(Default)* ICKDSF does not automatically run when the target volume is larger than the source volume.

If the target volume is physically larger than the source volume, the additional space is not usable until ICKDSF is run with the REFVTOC option. TimeFinder automatically runs ICKDSF with the REFVTOC option when you specify REFVTOC(YES). The REFVTOC feature simply rebuilds the VTOC and VTOCIX to reflect the real device capacity.

Note: If a volume is online to another LPAR, it should be varied offline to all other LPARS before the snap with a REFVTOC(YES) is run.

For the REFVTOC processing to be performed, the target volume must be online to a host after the SNAP VOLUME processing completes. Otherwise, TimeFinder/Clone Mainframe Snap Facility will not be able to perform the REFVTOC processing automatically and messages ESNP922W and ESNP923I will be issued, prompting you to run the REFVTOC processing manually.
After the SNAP VOLUME operation completes, the target volume is always immediately available for use.

The REFVTOC parameter only applies to locally addressable volumes. REFVTOC is ignored if you specify it on actions with the SYMDV# or LOCAL or REMOTE parameters.

The REFVTOC parameter has a matching site option, &REFVTOC.

Example

```plaintext
REFVTOC(Y)
REMOTE(UNIT(a) | VOLUME(volser) | DDNAME(ddname))
RAGROUP(nn.nn.nn.nn) [CONTROLLER([xxxxxxx-]xxxxx|name)]
```

The REMOTE parameter identifies a gatekeeper in the local VMAX system that allows access to devices in a remote VMAX system.

UNIT(a)

Specifies the unit address of the gatekeeper.

VOLUME(volser)

Specifies the volser of the gatekeeper.

DDNAME(ddname)

Identifies the DD statement that refers to the gatekeeper.

RAGROUP(nn.nn.nn.nn)

Identifies the path through the remote network. This can consist of up to four (4) SRDF group identifiers, separated by periods.

CONTROLLER

Optional. If using the REMOTE parameter, then it would be a REMOTE VMAX system. The purpose of specifying the CONTROLLER subparameter inside the REMOTE parameter is to verify the serial number of the VMAX where the action is to take place.

You may specify either a five-digit (xxxxx) or a 12 digit (xxxxxxx-xxxxx) serial number. Or, you may specify a logical VMAX system name if you previously defined that name to ResourcePak Base.

If the logical VMAX system name is simple in format (single-word string, all upper case and no more than 64 characters), you can specify the VMAX system name without quotation marks.

If the logical VMAX system name is mixed case or contains spaces, you must enclose it in single quotation marks.

One of the following must be present: UNIT, VOLUME, or DDNAME. UNIT and VOLUME can be specified together, or DDNAME may be used instead.

You cannot use the LOCAL and REMOTE parameters in the same command.
Default value

None

Example

```
REMOTE(VOL(UMCO01) RAGROUP(21) CONTROLLER(0001879-90171) )
```

REMOVE_REMOTE_extent_sessions(YES|NO)

The REMOVE_REMOTE_extent_sessions parameter allows or prohibits removal of any extent sessions found on a remote device that is being cleaned up:

- **YES**
 Allow removal of any extent session found on a remote device that is being cleaned up.

- **NO**
 (Default) Prohibit removal of any extent session found on a remote device that is being cleaned up.

Because the device involved in the extent session is remote, TimeFinder cannot determine whether the background activity for the extent session has completed. If the background activity for the extent session has completed, everything proceeds normally. If the background activity for the extent session has not completed, the target datasets is incomplete or corrupted when the session is removed.

The REMOVE_REMOTE_extent_sessions parameter has a matching site option, REMOVE_REMOTE.

RENAMEUnconditional(pfx) |

RENAMEUnconditional((pfx) (oldnamemask, newnamemask)...) |

RENAMEUnconditional((oldnamemask, newnamemask)...)

You can issue RENAMEUnconditional for any snap dataset. It is a method to provide alternate naming conventions to components being copied. The oldnamemask is used to match existing PATH or AIX names. The corresponding newnamemask is used to transform the old name into a new name.

A maximum of 127 \((oldnamemask, newnamemask)\) pairs may be specified.

Note: RENUNC is a valid alias for the RENAMEUnconditional parameter.

newnamemask

Specifies a mask used to derive the new dataset name when the existing dataset name matches the corresponding oldnamemask filtering criterion.

oldnamemask

Specifies a mask to be used as a filtering criterion to check if it matches the dataset name.

pfx

Specifies the prefix you want to use to replace the first-level qualifier of the dataset name. It is optional, but if specified, must be the first parameter in the list of sub-fields. The prefix is used only if the \((oldnamemask, newnamemask)\) parameters are not specified or the oldnamemask filters do not match the dataset name.
Default value

None

REPLACE (YES | NO)

The REPLACE parameter establishes the REPLACE value for all operations. REPLACE specifies whether the source device is to overwrite data on an existing target device. If the existing device contains user data and you do not specify this parameter, the snap operation terminates. A volume with no user data is defined as one with only a VTOC, a VTOC index, and a VVDS.

If you specify YES and the target volume is not empty, old data on that volume are overwritten. Catalog entries for any datasets existing on the target volume may become invalid.

⚠️ CAUTION

Take care when using this parameter. Some datasets that appear to be empty actually contain data.

Values can be:

YES Specifies that an existing target device with user data be overwritten. Using REPLACE(Y) speeds up the snap operation by not querying the VTOC for user dataset names.

NO (Default) Specifies that an existing target device with user data not be overwritten.

Depending upon the REUSE parameter, the existing target dataset may be scratched and reallocated (REPLACE(Y) REUSE(N)), or simply reused (REPLACE(Y) REUSE(Y)). Table 10 demonstrates the effect of the REPLACE and REUSE parameters:

Table 10 REPLACE and REUSE effects

<table>
<thead>
<tr>
<th>Target dataset</th>
<th>REPLACE</th>
<th>REUSE</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>New - does not exist</td>
<td>(Y) or (N)</td>
<td>(Y) or (N)</td>
<td>A new target dataset is created.</td>
</tr>
<tr>
<td>Exists</td>
<td>(N)</td>
<td>(N)</td>
<td>The action fails.</td>
</tr>
<tr>
<td>Exists</td>
<td>(N)</td>
<td>(Y)</td>
<td>Syntax error, REUSE(Y) is not allowed with REP(N).</td>
</tr>
<tr>
<td>Exists</td>
<td>(Y)</td>
<td>(N)</td>
<td>The existing target dataset is erased and a new target dataset is created.</td>
</tr>
<tr>
<td>Exists</td>
<td>(Y)</td>
<td>(Y)</td>
<td>The existing target dataset is reused. If it is not large enough, a new target dataset is created.</td>
</tr>
</tbody>
</table>

Note: If REPLACE(Y) and REUSE(Y) and TOLERATE_REUSE_FAILURE(Y) is specified, then initially an existing target dataset is reused. If for some reason, such as size or attributes, the target is not reusable, then the existing target dataset is erased and a new target dataset is created.
This optional parameter is valid only with the TARGET parameter.

The REPLACE parameter only applies to locally addressable volumes. REPLACE is ignored if you specify it on actions with the SYMDV# or LOCAL or REMOTE parameters.

This REPLACE is valid only with the TARGET parameter.

The REPLACE parameter has a matching site option, &REPLACE.

REUSE(YES|NO[, WAIT])

The **REUSE** parameter specifies for all SNAP DATASET operations whether any existing target dataset is to be erased. It allows replacement of the contents of an existing target dataset without erasing and allocating it again.

YES Specifies that an existing target dataset is not to be erased, but the existing allocation is to be reused.

NO *(Default)* Specifies that the existing target dataset is to be erased.

WAIT The WAIT option allows the job to wait for the target dataset enqueue to become available before trying to delete it. If a wait time is specified in the TARGET_ENQ_DATASET_WAIT parameter, it is also used as the wait time for this parameter; otherwise REUSE(NO,WAIT) waits forever.

Specifying **REUSE(YES)** is valid only with REPLACE(YES).

If you specify REPLACE(YES) and **REUSE(YES)** when the existing target dataset is not large enough to hold the source dataset, TF/Clone tries to expand the existing target dataset until it is capable of holding the entire source dataset.

Note: If you specify REPLACE(YES) and **REUSE(YES)** and TOLERATE_REUSE_FAILURE(YES), then an existing target dataset is initially reused. If for some reason, such as size or attributes, the target to not reusable, the existing target dataset is erased and a new target dataset is created.

The **REUSE** parameter has a matching site option, &REUSE.

Example

REUSE(Y)

REUSE_AUTO_expand (YES|NO)

The **REUSE** parameter controls whether expanding an existing dataset is allowed:

YES *(Default)* If the existing target dataset is not large enough, an attempt is made to expand it.

NO If the existing target dataset is not large enough, no attempt is made to expand it.

Note: You can use **REUSE_AUTO_EXPAND(NO)** with **ALLOCATE_UNUSED_SPACE(NO)** and **TOLERATE_TRUNCATION(YES)**.

To take effect, REPLACE (YES) and **REUSE(YES)** must also be set.

Note: This parameter is used only for dataset copies, not for volume copies.

The **REUSE_AUTO_expand** parameter has a matching site option, &AUTOXPND.
SAVEDEV (EXCLUDE | INCLUDE)

The SAVEDEV parameter includes or excludes SAVEDEV devices from QUERY VOLUME device lists:

- **EXCLUDE** Exclude SAVEDEV devices from QUERY VOLUME device list.
- **INCLUDE** (Default) Include SAVEDEV devices on QUERY VOLUME device list.

The SAVEDEV parameter is also available as a site option, &OPT_SAVEDEV.

SELECTMULTI (ALL | ANY | FIRST)

SELECTMULTI specifies the criteria you want to apply to volumes in a LOGINDYNAM list before processing selection can take place:

- **ALL** (Default) All dataset volumes must be in the LOGINDYNAM list for the dataset to be selected for processing. If one volume is not in the list, then the dataset is not selected.
- **ANY** Any of the dataset volumes must be found in the LOGINDYNAM list for the dataset to be selected for processing. If no volumes are found in the list, then the dataset is not selected.
- **FIRST** Check the first source dataset volume. If that first source dataset volume is not found in the LOGINDYNAM list of volumes, that dataset is not selected.

Any volumes supplied to DFDSS’s INDYNAM are passed to the EMCSNAPI interface as if they were supplied by LOGINDYNAM with SELECTMULTI(ALL) specified.

SESSION_LIST (Yes|No[, DETAIL| NODETAIL| DIFFERENTIAL])

The SESSION_LIST query parameter indicates whether more detail is desired about sessions active on a device. If you specify you want a list of active sessions (by selecting YES), you can then specify what kind of information you want whether about the sessions by choosing DETAIL, NODETAIL, or DIFFERENTIAL. Possible values are:

- **DETAIL** Provide detail about the active sessions on the list.
- **DIFFERENTIAL** The DIFFERENTIAL parameter allows you to add data to the QUERY volume report (messages ESNPP31I and ESNPP30I) about changed tracks on the source and target volumes.
 - If you specify DIFFERENTIAL, you see the following additional fields in the report:
 - **DIFF_CNT** = The total number of changed tracks on the source and target (determined by combining bit-masks before counting bits).
 - **DIFF_SRC** = The total number of tracks changed on the source.
 - **DIFF_TGT** = The total number of tracks changed on the target.
 - “QUERY VOLUME” on page 259 provides more information.
- **No** Do not list the active sessions.
- **NODETAIL** (Default) Do not provide detail about the active sessions on the list.
- **Yes** (Default) List the active sessions.

Note: SESSIONLIST, SESS_LIST and SESSLIST are all valid short-forms for SESSION_LIST.

SESSION_LIST(Yes|No) has a matching site option, &SESSLIST.

SESSION_LIST with the DETAIL|NODETAIL parameter has a matching site option, &SESSDETL.
SESSION_LIST with the DIFferential parameter has a matching site option, &SESSIDIFF.

SIZE(ALL|MOD1|MOD2|MOD3|MOD9|MOD27|MOD54|EAV|#|low-high)

The SIZE parameter selects the devices to be listed based on the number of cylinders that a device has. You can specify multiple keywords in a single command. Separate each keyword with a space (as shown in the following example). You can also specify a range of values.

Possible values are:

- # List devices of the specified number of cylinders.
- ALL (Default) List devices if all cylinder configurations.
- EAV List EAV (Extended Address Volume) devices.
- low-high List devices in the specified range (low to high) of cylinders.
- MOD1 List devices of 1113 cylinders.
- MOD2 List devices of 2226 cylinders.
- MOD27 List devices of 32760 cylinders.
- MOD3 List devices of 3339 cylinders.
- MOD54 List devices of 65520 cylinders.
- MOD9 List devices of 10017 cylinders.

Example

QUERYVOLUME(SIZ(MOD9 MOD27))

SMS_PASS_volumes(YES|NO)

The SMS_PASS_VOLUMES parameter allows you to change SMS processing so that you can supply volumes on a SNAP DATASET command that is passed to SVC99 and IDCAMS even through the dataset is an SMS-managed dataset. This allows the ACS routine to determine whether the supplied volumes is allowed or ignored.

Note: The ACS routines also determine if the UNITNAME or ESOTERIC is ignored.

Possible values are:

- YES Allow SMS-managed datasets to be passed to SVC99 and IDCAMS, with a volume list, where the ACS routine can either use or ignore them.

 Note: The TimeFinder Utility for z/OS Product Guide provides more information about IDCAMS.

- NO (Default) Ignore any user-supplied volumes.
 This has no effect if the storage class is guaranteed space. With guaranteed space, the user-supplied volume list is always passed.

The SMS_PASS_VOLUMES parameter is also available as a site option, &SMSPASSVOL.
SNAPSHOT_LIST(ALL|LINKED|NOT_LINKED|SNAPSHOT)\(^1\)

The SNAPSHOT_LIST parameter is used to restrict the list of snapshots and links to one or more link status of snapshot:

- **ALL** (Default) List all links and snapshots.
- **LINKED** List links (target device is not X'FFFFFFFF').
- **NOT_LINKED** List not linked snapshots (target device is X'FFFFFFFF' and there is no link with this snapshot). NLINKED is an alias of NOT_LINKED.
- **SNAPSHOT** List snapshots (target device is X'FFFFFFFF').

The SNAPSHOT_LIST parameter is also available as a site option, &SNAPSHOT_LIST.

SNAP_UNUSED_SPACE(YES | NO)

The SNAP_UNUSED_SPACE parameter determines whether the tracks copied to the target dataset are only those tracks in the used portion of the source dataset or the entire allocation including both used and unused space:

- **YES** (Default) Specifies copying all the tracks in the source dataset including both used and unused space.
- **NO** Specifies only copying the tracks in the used portion of the source dataset.

This parameter only applies to sequential and standard partitioned datasets.

The SNAP_UNUSED_SPACE parameter is also available as a site option, &SNUNUSED.

SOFTlink(YES|NO)

Determines whether soft linking is used:

- **YES** Soft linking is used.
- **NO** (Default) Soft linking is not used.

Determines whether soft linking is used.

This parameter is required to allow using native SnapVX syscalls to create, activate, and link a snapshot from the source device to the target all with just one SNAP VOLUME command.

1. Available starting with Mainframe Enablers 8.2.
The following table shows the actions that will be taken when SOFTlink(YES) is used in the SNAP VOLUME command.

<table>
<thead>
<tr>
<th>Command (cascading B->C)</th>
<th>Current status</th>
<th>Actions taken</th>
<th>End status</th>
</tr>
</thead>
<tbody>
<tr>
<td>No relation between A and B</td>
<td>Create snapshot1 on B.</td>
<td>The data at B has been replicated to C.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command (A->B)</th>
<th>Current status</th>
<th>Actions taken</th>
<th>End status</th>
</tr>
</thead>
<tbody>
<tr>
<td>snapshot1 on A is linked to B.</td>
<td>Create snapshot1 on A.</td>
<td>The data at A has been replicated to B.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command (resnap)</th>
<th>Current status</th>
<th>Actions taken</th>
<th>End status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snapshot1 on A is linked to B.</td>
<td>Create snapshot1 on A.</td>
<td>The original snapshot1 has been terminated (microcode automatically unlinks the existing link), and a new snapshot1 has been created activated and linked to B.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command (restore)</th>
<th>Current status</th>
<th>Actions taken</th>
<th>End status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snapshot1 on A is linked to B.</td>
<td>Create snapshot1 on B.</td>
<td>The data at B has been replicated to A.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command (VDEV)</th>
<th>Current status</th>
<th>Actions taken</th>
<th>End status</th>
</tr>
</thead>
<tbody>
<tr>
<td>No relation between A and B.</td>
<td>Create snapshot1 on A.</td>
<td>Device B will be a pointer based replica of A.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command (VSE)</th>
<th>Current status</th>
<th>Actions taken</th>
<th>End status</th>
</tr>
</thead>
<tbody>
<tr>
<td>No relation between A and B.</td>
<td>Create snapshot1 on A.</td>
<td>Device B will be a pointer based replica of A.</td>
<td></td>
</tr>
</tbody>
</table>

\[Table 11\] Command actions when SOFTLink(YES) is specified

<table>
<thead>
<tr>
<th>Command</th>
<th>Current status</th>
<th>Actions taken</th>
<th>End status</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNAP VOLUME</td>
<td>No relation between A and B</td>
<td>Create snapshot1 on A. Activate snapshot1 on A. Link snapshot1 to B.</td>
<td>The data at A has been replicated to B.</td>
</tr>
<tr>
<td>SNAP VOLUME (resnap)</td>
<td>Snapshot1 on A is linked to B.</td>
<td>Create snapshot1 on A. Activate snapshot1 on A. Link snapshot1 to B. Terminate snapshot1 on A.</td>
<td>The original snapshot1 has been terminated (microcode automatically unlinks the existing link), and a new snapshot1 has been created activated and linked to B.</td>
</tr>
<tr>
<td>SNAP VOLUME (restore)</td>
<td>Snapshot1 on A is linked to B.</td>
<td>Create snapshot1 on B. Activate snapshot1 on B. Link snapshot1 to A.</td>
<td>The data at B has been replicated to A.</td>
</tr>
<tr>
<td>SNAP VOLUME (cascading B->C)</td>
<td>Snapshot1 on A is linked to B.</td>
<td>Create snapshot1 on B. Activate snapshot1 on B. Link snapshot1 to C.</td>
<td>The data at B has been replicated to C.</td>
</tr>
<tr>
<td>SNAP VOLUME (A->B)</td>
<td>Snapshot2 on C linked to B.</td>
<td>Create snapshot1 on A. Activate snapshot1 on A. Link snapshot1 to B.</td>
<td>ERROR: Link target already a target.</td>
</tr>
<tr>
<td>SNAP VOLUME (A->B)</td>
<td>Snapshot2 on B linked to C.</td>
<td>Create snapshot1 on A. Activate snapshot1 on A. Link snapshot1 to B.</td>
<td>The data at A has been replicated to B.</td>
</tr>
<tr>
<td>SNAP VOLUME (VDEV)</td>
<td>No relation between A and B.</td>
<td>Create snapshot1 on A. Activate snapshot1 on A. Link snapshot1 to B with NO COPY.</td>
<td>Device B will be a pointer based replica of A.</td>
</tr>
<tr>
<td>SNAP VOLUME (VSE)</td>
<td>No relation between A and B.</td>
<td>Create snapshot1 on A. Activate snapshot1 on A. Link snapshot1 to B with NO COPY.</td>
<td>Device B will be a pointer based replica of A.</td>
</tr>
</tbody>
</table>
When you specify SOFTlink(YES), a snapshot will be created on the source volume with the name specified in the NAME(snapshot_name) parameter.

Note that you cannot have duplicate snapshot names on a single source device. Issuing the SNAP VOLUME command with SOFTlink(YES) twice in a row without terminating the snapshot results in a duplicate snapshot name error. To prevent duplicate snapshot names, append the snapshot name with the %date% and %time% variables to generate a unique snapshot name.

Note: “NAME(snapshot_name[%date[4|6|8]%][%time[4|6]%%])” on page 182 describes use of the date and time variables.

SOURCE_VOLUME_LIST(vollist)

The SOURCE_VOLUME_LIST parameter specifies the source volumes for SNAP DATASET and QUERY DATASET commands. You must have previously defined the source volume list name using a DEFINE SOURCE_VOLUME_LIST command.

vollist

The name of the defined volume list. The name can be up to 16 characters.
A single SNAP DATASET statement may reference cataloged datasets or datasets on offline volumes; but not both. In other words, if you use the SOURCE_VOLUME_LIST parameter in a SNAP DATASET command, TF/Clone selects only datasets from the volumes on the source volume list.

Note: “DEFINE SOURCE_VOLUME_LIST (TF/Clone)” on page 224 provides more information about how to create and use source volume lists.

Default value

None

SRDFA_CONSISTENT_RETRY(Yes|No|nn)

This parameter controls the retry attempts when SRDF/A is not consistent. The default value is 10. Yes means retry indefinitely. No means do not retry at all.

When the suspend is attempted, it fails if any invalids exist on any R1 device in the group (not just R1 devices related to devices being copied). If it fails and retry is allowed, a wait occurs until the current cycle trips. Then the suspend is attempted again. The number of retries is a real count, not a time value. If multiple SRDF/A groups are involved, all of them switches to a new cycle before the suspend is retried.

SRDFA_CONSISTENT_RETRY is only used if ACTIVATE with CONSISTENT(YES) is specified. Otherwise it is ignored.

The SRDFA_CONSISTENT_RETRY parameter is also available as a site option, &SRDFA_RETRY.

Default value

10 (retry attempts)

SRDFA_R1_target(Yes|No|DATAMOVERNaMe|PHYsical|INFormational)

The SRDFA_R1_TARGET parameter specifies how SRDF/A R1 devices are to be used if they are designated as target devices:

DATAMOVERNaMe Allows SRDF/A R1 devices to be used as target devices as long as a datamover name is also specified. If you do not specify a datamover name, DATAMOVERNAME acts as if you specified No.

If a device is not active on the link, it is treated like a non-RDF device, so the datamover will not be used. If DATAMOVERNAME is used with the SRDFA_R1_TARGET parameter, the parameter DATAMOVERNAME(datamover utility) is also required.

INFormational Allows SRDF/A devices to be used as target devices and allow Enginuity/HYPERMAX OS to copy the track contents. An informational message is generated (ESNPQ14I) when R1 devices are targets.

No

(Default) Does not allow SRDF/A R1 devices to be used as target devices. Also generates an error message (ESNPQ11E or ESNPQ13E) when an R1 device is the target.

PHYsical Allows SRDF/A devices to be used as targets. Forces an internal datamover (COPYCYL) to always be used to copy track contents to a targeted R1 device.

Yes Allows SRDF/A R1 devices to be used as target devices. A warning message is generated (ESNPQ10W or ESNPQ12W) when an R1 device is the target.
The SRDFA_R1_TARGET parameter has a matching site option, &SRDFAR1.

TimeFinder in an SRDF environment

Whenever you use an SRDF/A R1 device as the target device, you receive messages to warn you that the data is not available on the R2 when the snap is first initiated. In fact, it could take some time for the data to actually be copied to the R2 device.

To allow an SRDF/A R1 device to be used as a target device, specify the SRDFA_R1_TARGET parameter indicating YES, DATAMOVER, or PHYSICAL.

On an SRDF/A device, Enginuity/HYPERMAX OS uses an internal copy mode to migrate the indirect tracks to the R1 device, and then copy and apply the tracks to the R2 device during normal SRDF/A cycles. Because it is difficult to know when the *indirects* are done copying, it is also hard to know which cycle may complete the copy to the R2. By default an error message (ESNPQ11E) is issued when the R1 device is an SRDF/A device.

Note: *Protected and indirects* are the EMC terms for the controlled relationship of tracks that is established between a source and a target. Data on the source tracks is “protected” before being copied to a target’s “indirects”, or the tracks locations dedicated to receive the data.

If the data is critical in an outage situation, then you should use a physical datamover. This ensures that the data placement on the R2 device is complete. It is definitive that when the physical datamover is complete, the data is in a cycle to show up on the R2 (in SRDF/A mode).

SRDFA_R2_sync (WARNING|R1R2SYNC|DATAMOVER)

The SRDFA_R2_SYNC parameter indicates the processing that should occur if TimeFinder detects that it can use the SRDF/A R2 device as the snap source in a two-VMAX system SRDF/A snap situation:

- **DATAMOVER** If you specify datamover name, then TimeFinder uses it to copy the data from the primary device, instead of snapping from the R2 device. If you do not specify a datamover name, the snap proceeds from the secondary device and a warning message (ESNPP20W) is issued.

- **R1R2SYNC** The snap occurs from the R2 device, but a wait takes place. TimeFinder monitors the cycle values and waits for two complete cycles to pass to ensure that the contents of the primary device at the time the snap was invoked have propagated to the secondary device.

- **WARNING** *(Default)* A warning message (ESNPP20W) is issued when a snap occurs from the secondary device and there is the possibility that the contents may not match the primary device at the time the snap is invoked.

This parameter only affects snaps that are not consistent. Consistent snaps always suspend cycle switching on the SRDF/A group.

The operation is a snap of the R1 source volume or dataset through the SRDF/A R2 device to a target in the same VMAX system where the R2 device resides.

With Enginuity 5876 and HYPERMAX OS 5977, a TF/Snap off an active SRDF/A R2 device is supported with group and device level pacing set by SRDF HC commands. Refer to the *SRDF Host Component for z/OS Product Guide* for more information.

The SRDFA_R2_SYNC parameter has a matching site option, &SRDFAR2.
SRDFS_R1_target(Yes|No|DATAMOVERNaMe|PHYsical|INFormational)

The SRDFS_R1_TARGET parameter specifies how SRDF/S R1 devices are to be used if they are designated as target devices:

DATAMOVERNaMe Allows SRDF/S R1 devices to be used as target devices as long as a datamover name is also specified. If you do not specify a datamover name, DATAMOVERNAME acts as if you specified No.

If a device is not active on the link, it is treated like a non-RDF device, so the datamover will not be used. If DATAMOVERNAME is used with the SRDFS_R1_target parameter, the parameter DATAMOVERNAME(datamover utility) is also required.

An informational message is generated (ESNPQ15I) when an R1 device.

INFormationaI Allows SRDF/S devices to be used as target devices and allows Enginuity/HYPERMAX OS to be used to copy the track contents.

An informational message is generated (ESNPQ15I) when R1 devices are targets.

No Prohibits SRDF/S R1 devices to be used as target devices.

Also generates an error message (ESNPQ11E or ESNPQ13E) when an R1 device is the target.

PHYsical Allows SRDF/S devices to be used as targets. Forces an internal datamover (COPYCYL) always to be used to copy track contents to a targeted R1 device.

Yes (Default) Allows SRDF/S R1 devices to be used as target devices.

A warning message is generated (ESNPQ10W or ESNPQ12W) when an R1 device is the target.

The SRDFS_R1_TARGET parameter has a matching site option, &SRDFSR1.

TimeFinder in an SRDF environment

Whenever you use an SRDF/S R1 device as the target device, you receive messages that the data is not available on the R2 the instant the snap is initiated. In fact, it could take some time for the data to be copied to the R2 device.

On an SRDF/S device, Enginuity/HYPERMAX OS uses an internal copy mode to migrate the indirect tracks to the R1 device (independent of the source device). Then, Enginuity/HYPERMAX OS uses adaptive copy mode to migrate the copied tracks to the R2 device.

Because two background copies are occurring, the R1/R2 are normally equal, but may be out of sync for a very brief period of time. By default, a warning message (ESNPQ12W) is issued when the R1 device is a SRDF/S device.

If the data is critical in an outage situation, then a physical data move should be used, ensuring the data placement on the R2 device is complete. When the physical datamover is complete, the data is on the R2 (in SRDF/S mode).

STORageCLASs(classname)

The STORAGECLASS parameter sets the SMS storage class for a newly allocated target dataset.
classname

Specifies the locally defined list of storage attributes required for the target dataset. Your storage administrator determines the valid storage class names for your site.

The STORAGECLASS parameter is also available as a site option, &STORCLAS. SAF or equivalent authorization is required if you are requesting the source class.

Local SMS ACS routines may place the target dataset in a storage class other than that specified by this parameter. As with all SMS datasets, specifying storage class is only a suggestion. SMS may or may not accept it.

TF/Clone does not assign the source storage class to a target dataset automatically unless you specify COPYSMS(STGCLASS). You must ensure that the correct storage class is assigned to the target dataset by using the STORAGECLASS parameter or ACS selection.

If an existing target dataset is reused, the storage class information is not changed.

Default value

None

Example

STORCLAS(SITESSCL)

SYMDV#(symdev#)

SYMDV# identifies the device number or a range of device numbers in the destination VMAX system for the command-specified operation. This is a device in a local VMAX system if the LOCAL parameter is used to identify the VMAX system. This is a device number in a remote VMAX system if the REMOTE parameter and RAGROUP subparameter is used to identify the VMAX system.

You can specify a single VMAX device number:

SYMDV#(symdev#)

You can also specify a range of device numbers. You can write a device range in three ways:

- Specify the lowest numbered device in the range and the highest numbered device in the range separated by a dash:

 SYMDV#(lowsymdev#:highsymdev#)

- Specify the lowest numbered device in the range and the highest numbered device in the range separated by a colon:

 SYMDV#(lowsymdev#:highsymdev#)

- Specify the starting device number in the range and a count value (in parentheses) that indicates how many additional devices there are between that number and the highest numbered device in the range. The count value includes the lowest and the highest numbered device. (For example, if you want to specify devices between 10 and 13, you would enter 4 as the count.)
The total number of devices in the range (that is, the count value) cannot exceed 256.

\[
\text{SYMDV}(\text{symdev}(\text{count}))
\]

\text{TDEV (EXClude|INClude)}

This TDEV parameter determines whether thin devices are to be included in reports generated by the QUERY VOLUME command:

- \text{EXClude}
 Exclude thin devices on QUERY VOLUME reports.

- \text{INClude}
 (Default) Include thin devices on QUERY VOLUME reports.

The TDEV parameter is also available as a site option, &OPT_TDEV.

\text{TDEV_RECLAIM (YES|NO)}

This TDEV parameter can initiate a reclaim of the target device after a full device clone operation to prevent any “unallocated but assigned” tracks on the source device to be copied to the target device.

- \text{YES}
 (Default) Initiate a reclaim of unallocated but assigned tracks.

- \text{NO}
 Copy without reclaiming unallocated but assigned tracks.

Example

\text{TDEV_RECLAIM (NO)}

\text{TERMINATE_SESSION_when_complete (YES|NO)}

The TERMINATE_SESSION_WHEN_COMPLETE parameter allows a full-volume session snap to terminate automatically after the copy is complete. This eliminates the need to remove the session by running a CLEANUP on the source device.

Note: “CLEANUP [EXTENT TRACK ON]” on page 217 provides more information about the CLEANUP command.

Possible values are:

- \text{YES}
 (Default) The full-volume snap session is terminated automatically when the background copy is complete.

- \text{NO}
 The full-volume snap session is not automatically removed. A CLEANUP request is necessary to remove the session after the background copy is complete.

The TERMINATE_SESSION_WHEN_COMPLETE parameter has a matching site option, &TERMSESS.

\text{TIMEOUT (nnn)}

The TIMEOUT parameter determines the maximum time ECA is active during consistent SNAP VOLUME operations.

Note: Enginuity Consistency Assist (ECA) is a feature of the Enginuity/HYPERMAX OS operating environment. ECA (often called RDF-ECA, a part of SRDF consistency) provides an enterprise solution for ensuring dependent write consistency in SRDF/S configurations with more than one SRDF group. ECA
requires that you have the TF/Consistency Group Licensed Feature Code (parameter CONSISTENT) installed. The *Mainframe Enablers Installation and Customization Guide* provides more information.

nnn

A value from zero (0) to 127 seconds. When this value is exceeded, ECA is released whether the consistent snap is formed or not. A message is issued indicating that the snap is not consistent.

Default value

0 (zero). The duration of the ECA assist is determined by the time needed to initiate a consistent snap.

The TIMEOUT parameter has a matching site option, &TIMEOUT.

THINPOOL (EXCLUDE | INCLUDE)

Used to include or exclude thin pool log devices from a QUERY VOLUME device list.

The THINPOOL parameter has a matching site option, &THINPOOL.

Default value

INCLUDE

TOLERATE_REUSE_FAILURE (YES | NO)

The TOLERATE_REUSE_FAILURE parameter specifies whether to continue the snap operation if the target dataset is not reusable by scratching and reallocating the dataset:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td>Continue the snap operation if the target dataset is not reusable.</td>
</tr>
<tr>
<td>NO</td>
<td>(Default) Do not continue the snap operation if the target dataset is not reusable.</td>
</tr>
</tbody>
</table>

Note: If you specify REPLACE(YES) and REUSE(YES) and TOLERATE_REUSE_FAILURE(YES), then an existing target dataset is initially reused. If for some reason, such as size or attributes, the target is not reusable, the existing target dataset is erased and a new target dataset is created.

The TOLERATE_REUSE_FAILURE parameter has a matching site option, &REUSFAIL.

Example

```
TOL_REUS_F(YES)
```

TOLERATE_ALLOCATION_FAILURE (YES | NO)

The TOLERATE_ALLOCATION_FAILURE parameter specifies whether to override normal multiple target allocation failure procedure to allow execution to continue on successfully allocated targets:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td>Allows execution to continue even when some target datasets were not successfully allocated.</td>
</tr>
<tr>
<td>NO</td>
<td>(Default) Specifies that execution is to stop and to erase any successfully allocated target datasets when any target datasets are not successfully allocated.</td>
</tr>
</tbody>
</table>
This parameter is useful where the target dataset name is wildcarded.

When multiple targets are allocated due to wildcarding, the normal procedure stops the action and deletes any successfully allocated targets as soon as any one allocation fails. Specifying TOLERATEALLOCATIONFailure overrides the normal procedures and allows the allocation and subsequent copy to continue on the successfully allocated targets.

When several target datasets are being allocated, it may be desirable for those which are successfully allocated to be copied even when some of the target dataset allocations fail.

The TOLERATEALLOCATIONFAILURE parameter has a matching site option, &ALLOFAIL.

```
TOLERATE_COPY_Failure(YES|NO)
```

The TOLERATECOPYFAILURE parameter specifies whether to override normal multiple extent copy procedure to allow execution to continue on successfully allocated targets:

```
YES  Allows all existing target datasets to remain allocated after a copy failure.
NO   (Default) Specifies that all allocated target datasets are deleted if a copy failure occurs.
```

When a copy process fails for any extent or group of extents, the normal procedure stops the action and deletes any successfully allocated datasets. Specifying the TOLERATECOPYFAILURE parameter overrides the normal procedures to prevent deletion of successfully allocated datasets and to continue with the copy.

The TOLERATECOPYFAILURE parameter prevents the target datasets from being deleted after a copy failure.

When several target datasets are being allocated, it may be desirable for those which are successfully allocated to be copied even when some of the target dataset allocations fail.

The TOLERATECOPYFAILURE parameter has a matching site option, ©FAIL.

```
TOLERATEENQFailure(YES|NO)
```

The TOLERATEENQFAILURE parameter allows you to snap datasets when exclusive serialization control over them cannot be obtained:

```
YES  Enables the snapping of a dataset that is unavailable at the exclusive serialization level.
NO   (Default) Specifies that the dataset is not to be snapped if it is unavailable at the exclusive serialization level.
```

Integrity of the dataset cannot be assured. You must use the TOLERATEENQFAILURE parameter, if you specify HOSTCOPYMODE(EXCL), to snap a dataset that is unavailable at the exclusive serialization level.

This parameter also is used for snapping a volume that must remain allocated during the snap operation. An example is a volume in use by a database management system (DBMS).

The TOLERATEENQFAILURE parameter has a matching site option, &ENQFAIL.
TOLERATETRUNCATION (YES|NO)

The TOLERATETRUNCATION parameter set to YES allows a dataset to be truncated and a warning message to be issued if the target extent size is smaller than the source. TimeFinder truncates the dataset only if it cannot allocate more space. Truncation may cause loss of data.

If the TOLERATETRUNCATION parameter is defaulted, or set to NO, the snap fails if the target cannot be extended.

Because VSAM, PDSE, striped, or extended addressability datasets never allow truncation, this option has no effect on them. Values can be:

- **YES**: Enables the truncation of a data snapped to a smaller dataset.
- **NO** (Default): Specifies that the dataset is not to be truncated if the target is smaller than the source dataset and the snap fails.

If the target dataset cannot be allocated as large as the source dataset (x37), TF/Clone allows the snap operation but truncates the data being snapped to the size of the target dataset.

This parameter is only active when the target dataset requires more space than its primary allocation.

The TOLERATETRUNCATION parameter has a matching site option, &TRUNC.

TOLERATEVSAMENQFAILURE (YES|NO)

If a VSAMENQMODE cannot be satisfied, the TOLERATEVSAMENQFAILURE parameter determines what happens:

- **YES**: Specifies that a warning message is issued and processing continues.
- **NO** (Default): Specifies that an error message is issued and processing stops.

If TOLERATEVSAMENQFAILURE (NO) is specified (or defaulted), an error message is issued and processing of the request terminates. If TOLERATEVSAMENQFAILURE (YES) is specified, a warning message is issued but processing of the request continues.

The TOLERATEVSAMENQFAILURE parameter has a matching site option, &VSAMFAIL.

TRACE (ON|OFF)

The TRACE parameter allows you to control whether trace messages are written to the message file:

- **ON** (Default): Enables trace records to be generated.
- **OFF**: Disables traces records from being generated.

Note: This option should only be set on at the request of an EMC Customer Support representative.

Some of the information resulting from TRACE(ON) may be of use only to an EMC customer support representative.

Example

TRACE (ON)
UNIT(cuu)

UNIT specifies the unit-address(es) of a device(s) on which the command-specified operation is to be performed. The unit value is a CCUU value.

You can specify a single unit:

UNIT(cuu)

You can also specify a range of units. You can write a unit range in three ways:

- Specify the lowest addressed unit in the range and the highest addressed unit in the range separated by a dash:

 UNIT(lowcuu-highcuu)

- Specify the lowest address in the range and the highest address in the range separated by a colon:

 UNIT(lowcuu:highcuu)

- Specify the starting address in the range and a count value (in parentheses) that indicates how many additional units there are between that number and the highest unit in the range. The count value includes the lowest numbered unit in the range and the highest numbered unit in the range. (For example, to specify addresses between 10 and 13, enter 4 as the count.)

 The total number of units in the range (that is, the count value) cannot exceed 256.

 UNIT(cuu(count))

VARY_OFFline(AUTO|NEVER)

The VARY_OFFLINE parameter specifies whether the target device must be offline before the request processing begins:

AUTO *(Default)* Use VARY OFFLINE when appropriate.
NEVER Do not vary devices offline.

The VARY_OFFLINE parameter only applies to locally addressable volumes. VARY_OFFLINE is ignored if you specify it on actions with the SYMDV# or LOCAL or REMOTE parameters.

When VARY_OFFLINE is set to AUTO and the device is already in the required state, TimeFinder takes no action. When VARY_OFFLINE is set to NEVER, TimeFinder also takes no action, but leaves the device in the existing state.

The VARY_OFFLINE parameter has a matching site option, &VARYOFF.

VARY_ONline(AUTO|YES|NO)

The VARY_ONLINE parameter specifies whether the target device must be online after the requested processing completes:

AUTO *(Default)* Use VARY ONLINE when appropriate.
NO Do not vary devices online.
YES Use VARY ONLINE all the time whatever the current state.
The **VARY_ONLINE** parameter only applies to locally addressable volumes. **VARY_ONLINE** is ignored if you specify it on actions with the **SYMDV#** or **LOCAL** or **REMOTE** parameters.

When **VARY_ONLINE** is set to **AUTO** and the device is already in the required state, TimeFinder takes no action. When **VARY_ONLINE** is set to **YES**, TimeFinder always varies the device online regardless of the device’s current state. When **VARY_ONLINE** is set to **NO**, TimeFinder takes no action, but leaves the device in the existing state.

The **VARY_ONLINE** parameter has a matching site option, **&VARYON**. **&VARYON**, however, only takes the values **AUTO** and **NEVER**. (**NEVER** has the same meaning as **NO**.)

VCLOSE(YES|NO)

The **VCLOSE** parameter determines whether a **VCLOSE** operator command is issued to the **CATALOG** address space for the target volume:

- **YES**: Issue the **VCLOSE** CAS modify command. **VCLOSE (YES)** can be safely specified all the time.
- **NO**: *(Default)* Do not issue the **VCLOSE** CAS modify command.

If a catalog resides on the target volume, the **CATALOG** address space should be notified or subsequent problems may occur.

The **VCLOSE** parameter only applies to locally addressable volumes. **VCLOSE** is ignored if you specify it on actions with the **SYMDV#**, **LOCAL**, or **REMOTE** parameters.

VCLOSE is applied only to online volumes.

VCLOSE should be used whenever there is a catalog on a volume.

Note: You need to have purchased and installed the TF/Clone Licensed Feature Code to perform full-volume snaps.

The **VCLOSE** parameter has a matching site option, **&VCLOSE**.

VDEVICE(EXCLUDE|INCLUDE)

The **VDEVICE** parameter excludes or includes virtual devices on **QUERY VOLUME** lists:

- **EXCLUDE**: Excludes virtual devices from **QUERY VOLUME** lists.
- **INCLUDE**: *(Default)* Includes virtual devices from **QUERY VOLUME** lists.

The **VDEVICE** parameter is only available if you purchase the TF/Snap Licensed Feature Code.

The **VDEVICE** parameter has a matching site option, **&OPT_VDEV**.

Example

```
GLOBAL (VDEV(EXCLUDE))
```
VDEVWAIT (YES | NO)

Multiple jobs executing TF/Snap should not perform operations on the same VDEV at the same time. It causes confusion. The VDEVWAIT parameter indicates what should happen if TF/Snap attempts to perform an operation against a VDEV that already has another job operating against it.

If you allow the default (VDEVWAIT(NO)), an error message, ESNPT30E is issued that indicates that VDEV is in use. If you specify VDEVWAIT(YES), the additional TF/Snap job waits until the first TF/Snap job finishes with the VDEV before proceeding.

This behavior may cause unwanted or undesired actions on the VDEV, simply depending on the order of the jobs executing.

The VDEVWAIT parameter has a matching site option, &VDEVWAIT.

Default value

NO

VERIFY (YES | NO | NEVER)

The VERIFY parameter causes TimeFinder to do an IDCAMS VERIFY on the target VSAM dataset:

NEVER If you specify VERIFY(NEVER), no verification is performed, neither for open nor for non-open datasets.
 VERIFY(NEVER) overrides VERIFY_OPEN_SOURCE(YES).

NO Directs TimeFinder not to perform an IDCAMS VERIFY on the target VSAM dataset.

 Note: VERIFY_OPEN_SOURCE(YES) overrides the VERIFY(NO) parameter so that the verification is performed.

YES (Default) Directs TimeFinder to perform an IDCAMS VERIFY on the target VSAM dataset.

The TimeFinder Utility for z/OS Product Guide provides more information about IDCAMS.

The VERIFY parameter has a matching site option, &VERIFY.

VERIFY_OPEN_SOURCE (YES | NO)

The VERIFY_OPEN_SOURCE parameter determines whether TimeFinder issues a warning message (ESNPB21) and performs an IDCAMS VERIFY whenever an attempt is made to copy an open VSAM file. The purpose of this verification is to attempt to reset the VSAM OPEN indicator for those files that were not really open but simply had a VSAM OPEN indicator left set from a previous operation.
Possible values are:

YES Specifies that the message is issued and an IDCAMS VERIFY is performed whenever an attempt is made to copy an open VSAM file.

Note: VERIFY_OPEN_SOURCE(YES) overrides the VERIFY(NO) parameter so that the verification is performed. VERIFY(NEVER) overrides VERIFY_OPEN_SOURCE(YES) to disable verification for both open and non-open datasets.

NO (Default) Specifies that no message is issued and no IDCAMS VERIFY is performed whenever an attempt is made to copy an open VSAM file.

The VERIFY_OPEN_SOURCE parameter has a matching site option, &VERIFY_OPEN_SOURCE.

The TimeFinder Utility for z/OS Product Guide provides more information about IDCAMS.

VSAENQMOMD (SHAREd|EXClusive|NONE)

The VSAENQMOMD parameter identifies the type of VSAM ENQ testing to perform:

SHAREd Specifies that an ENQ is issued with the SHR attribute. SHR is an alias of SHAREd.

EXClusive Specifies that an ENQ is issued with the EXClusive attribute.

NONE (Default) Specifies that no testing of the SYVSAM ENQ is performed.

If you specify VSAENQMOMD (SHAREd), then TF/Clone issues an ENQ with the SHR attribute. If the ENQ is satisfied, then processing continues normally. After the request is processed, TF/Clone issues a DEQ to release the resource. If the ENQ cannot be satisfied, the TOLERATEVSAMENQFAILURE parameter determines what happens.

If you specify TOLERATEVSAMENQFAILURE (NO) (or default it), TF/Clone writes an error message and terminates processing of the request. If you specify TOLERATEVSAMENQFAILURE (YES), TF/Clone writes a warning message and continues processing the request.

If you specify VSAENQMOMD (EXCLUSIVE), an ENQ is issued with the EXC attribute. If the ENQ is satisfied, processing continues normally. After the request is processed, then TF/Clone issues a DEQ to release the resource. If the ENQ cannot be satisfied, the TOLERATEVSAMENQFAILURE parameter determines what happens.

Note: Table 3 on page 120 provides additional information.

The VSAENQMOMD parameter has a matching site options, &VSAENQM.

VOLUME(volser)

VOLUME specifies the volser of the volume on which the command-specified operation is to be performed.

Note: VOLUME(volser) allows only a single device.
The WAITFORCOMPLETION parameter specifies for all SNAP DATASET, SNAP VOLUME, and RESTORE VOLUME operations, whether TimeFinder is to wait for the copy operations to complete before terminating:

YES
This causes TimeFinder to wait for the copy operations to complete before terminating.

NO
(Defaults) This causes TimeFinder to terminate without waiting for copy operations to complete.

R1R2SYNC
Wait for the snap to an R1 to complete and for the R1 to complete synchronization with its partner R2.

hh:mm:ss
Wait for a specific time limit represented by hh:mm:ss, after which the system polling is stopped and TF/Clone reports an error condition and terminates the snap of the dataset.

Messages
Displays an ongoing status message while waiting for the copy operation to complete.

TIMEOUT
(INformational|WARNing|ERRor)
Specify the type of error message to be issued. Default value is INformational.

The WAITFORCOMPLETION parameter has a matching site options, &CMPLT.

The time between polls of the VMAX system (consequently the time between status messages) is based upon the number of tracks remaining to be copied.

- > 20000 Wait 60 seconds before next check.
- > 10000 Wait 30 seconds before next check.
- > 5000 Wait 15 seconds before next check.
- > 1000 Wait 5 seconds before next check.
- > 500 Wait 2 seconds before next check.
- > 200 Wait 1 second before next check.
- > 100 Wait 1/2 second before next check.
- Otherwise wait 1/10 second before next check.

Example

WAITFORCOMPLETION(Y,MSG)

At program termination, wait for the copy to complete within the VMAX system. A status message is written each time the VMAX system is checked, identifying the number of tracks remaining to be processed.

WAIT_FOR_Definition(YES|NO)

Determines whether the STOP SNAP TO VOLUME command will wait for all of the target tracks to be defined before unlinking the target device:

YES
(Default) Wait for the target tracks to be fully defined before unlinking.

NO
Do not wait for the target tracks to be fully defined before unlinking.

This parameter requires HYPERMAX OS 5977 or higher.
After a link operation has completed, a background task is started to “define” each track on the target volume. The definition process changes each track in the target volume to point to the corresponding track of its linked snapshot.

Once a track has been defined, it will remain pointing to this new track even after the unlink process. The end result is that a fully defined target device, either linked or unlinked, will look like the source device at the time the snapshot was created.

This definition process is not a physical copy operation, but rather a manipulation of in memory track pointers. If the link operation was done in MODE(NOCOPY), then the target and snapshot will be sharing physical tracks until a write is performed on the target device. If the snapshot was linked in MODE(COPY), a subsequent background copy process will copy the snapshot data and assign these new unshared tracks to the target.

Aliases for WAIT_FOR_DEFINITION include WAIT_FOR_D and WFD.

The WAIT_FOR_DEFINITION parameter has a matching site option, &WFDEF.

WAIT_FOR_PRECOPY_PASS1(YES|NO)

The WAIT_FOR_PRECOPY_PASS1 parameter determines for SNAP VOLUME and ACTIVATE GROUP requests whether any precopy activity must have completed one pass of the whole volume before the appropriate ACTIVATE occurs:

YES Wait for the precopy to complete one pass before activating the devices.

NO (Default) Do not wait for the precopy to complete one pass. Activate the devices.

The WAIT_FOR_PRECOPY_PASS1 parameter has a matching site options, &WAIT_PRECOPY.

WAITforsession(YES|NO|hh:mm:ss)

The WAITFORSSESSION parameter controls whether TimeFinder is to wait for available sessions on the source device. Each time a dataset is snapped, a VMAX session is required.

Each source device is allowed multiple sessions for processing datasets.

Note: “TimeFinder and protection sessions” on page 38 provides details on protection session limits.

Many datasets may share each session, but if a single dataset is snapped multiple times, each snap of that dataset requires its own session. After a snap of a dataset completes, you can reuse that session. Also, if the volume is snapped twice, then a single dataset may only be snapped two additional times before the sessions are exhausted.
Possible values are:

- **hh:mm:ss**
 If all sessions are in use, TF/Clone waits for the requested time period (limit) specified by hh:mm:ss.
 If a session completes within the time period, TF/Clone continues processing normally. If the time period expires and all four sessions are still in use, TF/Clone reports an error condition and terminates the snap of the dataset.

- **NO**
 (Default) If all sessions are in use, TF/Clone reports an error condition and terminates the snap of this dataset.

- **YES**
 If all sessions are in use, TF/Clone waits for one to finish and then continues processing normally.

The WAITFORSESSION parameter has a matching site option, &WAIT.

WHEN_SAVEDEV_FULL (READY | NOTREADY)

The WHEN_SAVEDEVFULL parameter determines the state of a virtual device that encounters a snap pool device full condition. Possible values are:

- **READY**
 (Default) Track is marked invalid but device remains available.

- **NOTREADY**
 Track is marked invalid and the device is made not ready.

The WHEN_SAVEDEV_FULL parameter has a matching site option, &SAVEFULL.

Example

WHEN_SAVEDEV_FULL{NOTREADY}
ACTIVATE

The ACTIVATE command determines when the preceding SNAP VOLUME or SNAP DATASET actions are to take place. ACTIVATE optionally specifies whether the SNAP actions are to be performed using Enginuity Consistency Assist (ECA) to form consistent point-in-time volume snaps.

For a SNAP DATASET with ACTIVATE and CONSISTENT, ECA and Enginuity 5876/HYPERMAX OS 5977 are required.

ACTIVATE applies to SNAP VOLUME and SNAP DATASET commands preceding it in the input stream, but after any previous ACTIVATE command.

SNAP VOLUME

The SNAP VOLUME may use:
- Physical target volumes
- Virtual devices
- Mixed target references
- Remote volumes

For example:

```
SNAP VOLUME (SOURCE(VOLUME(VOL001)))
SNAP VOLUME (SOURCE(UNIT(AA10)) TARGET(UNIT(BA00)))
ACTIVATE(CONSISTENT(YES))
```

The first ACTIVATE requests a CONSISTENT snap using ECA of volume VOL001 and the volume at address AA10. Note that the second snap is a physical snap to the target address BA00.

The second ACTIVATE refers to the snap of volumes VOL002, VOL003, VOL004, and VOL005 to the respective targets.

ACTIVATE allows you to specify when a group of SNAP VOLUMEs occurs and whether to use ECA to form a consistent snap operation.

The MESSAGE(DISPLAY) parameter provides more control to automate controls to outside applications such as quiescing a DB2 database in coordination with snap commands.

SNAP DATASET

With SNAP DATASET commands, the ECA mechanism is at the volume level and access to other datasets is affected while the ECA window is active. Dependent-write consistency is provided across a group of target datasets.

```
SNAP DATASET (SOURCE(VOLUME(VOL001)))
SNAP DATASET (SOURCE(VOLUME(VOL002)) TARGET(UNIT(C100)))
SNAP DATASET (SOURCE(VOLUME(VOL003)) TARGET(UNIT(C101)))
SNAP DATASET (SOURCE(VOLUME(VOL004)) TARGET(UNIT(C102)))
SNAP DATASET (SOURCE(VOLUME(VOL005)) TARGET(UNIT(C103)))
ACTIVATE
```

The MESSAGE(DISPLAY) parameter provides more control to automate controls to outside applications such as quiescing a DB2 database in coordination with snap commands.

WARNING

With SNAP DATASET and CONSISTENT(YES) parameter, only inter-dataset dependent write consistency is provided. Intra-dataset (meta data) consistency is not guaranteed. Users must ensure that meta data changes, such as additional extents, DO NOT occur during consistent dataset snap processing.

1. If you have installed the TF/Snap licensed feature code.
Syntax

ACTIVATE [(optional_parameters)]

Where optional_parameters are as follows:

[ACTIVATE_SUBTASK#(nnn)]
[CONSISTENT(YES|NO)]
[GROUP(grpname[,grpname,...])]
[MESsages(DISplay|PROmpt|NONE|DETAIL)]
[POSTSNAP(YES|NO)]
[PRESNAP(YES|NO)]
[SRDFA_CONSISTENT_RETRY(Yes|No|nn)]
[TIMEOUT(nn)]

Note: The optional parameters must be separated from each other by a blank space. If a parameter has YES and NO keywords, you can substitute ON for YES and OFF for NO.

Optional parameters

ACTIVATE_SUBTASK#(nnn)
 See “ACTIVATE_SUBTASK#(nnn)” on page 153.

 Note: There is an associated site option and global command parameter.

CONSISTENT(YES|NO)
 See “CONSISTENT(YES|NO)” on page 159.
 For the duration of the ACTIVATE command, CONSISTENT overrides any value set by the GLOBAL command CONSISTENT parameter or by the &CONSIST site option.

GROUP(grpname[,grpname,...])
 See “GROUP(grpname[,grpname,...])” on page 173.

MESsages(DISplay|PROmpt|NONE|DETAIL)
 See “MESsages(DISplay|PROmpt|NONE|DETAIL)” on page 176.
 For the duration of the ACTIVATE command, MESSAGES overrides any value set by the GLOBAL command MESSAGES parameter or by the &MESSAGE site option.

POSTSNAP(YES|NO)
 See “POSTSNAP(YES|NO)” on page 186.
 This parameter may be only used if GROUP is also specified.
 Refer to “ACTIVATE_SUBTASK#” on page 54 for a description of the site option that can help to minimize the ECA window when multiple VMAX systems and subsequent syscalls are required.
Command Reference

PRESNAP (YES | NO)

See “PRESNAP(YES|NO)” on page 187.

This parameter may only be used if GROUP is also specified.

SRDFA_CONSISTENT_RETRY (Yes | No | nn)

See “SRDFA_CONSISTENT_RETRY(Yes|No|nn)” on page 199.

TIMEOUT (nnn)

See “TIMEOUT(nnn)” on page 203.

For the duration of this ACTIVATE command, TIMEOUT overrides any value set by the GLOBAL command TIMEOUT parameter or by the &TIMEOUT site option.

Example

ACTIVATE (TIMEOUT(10))
CLEANUP [EXTENT TRACK ON]

The CLEANUP command checks each extent track on the indicated volume to determine whether it is complete. CLEANUP then removes each completed extent in the extent track. If all individual extents within a session are completed, CLEANUP also frees the session.

CLEANUP can support both local and remote operations with full-volume cleanups. With Enginuity 5876 and HYPERMAX OS 5977, CLEANUP now supports cleanups on remote dataset extents.

The CLEANUP command must be executed against source devices. The following show two different ways of cleaning up a range of devices:

```
CLEANUP EXTENT TRACK ON UNIT (0C00-0C1F)
CLEANUP EXTENT TRACK ON UNIT (0C20(08))
```

Note: Use REMOTE and LOCAL with SYMDV# parameters only with full-volume sessions. Extent sessions only work if you omit the REMOTE and LOCAL parameters. As a result, datasets cannot be snapped remotely and CLEANUP does not affect remote dataset extents or sessions.

Syntax

```
CLEANUP [EXTENT TRacK ON]
VOLUME(volser)|UNIT(cuu)|SYMDV#(symdev#)
[optional_parameters]
```

Where **optional_parameters** are as follows:

- [AUTOfmatic_CLEANUP_R2(YES|NO)]
- [CLEANup_DIFFerential(YES|NO)]
- [CONTROLLER([xxxxxxx-]xxxx|xnamex)]
- [FORCE_COMPLETION(YES|NO)]
- [GROUP(grpname[, grpname,...])]
- [LOCAL(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname)
 CONTROLLER([xxxxxxx-]xxxx|xnamex))]
- [REMOTE(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname)
 RAGROUP(nn.nn.nn.nn) [CONTROLLER([xxxxxxx-]xxxx|xnamex)])
- [REMOVE_REMOTE_extent_sessions(YES|NO)]

Note: The optional parameters must be separated from each other by a blank space. If a parameter has YES and NO keywords, you can substitute ON for YES and OFF for NO.

Note: Only one of the following can be present: CONTROLLER, LOCAL, or REMOTE. These parameters are mutually exclusive.
Required parameters

SYMDV#(symdev#)
See “SYMDV#(symdev#)” on page 202.

UNIT(cuu)
See “UNIT(cuu)” on page 207.

VOLUME(volser)
VOLUME specifies the volser of the volume on which the command-specified operation is to be performed.

Note: VOLUME(volser) allows only a single device.

Optional parameters

AUTOMATIC_CLEANUP_R2(YES|NO)
See “AUTOMATIC_CLEANUP_R2(YES|NO)” on page 154.

CLEANUP_DIFFERENTIAL(YES|NO)
See “CLEANUP_DIFFERENTIAL(YES|NO)” on page 158.
For the duration of the CLEANUP command, CLEANUP_DIFFERENTIAL overrides any value set by the GLOBAL command CLEANUP_DIFFERENTIAL parameter or by the &CLEANDIFF site option.

CONTROLLER([xxxxxxx-]xxxxx|name)
See “CONTROLLER([xxxxxxx-]xxxxx|name)” on page 159.

FORCE_COMPLETION(YES|NO)
See “FORCE_COMPLETION(YES|NO)” on page 172.
For the duration of the CLEANUP command, FORCE_COMPLETION overrides any value set by the GLOBAL command FORCE_COMPLETION parameter or by the &FORCECMP site option.

GROUP(grpname[,grpname,...])
See “GROUP(grpname[,grpname,...])” on page 173.

Note: The GROUP parameter is an alternative to VOLUME, UNIT, or SYMDV# parameters and cannot be used together in the same CLEANUP command.

LOCAL(UNIT(cuu) | VOLUME(volser) | DDNAME(ddname) [CONTROLLER([xxxxxxx-]xxxxx|name)])
See “LOCAL(UNIT(cuu) | VOLUME(volser) | DDNAME(ddname) [CONTROLLER([xxxxxxx-]xxxxx|name)])” on page 175.
Cleanup of extent track contents (dataset level versus cleanup of full device sessions) requires the UNIT(cuu) or VOLUME parameter, and extent track cleanup (dataset level) is not performed when the SYMDV# is used.

REMOTE (UNIT(cuu) | VOLUME(volser) | DDNAME(ddname)
RAGROUP(nn.nn.nn.nn) [CONTROLLER([xxxxxxx-]xxxxx|name)])

See “REMOTE(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname)
RAGROUP(nn.nn.nn.nn) [CONTROLLER([xxxxxxx-]xxxxx|name)])” on page 190.

CLEANUP supports only full volume remote sessions. Therefore, the REMOTE parameter only works with full-volume sessions. REMOTE does not work with remote extent sessions.

REMOVE_REMOTE_extent_sessions (YES|NO)

See “REMOVE_REMOTE_extent_sessions(YES|NO)” on page 191.

For the duration of the CLEANUP command, REMOVE_REMOTE_extent_sessions overrides any value set by the GLOBAL command REMOVE_REMOTE_extent_sessions parameter or by REMOVE_REMOTE site option.

Example

CLEANUP EXTENT TRACK ON VOLUME (USER00)

Or, for a remote volume:

CLEANUP (SYMDV# (032E) REMOTE(VOLUME(UMC001) RAGROUP(21) -
CONTROLLER(0001879-90171))

CONFIG (TF/Clone)

The CONFIG command specifies RELEASE, NR, and READY conditions for BCV devices. CONFIG also performs a RELEASE for STD devices.

Note: You can use this command only if you install the TF/Clone licensed feature code. The *Mainframe Enablers Installation and Customization Guide* provides more information.

Syntax

```plaintext
CONFIG (Target (Volume(volser) | Unit(cuu) | SYMDV#(symdev#)) [optional_parameters] )

Where optional_parameters are as follows:

[ALLOW_REPLICATION(YES|NO)]
[CONTROLLER([xxxxxxxx-]xxxxx|name)]
[EXPIration(days)]
[GROUP(grpname[, grpname, ..])] [LOCAL(Unit(cuu) | Volume(volser) | DDNAME(ddname) [CONTROLLER([xxxxxxxx-]xxxxx|name)])]
[MODE(COPY|NOCOPY|NOCOPYRD)]
[NAME(snapshot_name)]
[READY(YES|NO)]
[RELEASE(YES|NO)]
[REMOTE(Unit(cuu) | Volume(volser) | DDNAME(ddname) RAGROUP(nn.nn.nn.nn) [CONTROLLER([xxxxxxxx-]xxxxx|name)])]
[SNAPSHOTID(id)]
```

Note: CNFG is an alias of CONFIG.

Note: The optional parameters must be separated from each other by a blank space. If a parameter has YES and NO keywords, you can substitute ON for YES and OFF for NO.

Note: Only one of the following can be present: CONTROLLER, LOCAL, or REMOTE. These parameters are mutually exclusive.
Note: The NAME(snapshot_name) and EXPIration(days) parameters are required when configuring a softlinked snapshot.

Required parameters

TaRGet(VOLUME(volser) |UNIT(cuu) |SYMDV#(symdev#))

The TARGET parameter specifies the device(s) on which the command-specified operation is to be performed.

Note: You can only use this parameter if you install the TF/Clone licensed feature code.

VOLUME(volser)

VOLUME specifies the volser of the volume.

Note: VOLUME(volser) allows only a single device.

UNIT(cuu)

See “UNIT(cuu)” on page 207.

Note: If you specify a range of UCBs, you cannot use some of the optional parameters, such as NEWVOLID and VOLUME. In the case of SNAP VOLUME, you must specify the same number of UCBs in the SOURCE and TARGET parameters.

SYMDV#(symdev#)

See “SYMDV#(symdev#)” on page 202.

Optional parameters

ALLOW_REPLICATION(YES|NO)

This parameter is used to set or reset the FlashCopy inhibit outboard bit for devices. When this bit is set to NO, the device cannot be used in any local or remote replication.

Note: Aliases for ALLOW_REPLICATION include ALLOW_FC and ALLOW_COPY.

When the parameter is set to NO, the following message is issued:

ESNP982E TARGET DEVICE HAS “INHIBIT OUTBOARD COPY” SET, PREVENTING MICROCODE COPIES

Default value

None

Example

```
CONFIG (GROUP(SNP8510) -
  MODE(COPY) -
  READY(YES) -
  RELEASE(YES) -
  ALLOW_REPLICATION(YES)
```
CONTROLLER([xxxxxxxx-]xxxxx|name)

See “CONTROLLER([xxxxxxxx-]xxxxx|name)” on page 159.

The CONTROLLER parameter is only needed and can only be used if you use the SYMDV# parameter.

EXPIration(days)

A "time-to-live" value may be associated with the snapshot by using the EXPIRATION parameter.

Note: The EXPIration(days) parameter is required when configuring a softlinked snapshot.

The expiration value is specified as number of days from 0-3600 decimal.

The expiration time specified is relative to the command execution time, not the snapshot creation time. Specifying a value of 0 will remove the expiration time and the snapshot will never expire.

GROUP(grpname[,grpname,...])

See “GROUP(grpname[,grpname,...])” on page 173.

Examples

CONFIG (TARGET(UNIT(6618-661F)) RELEASE(YES))

You can use the GROUP parameter to specify the devices; for example:

CONFIG (GROUP(SNP7350) -
MODE(COPY) -
READY(YES) -
RELEASE(YES) -
)

LOCAL(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname)
[CONTROLLER([xxxxxxxx-]xxxxx|name)])

See “LOCAL(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname)
[CONTROLLER([xxxxxxxx-]xxxxx|name)])” on page 175.

The LOCAL parameter is only needed and can only be used if you use the SYMDV# parameter.

MODE(COPY|NOCOPY|NOCOPYRD)

See “MODE(COPY|NOCOPY|NOCOPYRD|VSE)” on page 177.

For the duration of the current CONFIG command, MODE overrides any value set by the GLOBAL command MODE parameter.

Note: For sessions created with MODE(VSE), the MODE parameter is ignored and cannot affect those sessions.

NAME(snapshot_name)

See “NAME(snapshot_name[%date[4|6|8]%][%time[4|6]%])” on page 182.

READY(YES|NO)
Traditional TimeFinder commands

See “READY(YES|NO)” on page 188.

Default value
YES

Example
READY(Y)

RELEASE (YES|NO)
The RELEASE parameter specifies whether a hold is placed on the BCV:

YES Specifies that the BCV device, which has been held by a RELEASE(N) command, is made available for TF/Mirror operations. This allows the BCV to be used by the TF/Mirror operation.

NO (Default) Specifies that the BCV device is not available for TF/Mirror operations.

Default value
NO

Example
RELEASE(Y)

REMOTE (UNIT(cuu) | VOLUME(volser) | DDNAME(ddname)
RAGROUP(nn.nn.nn.nn) [CONTROLLER([xxxxxxx-]xxxxx|name)])

See “REMOTE(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname)
RAGROUP(nn.nn.nn.nn) [CONTROLLER([xxxxxxx-]xxxxx|name)])” on page 190.

The REMOTE parameter is only needed and can only be used if you use the SYMDV# parameter.

Default value
None

Example
REMOTE(VOL(UMC001) RAGROUP(21) CONTROLLER(90171))

SNAPSHOTID(id)
The ID of the snapshot to be processed.
DEFINE SOURCE_VOLUME_LIST (TF/Clone)

You can use DEFINE SOURCE_VOLUME_LIST to create a list of offline devices. When you use the DEFINE SOURCE_VOLUME_LIST, you assign a name (of up to 16 characters) to the list. Then, you specify the devices you want to include in the list.

After you create the list, you can specify that list (as an argument to the SOURCE_VOLUME_LIST parameter) to the QUERY DATASET and SNAP DATASET commands.

You must use DEFINE SOURCE_VOLUME_LIST to define a source volume list before you use it with QUERY DATASET and SNAP DATASET. The source volume list you specify is not stored. Therefore, you must supply it (through a new DEFINE SOURCE_VOLUME_LIST) every time you use it in QUERY DATASET and SNAP DATASET.

Syntax

```
DEFINE SOURCE_VOLUME_LIST sourcevollist
  (UNIT(cuu)|VOLUME(volser))
```

Required parameters

- **sourcevollist**
 - The list name. The name can be a text string of up through 16 characters.

- **UNIT(cuu)**
 - See “UNIT(cuu)” on page 207.

- **VOLUME(volser)**
 - The VOLUME parameter specifies a volume label or a mask for matching volume labels.

 If the volser contains a hyphen, enclose it in single quotes, for example: VOL('vol-ser')

Example

The following example defines a source volume list (BAPVOLS) with offline volumes, then uses that list to snap the volumes.

1. With Mainframe Enablers 8.1 and higher.
* DEFINE
 *
 DEFINE SOURCE_VOLUME_LIST BAPVOLS (-
 UNIT(6EF0) -
 UNIT(6EF6-6EF7) -
 VOL(U6A230) -
 VOL(U6A23*) -
)

* SNAP
 *
 SNAP DATASET (SOURCE(BAP.TESTING.TWOVOL) -
 TARGET(BAP.TESTING.NEWTWO) -
 HOSTCOPYMODE(NONE) -
 SOURCE_VOLUME_LIST (BAPVOLS) -
 REPLACE(Y) -
 REUSE(N) -
 VOL(U6A231,U6A230) -
)
GLOBAL

Parameters specified on the GLOBAL command apply to all commands following it, unless you specifically override them through optional parameters specified with commands.

For example, if you specify REPLACE(YES) on the GLOBAL command, all commands following automatically have REPLACE(YES) as a default value.

All parameters to the GLOBAL command are optional.

Syntax

GLOBAL [optional_parameters]

Where optional_parameters are as follows:

Table 12 Global parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Page^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVATE_SUBTASK#(nnn)</td>
<td>153, 231</td>
</tr>
<tr>
<td>ADMINISTRATOR(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>ALLOCATE_UNUSED_SPACE(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>ALLOCATION_SEQUENCE(DATASET</td>
<td>NONE</td>
</tr>
<tr>
<td>ALLOW_FBA_META(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>AUTOMATIC_ACTivate(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>AUTOMATIC_CLEANup(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>AUTOMATIC_CLEANUP_R2(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>AUTOMATIC DEALLOC(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>AUTOMATIC_RELEASE_hold(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>BACKGROUNDCOPY(YES</td>
<td>NO</td>
</tr>
<tr>
<td>BCVOnly(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>BUILD_VTOCIX(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>CATalog(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>CHECKBCVholdstatus(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>CHECKONLINEpathstatus(YES</td>
<td>NO</td>
</tr>
<tr>
<td>CHECK_POOL_usable(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>CKD(EXCLUDE</td>
<td>INCLUDE)</td>
</tr>
<tr>
<td>CLEANUP_DIFFerential(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>COLLAPSE_dataset_extents(VSAM</td>
<td>NONVSAM</td>
</tr>
</tbody>
</table>
Table 12 Global parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONDitionVOLUME(ALL</td>
<td>DUMP</td>
</tr>
<tr>
<td>CONSISTENT(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>COPYVolid(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>COPYsourceSMSclasses([DATACLASs] [ManaGeMenTCLASs] [STORageCLASs] [ALL])</td>
<td>160, 234</td>
</tr>
<tr>
<td>DATACLASs(classname)</td>
<td>162, 235</td>
</tr>
<tr>
<td>DaTaMoverNaMe(ADDRSSU</td>
<td>COPYCYL</td>
</tr>
<tr>
<td>DATASET_CHANGED_indicator(SET</td>
<td>RESET</td>
</tr>
<tr>
<td>DEBUG(ALL</td>
<td>EXTRA</td>
</tr>
<tr>
<td>DEBUG_EXTENTS(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>DFDSS_ADMIN(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>DFDSS_CC(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>DFDSS_OPTimize(n)</td>
<td>237</td>
</tr>
<tr>
<td>Differential(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>DIFFERENTIAL_DATASET(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>EATTR(NO</td>
<td>OPT)</td>
</tr>
<tr>
<td>EMUL_TYPE(ALL</td>
<td>HARDLINK</td>
</tr>
<tr>
<td>ENQSCOPE(Request</td>
<td>STEP)</td>
</tr>
<tr>
<td>ENQWAIT(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>ERROR_CHECKing(NORmal</td>
<td>REDUCED)</td>
</tr>
<tr>
<td>ERROR_DISPOnition(DELETE</td>
<td>KEEP)</td>
</tr>
<tr>
<td>ERROR_REcovery(NORmal</td>
<td>ENHanced)</td>
</tr>
<tr>
<td>ESNP119(WARNING</td>
<td>ERROR)</td>
</tr>
<tr>
<td>ESNP220(ERROR</td>
<td>WARNING)</td>
</tr>
<tr>
<td>EXAMINE(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>EXClude_PathGroupId(pathlist)</td>
<td>169, 239</td>
</tr>
<tr>
<td>EXPlain(VOLUME_SELECTION(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>EXTENT_ALLOCATION(YES[CONSOLIDATE_Volume], CONSOLIDATE_ALL</td>
<td>NO)</td>
</tr>
<tr>
<td>EXTALLOC_EMC_ONLY(YES</td>
<td>NO)</td>
</tr>
</tbody>
</table>
Table 12 Global parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXTENT_EXPAND(YES</td>
<td>NO, [ADDNEW(YES</td>
</tr>
<tr>
<td>FBA(EXCLUDE</td>
<td>INCLUDE)</td>
</tr>
<tr>
<td>FLASH_SNAP(FLASHCOPY</td>
<td>SNAP)</td>
</tr>
<tr>
<td>FORCE(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>FORCE_COMPLETION(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>FREESPACE(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>GROUP_DATasets_name('dataset_name')</td>
<td>240</td>
</tr>
<tr>
<td>GROUP_DEVICE_ready_state(AUTO</td>
<td>NEVER)</td>
</tr>
<tr>
<td>GROUP_EMCCAPI_VERIFY(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>HostcoPYMODE(SHaReD</td>
<td>EXClusive</td>
</tr>
<tr>
<td>INVALIDATE_PDSE_buffers(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>LIST([[NO]STAtements][[NO]HIStory)</td>
<td>174, 242</td>
</tr>
<tr>
<td>LOGINDYMAN(volume[,volume...])</td>
<td>176, 242</td>
</tr>
<tr>
<td>ManaGeMenTCLasS(classname)</td>
<td>176, 242</td>
</tr>
<tr>
<td>MAXIMUM_ADRDSSU_address_spaces(number)</td>
<td>242</td>
</tr>
<tr>
<td>MAXIMUM_SUBTASKS(number1,number2)</td>
<td>242</td>
</tr>
<tr>
<td>MAXRC(return_code_value)</td>
<td>243</td>
</tr>
<tr>
<td>MESSages(DISplay</td>
<td>PRompt</td>
</tr>
<tr>
<td>MSGerate([[PURge(YES</td>
<td>NO)] [RECall(YES</td>
</tr>
<tr>
<td>MODECOPYFINISH</td>
<td>244</td>
</tr>
<tr>
<td>MODE(COPY</td>
<td>NOCOPY</td>
</tr>
<tr>
<td>MULTI_VirtuAl(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>MULTI_LINE_query(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>NAME(snapshot_name[%date[4</td>
<td>6</td>
</tr>
<tr>
<td>NOTIFYwhencomplete([[GROUP(name)] [DATASET</td>
<td>JOB</td>
</tr>
<tr>
<td>NOTREADY(EXCLUDE</td>
<td>INCLUDE)</td>
</tr>
<tr>
<td>PARallel(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>PARALLEL_CLONE(YES</td>
<td>NO</td>
</tr>
</tbody>
</table>
Table 12: Global parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERSISTent (YES</td>
<td>NO)</td>
</tr>
<tr>
<td>POOL(poolname)</td>
<td>186, 246</td>
</tr>
<tr>
<td>PRECOPY (YES</td>
<td>NO)</td>
</tr>
<tr>
<td>PREPARE_FOR_SNAP (YES</td>
<td>NO)</td>
</tr>
<tr>
<td>R1FULLCOPYonly (YES</td>
<td>NO)</td>
</tr>
<tr>
<td>RAID (ALL</td>
<td>NONE</td>
</tr>
<tr>
<td>Ready (EXCLUDE</td>
<td>INCLUDE)</td>
</tr>
<tr>
<td>RECALCULATE_FREESPACE (YES</td>
<td>NO)</td>
</tr>
<tr>
<td>RENAMEUnconditional (px)</td>
<td>RENAMEUnconditional ((px) (oldnamemask, newnamemask)...)</td>
</tr>
<tr>
<td>RENAMEUnconditional ((oldnamemask, newnamemask)...)</td>
<td>191, 247</td>
</tr>
<tr>
<td>REFVT0C (YES</td>
<td>NO)</td>
</tr>
<tr>
<td>REMOVE_REMOTE_extent_sessions (YES</td>
<td>NO)</td>
</tr>
<tr>
<td>REPLace (YES</td>
<td>NO)</td>
</tr>
<tr>
<td>RESERVE (YES</td>
<td>NO)</td>
</tr>
<tr>
<td>REUSE (YES</td>
<td>NO)</td>
</tr>
<tr>
<td>REUSE_AUTO expand (YES</td>
<td>NO)</td>
</tr>
<tr>
<td>SAVEDEV (EXCLUDE</td>
<td>INCLUDE)</td>
</tr>
<tr>
<td>SELECTMULTI (ALL</td>
<td>ANY</td>
</tr>
<tr>
<td>SESSION_LIST (YES</td>
<td>No[,DETAIL</td>
</tr>
<tr>
<td>SIZE (ALL</td>
<td>MOD1</td>
</tr>
<tr>
<td>SMS_PASS_volumes (YES</td>
<td>NO)</td>
</tr>
<tr>
<td>SNAPSHOT_LIST (ALL</td>
<td>LINKED</td>
</tr>
<tr>
<td>SNAP_UNUSED_SPACE (YES</td>
<td>NO)</td>
</tr>
<tr>
<td>SOFTlink (YES</td>
<td>NO)</td>
</tr>
<tr>
<td>SRDFA_CONSISTENT_RETRY (YES</td>
<td>NO</td>
</tr>
<tr>
<td>SRDFA_R1_target (Yes</td>
<td>No</td>
</tr>
<tr>
<td>SRDFA_R2_sync (WARNING</td>
<td>R1R2SYNC</td>
</tr>
<tr>
<td>SRDF S1_target (Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Table 12 Global parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STORageCLASs(classname)</td>
<td>201, 250</td>
</tr>
<tr>
<td>STORED_LOG_SIZE(size)</td>
<td>250</td>
</tr>
<tr>
<td>TDEV(EXCLude</td>
<td>INCLude)</td>
</tr>
<tr>
<td>TDEV_RECLAIM(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>TERMINATE_SESSION_when_complete(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>THINPOOL(INCLUDE</td>
<td>EXCLUDE)</td>
</tr>
<tr>
<td>TIMEOUT(nnn</td>
<td>0)</td>
</tr>
<tr>
<td>TOlerate_REUSE_Failure(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>TOlerateALLOcationFailure(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>TOlerate_COPY_Failure(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>TOlerate_DATACLASS_COMPACTION_MISMATCH(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>TOlerate_DATACLASS_EXTENDED_MISMATCH(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>TOlerateENQFailure(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>TOlerateTRUNCation(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>TOlerateVSAKENQFailure(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>TYPRUN(NORUN</td>
<td>RUN</td>
</tr>
<tr>
<td>VALIDATE_RANGE({LOCAL</td>
<td>REMOTE}({AUTO</td>
</tr>
<tr>
<td>VARY_Offline(AUTO</td>
<td>NEVER)</td>
</tr>
<tr>
<td>VARY_ONline(AUTO</td>
<td>YES</td>
</tr>
<tr>
<td>VCLOSE(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>VDEVICE(EXCLUDE</td>
<td>INCLUDE)</td>
</tr>
<tr>
<td>VDEVWAIT(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>VERIFY(YES</td>
<td>NO</td>
</tr>
<tr>
<td>VERIFY_OPEN_SOURCE(YES</td>
<td>NO)</td>
</tr>
<tr>
<td>VSALENQMODE(SHAREd</td>
<td>EXClusive</td>
</tr>
<tr>
<td>WAITFORCOMPLETION([[YES</td>
<td>NO]</td>
</tr>
<tr>
<td>[,MeSSageS],[RiRZSYNC]</td>
<td>210, 255</td>
</tr>
<tr>
<td>[,TIMEOUT(INFormationai</td>
<td>WARNing</td>
</tr>
<tr>
<td>WAIT_FOR_Definition(YES</td>
<td>NO)</td>
</tr>
</tbody>
</table>
Optional parameters

- **ACTIVATE_SUBTASK#(nnn)**

 See “ACTIVATE_SUBTASK#(nnn)” on page 153.

 The ACTIVATE_SUBTASK# parameter has a matching site option.

- **ADMINISTRATOR(YES|NO)**

 See “ADMINISTRATOR(YES|NO)” on page 153.

 This parameter sets a global value for the following commands:

 - DFDSS (ADRDSSU)
 - SNAP DATASET
 - SNAP VOLUME

- **ALLOCATE_UNUSED_SPACE(YES|NO)**

 See “ALLOCATE_UNUSED_SPACE(YES|NO)” on page 153.

 This parameter sets a global value for the following command:

 - SNAP DATASET

- **ALLOCATION_SEQUENCE(DATASET|NONE|SIZE)**

 See “ALLOCATION_SEQUENCE(DATASET|NONE|SIZE)” on page 154.

 This parameter sets a global value for the following command:

 - SNAP DATASET

- **ALLOW_FBA_META(YES|NO)**

 Allows or prohibits execution of commands against FBA meta devices:

 - **YES**
 FBA meta devices are allowed.
 - **NO**
 (Default) FBA meta devices are not allowed.

 ALLOWFBAMETA and ALLFMETA are aliases for ALLOW_FBA_META.

1. Available starting with Mainframe Enablers 8.2.
The ALLOW_FBA_META parameter has a matching site option, &ALLOW_FBA_META.

AUTOMATIC_ACTIVATE(YES|NO)

The AUTOMATIC_ACTIVATE parameter allows or disallows automatic performance of an ACTIVATE when there are two or more SNAP VOLUME requests in the input stream and no ACTIVATE has been supplied by the user:

YES (Default) Multiple SNAP VOLUME requests are processed when there are two or more SNAP VOLUME commands in the input stream and no ACTIVATE was supplied.

NO Multiple SNAP VOLUME requests are not processed when there are two or more SNAP VOLUME commands in the input stream without the presence of an ACTIVATE command.

Note: The AUTOMATIC_ACTIVATE (YES|NO) parameter cannot be used for group processing.

TimeFinder ignores AUTOMATIC_ACTIVATE for any SNAP VOLUME requests that specify a group name.

TimeFinder ignores AUTOMATIC_ACTIVATE for any SNAP VOLUME requests that specify a virtual device (VDEV).

The activate provided by AUTOMATIC_ACTIVATE is not consistent. For the activate to be consistent, you must either:

- Specify the consistent ACTIVATE command with the CONSISTENT parameter.
- Specify the GLOBAL command with the CONSISTENT parameter.

The AUTOMATIC_ACTIVATE parameter has a matching site option, &AUTOACTIVATE.

This parameter sets a global value for the following command:

SNAP VOLUME

AUTOMATIC_CLEANup(YES|NO)

See “AUTOMATIC_CLEANup(YES|NO)” on page 154.

This parameter sets a global value for the following command:

RESTORE VOLUME

AUTOmatic_CLEANUP_R2|CLEANUP_R2(YES|NO)

See “AUTOmatic_CLEANUP_R2(YES|NO)” on page 154.

This parameter sets a global value for the following command:

CLEANUP

AUTOMATIC_DEALLOC(YES|NO)

See “AUTOMATIC_DEALLOC(YES|NO)” on page 154.

This parameter sets a global value for the following command:

SNAP VOLUME
AUTOMATIC_RELEASE_hold(YES|NO)

See “AUTOMATIC_RELEASE_hold(YES|NO)” on page 155.

This parameter sets a global value for the following command:

SNAP VOLUME

BACKGROUNDCOPY(YES|NO|NOCOPYRD|VSE)

See “BACKGROUNDCOPY(YES|NO|NOCOPYRD|VSE)” on page 155.

This parameter sets a global value for the following commands:

- SNAP DATASET
- SNAP VOLUME

BCVOnly(YES|NO)

See “BCVOnly(YES|NO)” on page 156.

This parameter sets a global value for the following command:

- SNAP DATASET

BUILD_VTOCIX(YES|NO)

See “BUILD_VTOCIX(YES|NO)” on page 156.

This parameter sets a global value for the following command:

- SNAP DATASET

CATalog(YES|NO)

See “CATalog(YES|NO)” on page 156.

This parameter sets a global value for the following command:

- SNAP DATASET

CHECKBCVholdstatus(YES|NO)

See “CHECKBCVholdstatus(YES|NO)” on page 157.

This parameter sets a global value for the following commands:

- SNAP VOLUME
- RESTORE VOLUME

CHECKONLINEpathstatus(YES|NO|NEVER)

See “CHECKONLINEpathstatus(YES|NO|NEVER)” on page 157.

This parameter sets a global value for the following commands:

- SNAP VOLUME
- STOP SNAP TO VOLUME
- RESTORE VOLUME

CHECK_POOL_usable(YES|NO)

See “CHECK_POOL_usable(YES|NO)” on page 157.
This parameter sets a global value for the following command:
- **SNAP VOLUME**

CKD(EXCLUDE|INCLUDE)

See “CKD(EXCLUDE|INCLUDE)” on page 157.

This parameter sets a global value for the following command:
- **QUERY VOLUME**

CLEANUP_DIFFerential(YES|NO)

See “CLEANup_DIFFerential(YES|NO)” on page 158.

This parameter sets a global value for the following command:
- **CLEANUP [EXTENT TRACK ON]**

COLLAPSE_dataset_extents(VSAM|NONVSAM|VSAM, NONVSAM)

See “COLLAPSE_dataset_extents(VSAM|NONVSAM|VSAM, NONVSAM)” on page 158.

This parameter sets a global value for the following command:
- **SNAP DATASET**

CONDitionVOLume(ALL|LaBeL|DUMP)

See “CONDitionVOLume(ALL|LaBeL|DUMP)” on page 158.

This parameter sets a global value for the following commands:
- **SNAP VOLUME**
- **RESTORE VOLUME**

CONSISTENT(YES|NO)

See “CONSISTENT(YES|NO)” on page 159.

This parameter sets a global value for the following command:
- **SNAP DATASET**

COPYsourceSMSclasses([DATACLASs] [ManaGeMenTCLASs] [STORageCLASs] [ALL])

See “COPYsourceSMSclasses([DATACLASs] [ManaGeMenTCLASs] [STORageCLASs] [ALL])” on page 160.

This parameter sets a global value for the following command:
- **SNAP DATASET**

COPYVolid(YES|NO)

See “COPYVolid(YES|NO)” on page 161.

This parameter sets a global value for the following commands:
- **SNAP VOLUME**
- **RESTORE VOLUME**
DATACLASs(classname)

See “DATACLASs(classname)” on page 162.

This parameter sets a global value for the following command:

- SNAP DATASET

DaTaMoverNaMe(ADDRSSU|COPYCYL|COPYTRK|DFDSS|DSS|FDR|FDRDSF|IDCAMS|NONE)

See “DaTaMoverNaMe(ADDRSSU|COPYCYL|COPYTRK|DFDSS|DSS|FDR|FDRDSF|IDCAMS|NONE)” on page 162.

This parameter sets a global value for the following commands:

- SNAP DATASET
- SNAP VOLUME

DATASET_CHANGED_indicator(SET|RESET|LEAVE)

See “DATASET_CHANGED_indicator(SET|RESET|LEAVE)” on page 164.

This parameter sets a global value for the following commands:

- SNAP DATASET

DEBUG(ALL|EXTRA|TRACE|DUMP|ERROR|SDUMP)

The DEBUG parameter specifies the default debug option for all TimeFinder operations:

- ALL: Produce the TRACE and DEBUG information needed for most situations.
- EXTRA: Produce all possible TRACE and DEBUG information (more complete than ALL).
- TRACE: Produce normal TRACE output.
- DUMP: Produce normal TRACE and DEBUG output.
- ERROR: Record some TRACE and DEBUG output in memory. Put this information in the message log only if an error occurs.
- SDUMP: When an abend occurs, an SDUMP (SVC DUMP) is automatically taken.

Note: If you do not include DEBUG, no debugging is performed.

The DEBUG parameter with SDUMP has a matching site option, &DEBUG_SDUMP=YES|NO.

The DEBUG parameter with ERROR has a matching site option, &DEBUG_ERROR.

Table 2 on page 47 lists the site options and their parameters.

DEBUG sets the type of debugging actions that are to be performed by default. You can control DEBUG and TRACE default actions on specific commands through the DEBUG(ON|OFF) and TRACE(ON|OFF) parameters.
For example, consider the three cases shown in Table 13.

Table 13 Effect of GLOBAL DEBUG

<table>
<thead>
<tr>
<th>Case</th>
<th>DEBUG parameter</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GLOBAL_DEBUG(ALL)</td>
<td>Sets run to produce the TRACE and DEBUG information needed for most situations.</td>
</tr>
<tr>
<td></td>
<td>SNAP DATASET DEBUG(OFF)</td>
<td>For SNAP DATASET action, sets DEBUG(OFF) TRACE(ON).</td>
</tr>
<tr>
<td></td>
<td>SNAP_VOLUME TRACE(OFF)</td>
<td>For SNAP_VOLUME action, sets DEBUG(ON) TRACE(ON) TRACE is set to ON because DEBUG includes trace.</td>
</tr>
<tr>
<td>2</td>
<td>GLOBAL_DEBUG(TRACE)</td>
<td>Sets run to produce normal TRACE output.</td>
</tr>
<tr>
<td></td>
<td>SNAP DATASET DEBUG(OFF)</td>
<td>For SNAP DATASET action, sets DEBUG(OFF) TRACE(ON).</td>
</tr>
<tr>
<td></td>
<td>SNAP_VOLUME TRACE(OFF)</td>
<td>For SNAP_VOLUME action, sets DEBUG(OFF) TRACE(OFF).</td>
</tr>
<tr>
<td>3</td>
<td>GLOBAL_DEBUG(EXTRA)</td>
<td>Sets run to produce all possible TRACE and DEBUG information.</td>
</tr>
<tr>
<td></td>
<td>SNAP DATASET DEBUG(OFF)</td>
<td>For SNAP DATASET action, sets DEBUG(OFF) TRACE(ON) and produces extra information.</td>
</tr>
<tr>
<td></td>
<td>SNAP_VOLUME TRACE(OFF)</td>
<td>For SNAP_VOLUME action, sets DEBUG(ON) TRACE(ON) and produces extra information. TRACE is set to ON because DEBUG includes trace.</td>
</tr>
</tbody>
</table>

This parameter sets a global value for the following commands:

- SNAP_DATASET
- SNAP_VOLUME
- RESTORE_VOLUME

Default value

None

DEBUG_EXTENTS (YES|NO)

DEBUG_EXTENTS controls whether the EXTENTS program, when invoked, writes debug information to the console log:

- **YES** Causes EXTENTS to write debug information to the console log on startup.
- **NO** *(Default)* Prohibits EXTENTS from writing debug information to the console log on startup.

This parameter is not normally required. It should only be used when requested by EMC.

This parameter sets a global value for the following command:

- EXTENTS program

DFDSS_ADMIN (YES|NO)

See “DFDSS_ADMIN(YES|NO)” on page 164.
This parameter sets a global value for the following commands:

- SNAP DATASET
- SNAP VOLUME

DFDSS_CC (YES|NO)

See “DFDSS_CC(YES|NO)” on page 165.

This parameter sets a global value for the following commands:

- SNAP DATASET
- SNAP VOLUME

DFDSS_OPTimize(n)

The DFDSS_OPTIMIZE parameter specifies the OPTIMIZE value to be used when DFDSS is specified as the DATAMOVERNAME.

Acceptable values for n are 1 through 4. The default value is 4.

The DFDSS_OPTIMIZE parameter has a matching site option, &DFDSS_OP.

This parameter sets a global value for the following command:

- DFDSS datamover program

DIFFerential(YES|NO)

See “DIFFerential(YES|NO)” on page 165.

This parameter sets a global value for the following command:

- SNAP VOLUME

DIFFERENTIAL_DATASET (YES|NO)

See “DIFFERENTIAL_DATASET(YES|NO)” on page 165.

This parameter sets a global value for the following command:

- SNAP DATASET

EATTR(NO|OPT)

See “EATTR(NO|OPT)” on page 166.

This parameter sets a global value for the following command:

- SNAP DATASET

EMUL_TYPE(ALL|HARDLINK|SNAPVX)

See “EMUL_TYPE(ALL|HARDLINK|SNAPVX)” on page 166.

This parameter sets a global value for the following command:

- QUERY VOLUME

ENQSCOPE(REquest|STEP)

See “ENQSCOPE(REquest|STEP)” on page 166.

This parameter sets a global value for the following command:

- SNAP DATASET
ENQWAIT(YES|NO)

See “ENQWAIT(YES|NO)” on page 166.

This parameter sets a global value for the following command:

- SNAP DATASET

ERROR_CHecking|ERRCHK(NORmal|REDUCED)

See “ERROR_CHecking(NORmal|REDUCED)” on page 167.

This parameter sets a global value for the following commands:

- SNAP DATASET
- SNAP VOLUME

ERRor_DISPosition(DELete|KEEP)

See “ERRor_DISPosition(DELete|KEEP)” on page 168.

This parameter sets a global value for the following command:

- SNAP DATASET

ERROR_RECovery(NORmal|ENHanced)

See “ERROR_RECovery(NORmal|ENHanced)” on page 168.

This parameter sets a global value for the following commands:

- SNAP DATASET
- SNAP VOLUME

ESNP119(WARNING|ERROR)

Determine whether message ESNP119 is a warning or error message:

- ERROR Message is issued and processing stops.
- WARNING (Default) Message is issued as a warning and processing continues.

The following ESNP119 message involves a request for a consistent copy and has two different outcomes that can be set.

CONSISTENT COPY ATTEMPTED, BUT TIMEOUT OCCURRED OR UNSUPPORTED DEVICE, COPY NOT CONSISTENT

It can be a warning message, where the attempt that caused the message is identified and the processing is continued, or it can be set as an error condition where the processing is stopped.

This parameter sets a global value for the following commands:

- SNAP DATASET
- SNAP VOLUME

ESNP220(ERROR|WARNING)

See “ESNP220(ERROR|WARNING)” on page 168.

This parameter sets a global value for the following command:

- SNAP DATASET
EXAMINE(YES|NO)

See “EXAMINE(YES|NO)” on page 169.

This parameter sets a global value for the following command:

- SNAP DATASET

EXclude_PathGroupID(pathlist)

See “EXclude_PathGroupID(pathlist)” on page 169.

This parameter sets a global value for the following commands:

- SNAP VOLUME
- RESTORE VOLUME

EXPlain(VOLUME_SELECTION(YES|NO))

See “EXPlain(VOLUME_SELECTION(YES|NO))” on page 169.

This parameter sets a global value for the following command:

- SNAP DATASET

EXTENT_ALLOCAtion(YES[,CONSOLIDATE_VOLUME],CONSOLIDATE_ALL] |NO)

See “EXTENT_ALLOCAtion(YES[,CONSOLIDATE_VOLUME],CONSOLIDATE_ALL]|NO)” on page 170.

This parameter sets a global value for the following command:

- SNAP DATASET

EXTALLOC_EMC_ONLY(YES|NO)

See “EXTALLOC_EMC_ONLY(YES|NO)” on page 170.

This parameter sets a global value for the following command:

- SNAP DATASET

EXTENT_EXPAND(YES|NO,[ADDNEW(YES|NO)][,SAMEVOL][,NEWVOL])

See “EXTENT_EXPAND(YES|NO,[ADDNEW(YES|NO)][,SAMEVOL][,NEWVOL])” on page 171.

This parameter sets a global value for the following command:

- SNAP DATASET

FBA(EXCLUDE|INCLUDE)

See “FBA(EXCLUDE|INCLUDE)” on page 171.

This parameter sets a global value for the following command:

- QUERY VOLUME

FLASH_SNAP(FLASHCOPY|SNAP)

See “FLASH_SNAP(FLASHCOPY|SNAP)” on page 171.

This parameter sets a global value for the following commands:

- QUERY VOLUME
- **SNAP DATASET**

FORCE (YES | NO)

See “FORCE(YES|NO)” on page 172.

This parameter sets a global value for the following command:

- **SNAP DATASET**

FORCE_COMPLETION (YES | NO)

See “FORCE_COMPLETION(YES|NO)” on page 172.

This parameter sets a global value for the following command:

- **CLEANUP**

FREESPACE (YES | NO)

See “FREESPACE(YES|NO)” on page 172.

This parameter sets a global value for the following command:

- **SNAP VOLUME**

GROUP_DATASET_NAME (‘dataset_name’)

The GROUP_DATASET_NAME parameter is valid only with the GLOBAL command and identifies the dataset used as the “working” group dataset. This must be a partitioned dataset or partitioned dataset extended and you must have read/write access to the dataset. Any group references are resolved into this dataset, along with the status information for actions executed for a group.

If this parameter omitted, then TimeFinder uses a DDNAME of EMCGROUP as the “working” group dataset.

GROUP_DSName is an alias of GROUP_DATASET_name.

The GROUP_DATASET_NAME parameter has a matching site option, &GROUP_DSNAME.

This parameter sets a global value for the following command:

- **SNAP VOLUME**

Default value

None

GROUP_DEVICE_ready_state (AUTO | NEVER)

The GROUP_DEVICE_READY_STATE parameter controls the access, or readiness, to the devices on a channel. This determines when devices on the channel are available for an operation and when they are not:

- **AUTO** *(Default)* Use the standard group processing option. Make the devices not ready on the channel during PRESNAP processing and ready on the channel when POSTSNAP is performed.

- **NEVER** Do not change the readiness of the devices on the channel.

The GROUP_DEVICE_READY_STATE parameter has a matching site option, &GROUP_DEVICE READY_STATE.
You can abbreviate the “GROUP” in the GROUP_DEVICE_READY_STATE parameter name as “GRP.”

This parameter sets a global value for the following command:

- SNAP VOLUME

Example

GRP_DEV(NEVER)

GROUP_EMCQCAPI_VERIFY(YES|NO)

SNAP VOLUME processing ensures that the source and target volumes are completely suitable for use before requesting that the VMAX system establish a relationship between the two devices. The GROUP_EMCQCAPI_VERIFY parameter allows you to avoid this additional overhead.

This can be a major benefit when a group is being executed on a periodic basis, and no other usage of the target devices occurs that might disrupt the device status.

The parameter values are:

- YES (Default) Avoid the additional suitability check. This eliminates some overhead, but raises the chance that the request fails.
- NO Do not avoid the additional suitability check.

The GROUP_EMCQCAPI_VERIFY parameter has a matching site option, &GROUP_EMCQCAPI_VERIFY.

This parameter sets a global value for the following command:

- SNAP VOLUME

Example

GROUP_EMCQCAPI_VERIFY(NO)

HostcoPYMODE(SHaReD|EXClusive|NONE)

See “HostcoPYMODE(SHaReD|EXClusive|NONE)” on page 173.

This parameter sets a global value for the following command:

- SNAP VOLUME

Example

HostcoPYMODE(SHaReD|EXClusive|NONE)

INVALIDATE_PDSE_buffers(YES|NO)

See “INVALIDATE_PDSE_buffers(YES|NO)” on page 174.

This parameter sets a global value for the following commands:

- SNAP DATASET
- SNAP VOLUME

Example

INVALIDATE_PDSE_buffers(NO)

HostcoPYMODE(SHaReD|EXClusive|NONE)

See “HostcoPYMODE(SHaReD|EXClusive|NONE)” on page 173.

This parameter sets a global value for the following command:

- SNAP DATASET
LIST([[[NO]STAtements]][[NO]HIStory])

This parameter sets a global value for the following command:

- QUERY GROUP

LOGINDYNAM(volume[,volume...])

See “LOGINDYNAM(volume[,volume...])” on page 176.

This parameter sets a global value for the following command:

- SNAP DATASET

ManagaMenTCLASs(classname)

See “ManagaMenTCLASs(classname)” on page 176.

This parameter sets a global value for the following command:

- SNAP DATASET

MAXIMUM_ADRDSSU_address_spaces(number)

TimeFinder automatically uses multiple address spaces when you request multitasking and TimeFinder encounters SNAP VOLUME requests. The MAXIMUM_ADRDSSU_ADDRESS_SPACES parameter determines the limit on address spaces that ADRDSSU (ADRXMAIA) spawns when used as a datamover.

number

Specifies the limit on address spaces. The minimum value you can specify is one (1) and the normal maximum value you can specify is 15.

Note: Contact EMC if you want to use a larger maximum value than 15.

MAXDSSU is an alias of MAXIMUM_ADRDSSU_address_spaces.

The MAXIMUM_ADRDSSU_ADDRESS_SPACES parameter has a matching site option, &MAXDSSU.

This parameter sets a global value for the following command:

- ADRDSSU (ADRXMAIA) - this is a datamover program

Default value

10

Example

MAXDSSU(5)

MAXIMUM_SUBTASKS(number1,number2)

The MAXIMUM_SUBTASKS parameter establishes an absolute maximum number of subtasks that can be attached and used. TimeFinder automatically limits the number of subtasks based on the requests specified and the low and high region available.

TimeFinder never exceeds the limits specified in this parameter.
number1

The limit to the number of individual requests that can be processed simultaneously.

The minimum value you can specify is two (2). The maximum value you can specify is 9999.

number2

The limit to the number of individual activities that can be performed within a single request, typically as the result of wildcarding.

The minimum value you can specify is two (2). The maximum value you can specify is 9999.

MAXTASKs is an alias of MAXIMUM_SUBTASKS.

MAXIMUM_SUBTASKS (number1...) has a matching site option, MAXTASK2.

MAXIMUM_SUBTASKS (number2...) has a matching site option, MAXTASKR.

Default value

99 (number1)
999 (number2)

Example

MAXTASK(10,10)

MAXRC(return_code_value)

The MAXRC parameter specifies the maximum allowable return codes. If the return code value is exceeded by the code returned by a command, all commands following are bypassed.

Each message issued has a severity associated with it. Severities are associated with the last character of the message ID. For instance, if the last character is a 'l', the severity is 0. 'W' is 4, 'E' is 8 and 'S' is 16.

When a request (command) is completely processed, the highest severity for a message issued for that command is checked against the MAXRC setting to determine whether additional commands is processed.

return_code_value

The numeric value you want to use as the maximum allowable return code. The values you can use range from zero (0) through 16. By default, the MAXRC return code value is four (4).

Note: MAXRC does not apply until after the parsing phase is complete. If any ERROR is encountered during the parsing phase, the run is always terminated.

This parameter sets a global value for the following:

- All TimeFinder commands

Default value

4
Example

Here are a few examples:

Message ESNPxxxl - severity is 0
 If MAXRC(4), then additional commands is executed (0 is not greater than 4).
Message ESNPxxxW - severity is 4
 If MAXRC(4), then additional commands is executed (4 is not greater than 4).
Message ESNPxxxE - severity is 8
 If MAXRC(4), then additional commands is NOT executed (8 is greater than 4).

MESsages(DISplay|PROmpt|NONE|DETAIL)
 See “MESsages(DISplay|PROmpt|NONE|DETAIL)” on page 176.
 This parameter sets a global value for the following command:
 ■ ACTIVATE

MIGrate([PURge(YES|NO)] [RECall(YES|NO)])
 See “MIGrate([PURge(YES|NO)] [RECall(YES|NO)])” on page 177.
 This parameter sets a global value for the following command:
 ■ SNAP DATASET

MODECOPYFINISH
 MODECOPYFINISH resolves outstanding indirecled tracks. MODECOPYFINISH applies to both SNAP DATASET and SNAP VOLUME and is an alias of the PREPARE_FOR_SNAP parameter.
 By default, MODECOPYFINISH is not used. If you do not want to use MODECOPYFINISH, do not specify the parameter.
 If you want MODECOPYFINISH, code the GLOBAL command as follows:

GLOBAL MAXRC(0) MODECOPYFINISH

 Note: The MODECOPYFINISH parameter applies only to locally addressable volumes. MODECOPYFINISH is ignored if specified on actions with the SYMDV#, LOCAL, or REMOTE parameters.
 This parameter sets a global value for the following commands:
 ■ SNAP DATASET
 ■ SNAP VOLUME

MODE COPY|NOCOPY|NOCOPYRD
 See “MODE(COPY|NOCOPY|NOCOPYRD|VSE)” on page 177.
 This parameter sets a global value for the following commands:
 ■ CONFIG
 ■ SNAP DATASET
 ■ SNAP VOLUME
MULTI_LINE_query(YES|NO)

See “MULTI_LINE_query(YES|NO)” on page 181.

This parameter sets a global value for the following commands:

- QUERY VOLUME

MULTI_VIRTual(YES|NO)

See “MULTI_VIRTual(YES|NO)” on page 182.

This parameter sets a global value for the following commands:

- SNAP VOLUME

NAME(snapshot_name[%date[4|6|8]%][%time[4|6]%])

See “NAME(snapshot_name[%date[4|6|8]%][%time[4|6]%])” on page 182.

NOTIFYwhencomplete([(GROUP(name))[DATASET|JOB|STEP|SNAP]])

See “NOTIFYwhencomplete([(GROUP(name))[DATASET|JOB|STEP|SNAP]])” on page 183.

This parameter sets a global value for the following command:

- SNAP DATASET
- SNAP VOLUME
- RESTORE VOLUME

NOTREADY(EXCLUDE|INCLUDE)

See “NOTREADY(EXCLUDE|INCLUDE)” on page 184.

This parameter sets a global value for the following command:

- QUERY VOLUME

PARallel(YES|NO)

The PARALLEL parameter enables or disables multitasking:

YES Enables multitasking.
NO (Default) Disables multitasking.

PAR is an alias of PARALLEL.

The PARALLEL parameter has a matching site option, &PARALLEL.

This parameter sets a global value to enable or disable multitasking.

Example

PARALLEL(YES)

PARALLEL_CLONE(YES|NO|PREFerred|REQuired)

See “PARALLEL_CLONE(YES|NO|PREFerred|REQuired)” on page 184.

PERSISTent(YES|NO)

See “PERSISTent(YES|NO)” on page 186.

This parameter sets a global value for the following command:

- RESTORE VOLUME
POOL(poolname)

See “POOL(poolname)” on page 186.

This parameter sets a global value for the following command:

- SNAP VOLUME

PRECOPY(YES | NO)

See “PRECOPY(YES|NO)” on page 187.

This parameter sets a global value for the following command:

- SNAP VOLUME

PREPARE_FOR_SNAP (YES | NO)

Volume or dataset snaps require that you perform validations and setup work before you issue a SNAP VOLUME or SNAP DATASET command. For example, for volume snaps, any tracks remaining to be copied from a prior snap must be completed. For dataset snaps, the REUSE parameter validates the targets of the snap.

In many cases, this setup work represents a significant portion of the total elapsed time of the snap job. The actual SNAP VOLUME and SNAP DATASET commands are very fast.

The PREPARE_FOR_SNAP parameter separates some of the preparatory work from the actual snap. Running a VMAX snap job with PREPARE_FOR_SNAP at a noncritical time and then running the same snap job without PREPARE_FOR_SNAP in the critical batch path of the workload may provide reductions in the elapsed time of the second execution of snap and positively affect the critical batch path.

The first execution performs some of the validation and setup work but not the actual snap. The second execution performs the final validation and setup work, and then issues the snap.

The PREPARE_FOR_SNAP parameter allows you to bypass the actual snap action and instead, perform and report on all validation, resolve outstanding indirected tracks, and other preparatory work.

Note: The target dataset must already exist for this parameter to be used.

PREPARE_For_SNAP is *not designed* to work for a new snap, volume or dataset. It is designed so that if a situation occurs where a previous snap is not completed, all the relationships and snap status can be completed without initiating any new work, allowing the next snap operation to proceed without waiting for the previous snap to complete.

The PREPARE_FOR_SNAP parameter applies to both SNAP DATASET and SNAP VOLUME. Possible values are:

- **YES** Bypass the actual snap action.
- **NO** (Default) Do not bypass the actual snap action.

The PREPARE_FOR_SNAP parameter has a matching site option, &PREPARE.
The PREPARE_FOR_SNAP parameter only applies to locally addressable volumes. PREPARE_FOR_SNAP is ignored if you specify it on actions with the SYMDV#, LOCAL, or REMOTE parameters.

MODECOPYFINISH is an alias for this parameter.

This parameter sets a global value for the following commands:

- SNAP DATASET
- SNAP VOLUME

R1FULLCOPYonly(YES|NO)

See “R1FULLCOPYonly(YES|NO)” on page 187.

This parameter sets a global value for the following commands:

- SNAP DATASET
- SNAP VOLUME

RAID(ALL|NONE|RAIDS|RAID1|RAID5|RAID6|RAID10|FTS)

See “RAID(ALL|NONE|RAIDS|RAID1|RAID5|RAID6|RAID10|FTS)” on page 188.

This parameter sets a global value for the following command:

- QUERY VOLUME

ReaDY(EXCLUDE|INCLUDE)

See “ReaDY(EXCLUDE|INCLUDE)” on page 188.

This parameter sets a global value for the following command:

- QUERY VOLUME

RECALCULATE_FREESPACE(YES|NO)

See “RECALCULATE_FREESPACE(YES|NO)” on page 189.

This parameter sets a global value for the following command:

- SNAP DATASET

RENAMEUnconditional(pfx)|
RENAMEUnconditional((pfx)(oldnamemask,newnamemask)...) |
RENAMEUnconditional(((oldnamemask,newnamemask)...)

See “RENAMEUnconditional(pfx)|
RENAMEUnconditional((pfx)(oldnamemask,newnamemask)...) |
RENAMEUnconditional(((oldnamemask,newnamemask)...)” on page 191.

REFVTOC(YES|NO)

See “REFVTOC(YES|NO)” on page 189.

This parameter sets a global value for the following command:

- QUERY VOLUME

REMOVE_REMOTE_extent_sessions(YES|NO)

See “REMOVEREMOTE_extent_sessions(YES|NO)” on page 191.
This parameter sets a global value for the following command:
- CLEANUP

REPLACE (YES | NO)
See “REPLACE(YES|NO)” on page 192. The REPLACE parameter establishes the REPLACE value for all operations.

This parameter sets a global value for the following commands:
- SNAP DATASET
- SNAP VOLUME

RESERVE (YES | NO)
If RESERVE(YES) is specified, then the source and target volumes are enqueued and reserved so that VTOC changes cannot take place during the validate function.

If RESERVE(NO) is specified, then the source and target volumes is not enqueued and it is possible for VTOC changes to take place, causing a missed compare during validation.

The RESERVE parameter has a matching site option, &RESERVE.

This parameter sets a global value for the following commands:
- SNAP VOLUME

Default value
YES

REUSE (YES | NO)
See “REUSE(YES|NO[,WAIT])” on page 193.

This parameter sets a global value for the following command:
- SNAP DATASET

REUSE_AUTO_expand (YES | NO)
See “REUSE_AUTO_expand(YES|NO)” on page 193.

This parameter sets a global value for the following command:
- SNAP DATASET

SAVEDEV (EXCLUDE | INCLUDE)
See “SAVEDEV(EXCLUDE|INCLUDE)” on page 194.

This parameter sets a global value for the following command:
- QUERY VOLUME

SELECTMULTI (ALL | ANY | FIRST)
See “SELECTMULTI(ALL|ANY|FIRST)” on page 194.

This parameter sets a global value for the following command:
- SNAP DATASET
SESSION_LIST(Yes|No[,DETail|,NODETail|,DIFFerential])

See “SESSION_LIST(Yes|No[,DETail|,NODETail|,DIFFerential])” on page 194.

This parameter sets a global value for the following command:

- QUERY VOLUME

SIZE(ALL|MOD1|MOD2|MOD3|MOD9|MOD27|MOD54|EAV|#|low-high)

See “SIZE(ALL|MOD1|MOD2|MOD3|MOD9|MOD27|MOD54|EAV|#|low-high)” on page 195.

This parameter sets a global value for the following command:

- QUERY VOLUME

SMS_PASS_volumes(YES|NO)

See “SMS_PASS_volumes(YES|NO)” on page 195.

This parameter sets a global value for the following command:

- SNAP DATASET

SNAPSHOT_LIST(ALL|LINKED|NOT_LINKED|SNAPSHOT)

See “SNAPSHOT_LIST(ALL|LINKED|NOT_LINKED|SNAPSHOT)” on page 196.

This parameter sets a global value for the following command:

- QUERY VOLUME

SNAP_UNUSED_SPACE(YES|NO)

See “SNAP_UNUSED_SPACE(YES|NO)” on page 196.

This parameter sets a global value for the following command:

- SNAP DATASET

SOFTlink(YES|NO)

See “SOFTlink(YES|NO)” on page 196.

SRDFA_CONSISTENT_RETRY(Yes|No|nn)

See “SRDFA_CONSISTENT_RETRY(Yes|No|nn)” on page 199.

This parameter sets a global value for the following command:

- ACTIVATE

 Default value

 10 (retry attempts)

SRDFA_R1_target(Yes|No|DATAMOVERNaMe|PHYsical|INFormational)

See “SRDFA_R1_target(Yes|No|DATAMOVERNaMe|PHYsical|INFormational)” on page 199.

This parameter sets a global value for the following commands:

- SNAP DATASET
- SNAP VOLUME
SRDFA_R2_sync(WARNING|R1R2SYNC|DATAMOVER)

See “SRDFA_R2_sync(WARNING|R1R2SYNC|DATAMOVER)” on page 200.

This parameter sets a global value for the following commands:

- SNAP DATASET
- SNAP VOLUME

SRDFS_R1_target(Yes|No|DATAMOVERName|Physical|Informational)

See “SRDFS_R1_target(Yes|No|DATAMOVERName|Physical|Informational)” on page 201.

This parameter sets a global value for the following commands:

- SNAP DATASET
- SNAP VOLUME

STORageCLASs(classname)

See “STORageCLASs(classname)” on page 201.

This parameter sets a global value for the following command:

- SNAP DATASET

STORED_LOG_SIZE(size)

The STORED_LOG_SIZE parameter is used with GLOBAL_DEBUG(ERROR) and GLOBAL_DEBUG(EMCQCAPI_INLINE_TRACE) to set the number of output debug lines that are stored in memory. If an error occurs, the stored debug lines are written to the output listing file.

size

Specifies the number of output debug lines to be stored. The value can be an integer from 0 (zero) to a very large number, over a billion.

The STORED_LOG_SIZE parameter is also available as a site option, &STORED_LOG_SIZE.

This parameter sets a global value for the following command:

- GLOBAL (only)

Default value

None

Example

GLOBAL_DEBUG(ERROR,EMCQCAPI_INLINE_TRACE)
GLOBAL_STORED_LOG_SIZE(25000)

TDEV.EXClude|INClude

See “TDEV(EXClude|INClude)” on page 203.

This parameter sets a global value for the following command:

- QUERY VOLUME
TDEV_RECLAIM(YES|NO)
 See “TDEV_RECLAIM(YES|NO)” on page 203.
 This parameter sets a global value for the following command:
 - SNAP VOLUME

TERMINATE_SESSION_when_complete(YES|NO)
 See “TERMINATE_SESSION_when_complete(YES|NO)” on page 203.
 This parameter sets a global value for the following command:
 - SNAP VOLUME

THINPOOL(INCLUDE|EXCLUDE)
 See “THINPOOL(INCLUDE|EXCLUDE)” on page 204.
 This parameter sets a global value for the following command:
 - QUERY VOLUME

TIMEOUT(nnn|0)
 See “TIMEOUT(nnn)” on page 203.
 This parameter sets a global value for the following command:
 - ACTIVATE

TOLerate_REUSe_Failure(YES|NO)
 See “TOLerate_REUSe_Failure(YES|NO)” on page 204.
 This parameter sets a global value for the following command:
 - SNAP DATASET

TOLerateALLoocationFailure(YES|NO)
 See “TOLerateALLoocationFailure(YES|NO)” on page 204.
 This parameter sets a global value for the following command:
 - SNAP DATASET

TOLerate_COPY_Failure(YES|NO)
 See “TOLerate_COPY_Failure(YES|NO)” on page 205.
 This parameter sets a global value for the following command:
 - SNAP DATASET

TOLERATE_DATACLASS_COMPACTION_MISMATCH(YES|NO)
 The default value of NO checks to ensure that the source dataset compaction type
 matches the target data class compaction type. If they do not match, an error
 occurs.
 If the value is changed to YES, then the check is not made and it is possible to copy
 a non-compact dataset to a compact data class, or a compact dataset to a
 non-compact data class.
 This parameter sets a global value for the following command:
 - SNAP DATASET
Default value

NO

TOLERATE_DATACLASS_EXTENDED_MISMATCH (YES | NO)

The default value of NO checks to ensure that the source dataset extended type matches the target data class extended type. If they do not match, an error occurs.

If the value is changed to YES, the check is not made and it is possible to copy a non-extended dataset to a extended data class, or a extended dataset to a non-extended data class.

This parameter sets a global value for the following command:

- SNAP DATASET

Default value

NO

TOLERATEENQFailure (YES | NO)

See “TOLERATEENQFailure (YES | NO)” on page 205.

This parameter sets a global value for the following command:

- RESTORE VOLUME
- SNAP DATASET
- SNAP VOLUME

TOLERATETRUNCation (YES | NO)

See “TOLERATETRUNCation (YES | NO)” on page 206.

This parameter sets a global value for the following command:

- SNAP DATASET

TOLERATEVSAMENQFailure (YES | NO)

See “TOLERATEVSAMENQFailure (YES | NO)” on page 206.

This parameter sets a global value for the following command:

- SNAP DATASET

TYPRUN (NORUN | RUN | SCAN)

The TYPRUN parameter determines the type of command processing. Possible values are:

- NORUN: Specifies parsing all commands and identifying the datasets that are going to be processed, but not actually doing any work.
- RUN (Default): Specifies fully processing all commands.
- SCAN: Specifies stopping command processing after all commands have been parsed. In other words, performing syntax checking and then stopping.

This parameter sets a global value for how commands are processed.

Default value

RUN
VALIDATE_RANGE({LOCAL|REMOTE}({AUTO|IGNORE}))

In normal SNAP VOLUME processing, each request is handled as independent and unrelated to any other requests. This means that each SNAP VOLUME request is processed as if there were no other statements present in the input stream. Each device (source or target) is validated individually and perhaps repeatedly (for example, a source volume may be used in multiple requests).

Depending on the keyword you use, the VALIDATE_RANGE parameters can change the validation processing.

VALIDATE_RANGE(LOCAL...) can change validation processing for local (source and target) devices.

VALIDATE_RANGE(REMOTE...) can change validation processing for remote (source and target) devices.

Parameter values can be:

AUTO (Default) Changes device validation processing. Information about the device that is obtained from the VMAX system includes information about many devices instead of a single device. This additional information is cached and is used if additional requests refer to any of these devices. This processing is automatically chosen for three situations:
- SYMDV# is specified and uses a range.
- UNIT is specified and uses a range.
- A group is processed.

LOCAL Changes device validation. Information about local devices is obtained from the local VMAX system. This additional information is cached and is used if additional requests refer to any of these devices. This processing is automatically chosen for three situations:
- SYMDV# is specified and uses a range.
- UNIT is specified and uses a range.
- A group is processed.

REMOTE Changes device validation. Information about remote devices is obtained from the remote VMAX system. This additional information is cached and is used if additional requests refer to any of these devices. This processing is automatically chosen for three situations:
- SYMDV# is specified and uses a range.
- UNIT is specified and uses a range.
- A group is processed.

IGNORE Does not change device validation.

VALIDATE_RANGE(LOCAL...) and VALIDATE_RANGE(REMOTE...) have matching site options:
- &VALRANGE_LOCAL
- &VALRANGE_REMOTE

This parameter sets a global value for the following command:
- SNAP VOLUME

VARY_OFFline(AUTO|NEVER)

See “VARY_OFFline(AUTO|NEVER)” on page 207.
This parameter sets a global value for the following commands:

- RESTORE VOLUME
- SNAP VOLUME

`VARY_ONline(AUTO|YES|NO)`

See “VARY_ONline(AUTO|YES|NO)” on page 207.

This parameter sets a global value for the following commands:

- RESTORE VOLUME
- SNAP VOLUME

`VCLOSE(YES|NO)`

See “VCLOSE(YES|NO)” on page 208.

This parameter sets a global value for the following commands:

- RESTORE VOLUME
- SNAP VOLUME

`VDEVice(EXCLUDE|INCLUDE)`

See “VDEVice(EXCLUDE|INCLUDE)” on page 208.

This parameter sets a global value for the following commands:

- ACTIVATE
- QUERY VOLUME

`VDEVWAIT(YES|NO)`

See “VDEVWAIT(YES|NO)” on page 209.

This parameter sets a global value for the following command:

- SNAP VOLUME

`VERIFY(YES|NO|NEVER)`

See “VERIFY(YES|NO|NEVER)” on page 209.

This parameter sets a global value for the following command:

- SNAP DATASET

`VERIFY_OPEN_SOURCE(YES|NO)`

See “VERIFY_OPEN_SOURCE(YES|NO)” on page 209.

This parameter sets a global value for the following command:

- SNAP DATASET

`VSaMENQMODE(SHAREd|EXClusive|NONE)`

See “VSaMENQMODE(SHAREd|EXClusive|NONE)” on page 210.

This parameter sets a global value for the following command:

- SNAP DATASET
WAITFORCOMPLETION([YES|NO|hh:mm:ss] [,MeSsaGes],[R1R2SYNC] [TIMEOUT(INformational|WARNing|ERRor)])

See “WAITFORCOMPLETION([YES|NO|hh:mm:ss] [,MeSsaGes],[R1R2SYNC] [TIMEOUT(INformational|WARNing|ERRor)])” on page 210.

This parameter sets a global value for the following commands:

- SNAP DATASET
- SNAP VOLUME
- RESTORE VOLUME

WAIT_FOR_Definition(YES|NO)

See “WAIT_FOR_Definition(YES|NO)” on page 211.

WAIT_FOR_PRECOPY_PASS1(YES|NO)

See “WAIT_FOR_PRECOPY_PASS1(YES|NO)” on page 212.

This parameter sets a global value for the following commands:

- ACTIVATE
- SNAP VOLUME

WAITforsession(YES|NO|hh:mm:ss)

See “WAITforsession(YES|NO|hh:mm:ss)” on page 212.

This parameter sets a global value for the following commands:

- SNAP DATASET
- SNAP VOLUME

WHEN_SAVEDEV_FULL(READY|NOTREADY)

See “WHEN_SAVEDEV_FULL(READY|NOTREADY)” on page 213.

This parameter sets a global value for the following command:

- SNAP VOLUME
QUERY DATASET (TF/Clone)

The QUERY DATASET command returns dataset status information.

Syntax

```
QUERY DataSet
{
SOURCE(dataset) | INDDname(ddname)
[optional_parameters]
}
```

Where optional_parameters are as follows:

```
[SOURCE_VOLUME_LIST(vollist)]
```

Required parameters

INDDname(ddname)

The INDDname parameter specifies a DD statement already allocated to the source dataset.

```
ddname
```

The DD statement.

Default value

None

Example

INDD(D1)

SOURCE(dataset)

The SOURCE parameter specifies the dataset name for which you want status information.

```
dataset
```

The name of the dataset. The dataset name can be masked or wildcarded.

Default value

None

Example

SOURCE(MY.DATASET)

Optional parameters

SOURCE_VOLUME_LIST(vollist)

See “SOURCE_VOLUME_LIST(vollist)” on page 198.
QUERY GLOBAL

The QUERY GLOBAL command displays both the site options table and any GLOBAL overrides that have been encountered in the input stream.

Syntax

```plaintext
QUERY GLOBAL
```

Example

The following example is output from a QUERY GLOBAL command:

```
ESNPW20I --- EMCSNAPO --- VER n.n.n --- SIZE 494 --- DATE/TIME nn/nn/09 14.53 ---
ESNPW21I SITE SETTING GLOBAL OVERRIDE
ESNPW22I ADMINISTRATOR N N
ESNPW22I ALLOCATE_UNUSED_SPACE Y Y
ESNPW22I ALLOCATION_SEQUENCE D D
ESNPW22I ALLOCATION_UNITNAME SYSALLDA -N/A
ESNPW22I ALLOW_SYMDV# Y -N/A
ESNPW22I AUTOMATIC_CLEANUP Y Y
ESNPW22I AUTOMATIC_DEALLOC Y Y
ESNPW22I AUTOMATIC_RELEASE N N
ESNPW22I BCVONLY N N
ESNPW22I BUILD_VTOCIX N N
```

QUERY GROUP

The QUERY GROUP command allows you to query the contents of one or all groups. If you specify a group name, QUERY GROUP returns information about that group. If you do not specify a group name, QUERY GROUP returns information about all groups.

Syntax

```plaintext
QUERY GROUP grpname [(LIST([NO]STAtements|[NO]HIStory))]
```

Required parameters

`grpname`

The name of the group. The name can contain as many as eight characters, with no embedded spaces. The characters you use must be valid for a PDS member name.

Note: You cannot reference a group that was defined or deleted in the current jobstep.

Optional parameters

`LIST([NO]STAtements|[NO]HIStory)`

See “LIST([NO]STAtements|[NO]HIStory)” on page 174.

For the duration of the current QUERY GROUP command, the value of LIST overrides any value set by the GLOBAL command LIST parameter.
QUERY VDEVICE (TF/Snap)

The QUERY VDEVICE command returns information about the status of virtual devices in one or more VMAX system(s). The QUERY VDEVICE command without any parameters returns information on all the VMAX systems addressable by the host.

When issued against a VMAX system with HYPERMAX OS 5977 and higher, QUERY VDEVICE returns all thin devices. This causes the query to run longer and produce more output, as compared to Enginuity 5876 and 5773.

Note: This command is only available if you purchase the TF/Snap Licensed Feature Code.

Syntax

QUERY VDEVice (
[CONTROLLER([xxxxxxx-]xxxxx|name])
[LOCAL(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname)
 [CONTROLLER([xxxxxxx-]xxxxx|name)])]
[REMOTE(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname)
 RAGROUP(nn.nn.nn.nn) [CONTROLLER([xxxxxxx-]xxxxx|name)])])
)

Note: Only one of the following can be present: CONTROLLER, LOCAL, or REMOTE. These parameters are mutually exclusive.

Optional parameters

CONTROLLER([xxxxxxx-]xxxxx|name)
See “CONTROLLER([xxxxxxx-]xxxxx|name)” on page 159.

LOCAL(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname)
[CONTROLLER([xxxxxxx-]xxxxx|name)])
See “LOCAL(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname)
[CONTROLLER([xxxxxxx-]xxxxx|name)])” on page 175.

REMOTE(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname)
RAGROUP(nn.nn.nn.nn) [CONTROLLER([xxxxxxx-]xxxxx|name)])
See “REMOTE(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname)
RAGROUP(nn.nn.nn.nn) [CONTROLLER([xxxxxxx-]xxxxx|name)])” on page 190.
QUERY VOLUME

The QUERY VOLUME command returns information about the status of devices in one or more VMAX system(s). By default, the information includes all devices. However, you can limit output to:

- A single CCUU or range of CCUUs.
- A single VMAX device or range of VMAX devices.

Syntax

```
QUERY VOLUME

(UNIT(cuu)|VOLUME(volser)|SCFGROUP(scfgroup)
 |CONTROLLER([xxxxxxx-]xxxxx|name)
 |GROUP grpname[,grpname,...])
[optional_parameters]
)
```

Where optional_parameters are as follows:

- [CKD(EXCLUDE|INCLUDE)]
- [CcUU(ccuu|low-high|low:high|ccuu(count))]
- [DEVICE(symdv#|low-high|low:high|symdv#(count)|ALL)]
- [DISPLAY_CUU(YES|NO)]
- [EMUL_TYPE(ALL|HARDLINK|SNAPVX)]
- [FBA(EXCLUDE|INCLUDE)]
- [FLASH_SNAP(FLASHCOPY|SNAP)]
- [MULTI_LINE_query(YES|NO)]
- [NotReaDY(EXCLUDE|INCLUDE)]
- [RAID(ALL|NONE|RAIDS|RAID1|RAID5|RAID6|RAID10|FTS)]
- [ReaDY(EXCLUDE|INCLUDE)]
- [LOCAL(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname)
 [CONTROLLER([xxxxxxx-]xxxxx|name)])]
- [REMOTE(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname)
 RAGROUP(nn.nn.nn.nn) [CONTROLLER([xxxxxxx-]xxxxx|name)])]
- [SAVEDEV(EXCLUDE|INCLUDE)]
- [SCFGROUP(scfgroup)]
- [SESSION_LIST(Yes|No[,DETail|,NODETail|,DIFFerential])]
- [SIZE(ALL|MOD1|MOD2|MOD3|MOD9|MOD27|MOD54|EAV|#|low-high)]
- [SNAPSHOT_LIST(ALL|LINKED|NOT_LINKED|SNAPSHOT)]
- [TDEV(EXCLUDE|INCLUDE)]
- [THINPOOL(EXCLUDE|INCLUDE)]
[VDEVice(EXCLUDE|INCLUDE)]

Note: Only one of the following can be present: CONTROLLER, LOCAL, or REMOTE. These parameters are mutually exclusive.

Note: The optional parameters must be separated from each other by a blank space. If a parameter has YES and NO keywords, you can substitute ON for YES and OFF for NO.

Note: If the CcUU or DEVice parameters are not set, information is only returned for the one VOLUME, UNIT, or CONTROLLER specified.

Required parameters

CONTROLLER ([xxxxxxx-]xxxxx|name)

Specifies the VMAX system to be queried.

See “CONTROLLER([xxxxxxx-]xxxxx|name)” on page 159.

GROUP(grpname[,grpname,...])

This parameter allows you to display all the devices in a group together without having to build the query manually.

See “GROUP(grpname[,grpname,...])” on page 173.

Each VMAX system you reference has just the devices in the specified group displayed. Both the source and target devices are listed.

If you use the GROUP parameter, then you should not use the UNIT, SCFGROUP, CONTROLLER, LOCAL, REMOTE, CCUU, or DEVICE parameters.

If you use the GROUP parameter, you can use the CKD, FBA, SAVEDEV, VDEV, READY, NOTREADY, RAID, SESSION_LIST, and SIZE parameters to tailor your results.

Default value

None

UNIT(cuu)

UNIT(cuu) specifies the unit address of the volume to be queried.

Default value

None

Example

UNIT(A099)

VOLUME(volser)

VOLUME(volser) specifies the volser of the volume to be queried.

If the volser contains a hyphen, enclose it in single quotes, for example: VOL('vol-ser').
Default value
None

Example
VOL(VOL000)

Optional parameters

CcUU(*ccuu|low-high|low:high|ccuu(count)*)

The CCUU parameter specifies using the z/OS CCUU to define the devices to be queried. This limits the QUERY VOLUME output to those devices that match the CCUU specification. If you omit this parameter, then TimeFinder does not check the CCUU value and may show all devices.

You can specify a single CCUU:

CUU(*ccuu*)

You can also specify a range of CCUUs. You can write a range in three ways:

- Specify the lowest CCUU in the range and the highest CCUU in the range separated by a dash:

 CUU(*low-high*)

- Specify the lowest CCUU in the range and the highest CCUU in the range separated by a colon:

 CUU(*low:high*)

- Specify the starting CCUU in the range and a count value (in parentheses) that indicates how many additional devices there are between that CCUU and the end of the range. The count value includes the lowest and the highest CCUUs. The total number of CCUUs in the range (that is, the count value) cannot exceed 256.

 CUU(*ccuu(count]*)

CKD(EXCLUDE|INCLUDE)

See “**CKD**(EXCLUDE|INCLUDE)” on page 157.

For the duration of the current QUERY VOLUME command, the value of CKD overrides any value set by the GLOBAL command CKD parameter or by the &OPT_CKD site option.

DEVice(*symdv#|low-high|low:high|symdv#(count)|ALL*)

The DEVICE parameter defines the devices to query by using the internal VMAX device numbers. The resulting output includes only the devices specified.

You can specify a single VMAX device:

DEVICE(*symdv#*)

1. With Mainframe Enablers 8.1 and higher.
You can also specify a range of VMAX devices. You can write a range in three ways:

- Specify the lowest device in the range and the highest device in the range separated by a dash:

 `DEVICE(low-high)`

- Specify the lowest device in the range and the highest device in the range separated by a colon:

 `DEVICE(low:high)`

- Specify the starting device in the range and a count value (in parentheses) that indicates how many additional devices there are between that device and the end of the range. The count value includes the lowest and the highest devices.

 `DEVICE(symdv#(count))`

For most commands, you only use the LOCAL, REMOTE, and CONTROLLER parameters when you use the SYMDV# parameter. This is because SYMDV# identifies only a device, not its location.

The QUERY commands are different. Because the QUERY commands use a VMAX system as a target, you can use the LOCAL, REMOTE, and CONTROLLER parameters with them without a SYMDV# parameter being present. The various filtering parameters each QUERY command can take let you isolate the particular devices on which you want to report.

- You can also specify ALL. TimeFinder returns data on all devices.

Default value

ALL

Example

None

DISPLAY_CUU (YES | NO)

Determines whether to include CUU information in QUERY VOLUME output:

- **YES** Display CUUs for all devices in the query range
- **NO** (Default) Do not display CUUs

The query command can take a long time to complete when querying a large range of devices. Much of this time is spent obtaining CUU information for each device in the query range. DISPLAY_CUU(NO) bypasses this process and speeds up the command significantly.

The DISPLAY_CUU parameter is automatically set to YES when the QUERY VOLUME command is issued by CUU.

EMUL_TYPE (ALL | HARDLINK | SNAPVX)

See “EMUL_TYPE(ALL|HARDLINK|SNAPVX)” on page 166.
For the duration of the current QUERY VOLUME command, the value of
EMUL_TYPE overrides any value set by the GLOBAL command EMUL_TYPE
parameter or by the &EMUL_TYPE site option.

FBA(EXCLUDE|INCLUDE)
See “FBA(EXCLUDE|INCLUDE)” on page 171.

For the duration of the current QUERY VOLUME command, the value of FBA
overrides any value set by the GLOBAL command FBA parameter or by the
&OPT_FBA site option.

FLASH_SNAP(FLASHCOPY|SNAP)
See “FLASH_SNAP(FLASHCOPY|SNAP)” on page 171.

For the duration of the current QUERY VOLUME command, the value of
FLASH_SNAP overrides any value set by the GLOBAL command FLASH_SNAP
parameter or by the &FLASH_SNAP site option.

IMPORTANT
Do not change the value of this parameter unless directed to do so by EMC.

LOCAL(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname)
[CONTROLLER([xxxxxxx-]xxxxx|name)])
See “LOCAL(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname)
[CONTROLLER([xxxxxxx-]xxxxx|name)])” on page 175.

MULTI_LINE_query(YES|NO)
See “MULTI_LINE_query(YES|NO)” on page 181.

NOTREADY(EXCLUDE|INCLUDE)
See “NOTREADY(EXCLUDE|INCLUDE)” on page 184.

For the duration of the current QUERY VOLUME command, the value of
NOTREADY overrides any value set by the GLOBAL command NOTREADY
parameter or by the &OPT_NOTREADY site option.

RAID(ALL|NONE|RAIDS|RAID1|RAID5|RAID6|RAID10|FTS)
See “RAID(ALL|NONE|RAIDS|RAID1|RAID5|RAID6|RAID10|FTS)” on page 188.

For the duration of the current QUERY VOLUME command, the value of RAID
overrides any value set by the GLOBAL command RAID parameter or by the
&OPT_RAID site option.

READY(EXCLUDE|INCLUDE)
See “READY(EXCLUDE|INCLUDE)” on page 188.

For the duration of the current QUERY VOLUME command, the value of READY
overrides any value set by the GLOBAL command READY parameter or by the
&OPT_READY site option.

REMOTE(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname)
RAGROUP(nn.nn.nn.nn) [CONTROLLER([xxxxxxx-]xxxxx|name)])
See “REMOTE(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname)
RAGROUP(nn.nn.nn.nn) [CONTROLLER([xxxxxxx-]xxxxx|name)])” on page 190.
Example

QUERY VOLUME (-
 REMOTE(VOL(U6A230) RAGROUP(06) CONTROLLER(0001879-90132)))

SAVEDEV(EXCLUDE|INCLUDE)

See “SAVEDEV(EXCLUDE|INCLUDE)” on page 194

For the duration of the current QUERY VOLUME command, the value of SAVEDEV overrides any value set by the GLOBAL command SAVEDEV parameter or by the &OPT_SAVEDEV site option.

SCFGROUP(scfgroup)

SCRGROUP(scfgroup) identifies the VMAX systems to be listed for QUERY VOLUME.

scfgroup

An SCF group name. The name can contain up to 64 characters. If the name includes any special characters (including spaces), enclose the name in single quotes.

The name must be predefined to ResourcePak Base.

Note: The ResourcePak Base for z/OS Product Guide provides more information.

Default value

None

Example

None

SESSION_LIST(Yes|No[,DETail|,NODETail|,DIFFerential])

See “SESSION_LIST(Yes|No[,DETail|,NODETail|,DIFFerential])” on page 194.

For the duration of the current QUERY VOLUME command, the value of SESSION_LIST overrides any value set by the GLOBAL command SESSION_LIST parameter or by the &SESSDETL, &SESSDIFF, and &SESSLIST site options.

SIZE(ALL|MOD1|MOD2|MOD3|MOD9|MOD27|MOD54|EAV|#|low-high)

See “SIZE(ALL|MOD1|MOD2|MOD3|MOD9|MOD27|MOD54|EAV|#|low-high)” on page 195.

For the duration of the current QUERY VOLUME command, the value of SIZE overrides any value set by the GLOBAL command SIZE parameter.

SNAPSHOT_LIST(ALL|LINKED|NOT_LINKED|SNAPSHOT)\n
See “SNAPSHOT_LIST(ALL|LINKED|NOT_LINKED|SNAPSHOT)” on page 196.

For the duration of the current QUERY VOLUME command, the value of SNAPSHOT_LIST overrides any value set by the GLOBAL command SNAPSHOT_LIST parameter or by the &SNAPSHOT_LIST site option.

1. Available starting with Mainframe Enablers 8.2.
TDEV(EXClude|INClude)

See “TDEV(EXClude|INClude)” on page 203.

For the duration of the current QUERY VOLUME command, the value of TDEV overrides any value set by the GLOBAL command TDEV parameter or by &OPT_TDEV site option.

THINPOOL(EXCLUDE|INCLUDE)

See “THINPOOL(EXCLUDE|INCLUDE)” on page 204.

VDEVice(EXCLUDE|INCLUDE)

See “VDEVice(EXCLUDE|INCLUDE)” on page 208.

For the duration of the current QUERY VOLUME command, the value of VDEVICE overrides any value set by the GLOBAL command VDEVICE parameter or by the &OPT_VDEV site option.

Example

EMCP001I QUERY VOLUME (DEVICE(1000) UNIT(8000) MLQ(NO))
ESNP504I UNIT 8000 WAS REQUESTED, FOUND OFFLINE
ESNP017I COMMAND PARSE COMPLETE
ESNP040I PROCESSING REQUESTS
ESNP160I PROCESSING FOR STATEMENT #1 BEGINNING, QUERY VOLUME REQUEST
ESNP165I PROCESSING CONTROLLER 3/N 0001968-01232 - MICROCODE LEVEL - 5977
ESNP163I 00001000(N/A) TOVS CKD=0000001113 RDY SNAP SRC NO INVALID T
ESNP11AAI TOTAL NUMBER OF SNAPSHOTs RETURNED: 00000094
ESNP11AAI

ESNP11AAI SRC CUU VOLSER TGT CUU VOLSER NAME TIME STAMP YYDDD/HH:MM:SS STATUS ACT
ESNP11AAI

ESNP11AAI 0001000(N/A) FFFFFFFFF(N/A) EGI_UZB........161251325000006.. 16125/13:25:18 CREATE SOF Y
ESNP11AAI 0001000(N/A) FFFFFFFFF(N/A) EGI_UZB........161251543000011.. 16125/15:43:31 CREATE SOF N
ESNP11AAI 0001000(N/A) FFFFFFFFF(N/A) EGI_UZB........1612512750000012 16125/17:31:39 CREATE SOF Y
ESNP11AAI 0001000(N/A) FFFFFFFFF(N/A) EGI_UZB........161251740000013.. 16125/17:40:42 CREATE SOF N

Note: For field explanation, refer to the corresponding message ID in the Mainframe Enablers Message Guide.

The following example shows the output of a QUERY VOLUME command with the parameter SESSION_LIST(YES,DETAIL,DIFF):

ESNP163I 0048(6108) *6108* STD CKD-03339 READY RAID/1 SNAP-SRC NO INVALID TRACKS
ESNP163I 8277 DEVICES SKIPPED, OUT OF DEVICE RANGE
ESNP161I PROCESSING FOR STATEMENT #1 COMPLETED, HIGHEST RETURN CODE ENCOUNTERED IS 0
ESNP440I PROCESSING COMPLETED, HIGHEST RETURN CODE ENCOUNTERED IS 0

Note: For field explanation, refer to the corresponding message ID in the Mainframe Enablers Message Guide.
RESTORE VOLUME (TF/Snap)

The RESTORE VOLUME command restores the contents of a virtual device (VDEV) to a Standard (STD or BCV) volume. The term “Standard” refers to both STD and BCV volumes, but not virtual devices.

There are three types of RESTORE VOLUME operations.

◆ From a VDEV to a BCV that has been SPLIT from the original Standard that had a relationship with the virtual device.

This only applies to an original TF/Mirror split. It does not apply to a TF/Mirror Clone Emulation (CE) split. When clone emulation is involved, the CE session needs to be removed, using a DELINC command in TF/Mirror against the BCV. In addition to any CE sessions, any dataset extent or clone sessions need to be removed before a RESTORE can proceed.

Note: This restore type is not available with HYPERMAX OS 5977.

◆ From a VDEV to a different standard device

Note: This restore type is not available with HYPERMAX OS 5977.

◆ From a VDEV to the original Standard (SNAP back)

For a TF/Clone or TF/Clone Emulation (CE), the VDEV restore to a Standard device can proceed to completion when the clone is fully copied and in a split state. The clone session can remain in place for future full or differential operations, with the following exception; until the Standard or VDEV relationship is removed, neither differential nor full BCV RESTORE for clone emulation or “snap back” for TF/Clone are allowed. Enginuity 5876 or HYPERMAX OS 5977 is required for this VDEV restore action.

The restore is accomplished by a background copy task that copies indirect tracks to the restore device. The virtual device being restored is then removed and returns to the available pool of virtual devices for future use, if you are performing a VDEV to Standard RESTORE, and the PERSISTENT parameter is set to YES, then the Standard/VDEV relationship remains, and the virtual device is not returned to the virtual device pool.

If you are using a virtual restore (PERSISTENT parameter set to NO), you must terminate any other VDEV session or any virtual device assigned to the restore device in order to proceed with a RESTORE VOLUME.

For example:

```
RESTORE VOLUME (VDEV(UNIT(6FC0)) TO (UNIT(6C10)) - NEWVOLID(U6A010) REPLACE(YES))
```

If you are using a persistent restore (PERSISTENT parameter set to YES), you do not have to terminate any other VDEV session or any virtual device assigned to the restore device in order to proceed with a RESTORE VOLUME.

Note: This command is available only if you purchase the TF/Snap Licensed Feature Code.
Syntax

```plaintext
RESTORE VOLUME
(
VDEVice(VOLUME(volser)|UNIT(cuu[, cuu])|SYMDV#(symdev#))
TO(VOLUME(volser)|UNIT(cuu[, cuu])|SYMDV#(symdev#))
[optional_parameters]
)
```

Where **optional_parameters** are as follows:

- [AUTOMATIC_CLEANUP(YES|NO)]
- [CHECKBCVholdstatus(YES|NO)]
- [CHECKONLINEpathstatus(YES|NO|NEVER)]
- [CONDitionVOLUME(ALL|LaBeL|DUMP)]
- [CONTROLLER([xxxxxxx-]xxxxx|name)]
- [COPYVolid(YES|NO)]
- [DEBUG(ON|OFF)]
- [EXclude_PathGroupID(pathlist)]
- [INDDname(ddname)]
- [LOCAL(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname) [CONTROLLER([xxxxxxx-]xxxxx|name)])]
- [NEWVOLID(volser)]
- [NOTIFYwhencomplete([([GROUP(name)])[DATASET|JOB|STEP|SNAP]])]
- [OUTDDname(ddname)]
- [PERSISTent(YES|NO)]
- [REMOTE(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname) RAGROUP(nn.nn.nn.nn) [CONTROLLER([xxxxxxx-]xxxxx|name)])]
- [REPLace(YES|NO)]
- [TOLerateENQFailure(YES|NO)]
- [TRACE(ON|OFF)]
- [VARY_Offline(AUTO|NEVER)]
- [VARY_Online(AUTO|YES|NO)]
- [VCLOSE(YES|NO)]
- [WAITFORCOMPLETION([YES|NO]hh:mm:ss][,MeSsaGes] [,R1R2SYNC][,TIMEOUT(INFormational|WARNing|ERRor)])

Note: The optional parameters must be separated from each other by a blank space. If a parameter has YES and NO keywords, you can substitute ON for YES and OFF for NO.

Note: Only one of the following can be present: CONTROLLER, LOCAL, or REMOTE. These parameters are mutually exclusive.
Required parameters

TO(VOLume(volser)|UNIT(cuu)|SYMDV#(symdev#))

The TO parameter identifies the target volume of the restore.

VOLume(volser)

Identifies the target volume volser.

UNIT(cuu[,cuu])

Identifies the target volume UNIT address or range of addresses.

SYMDV#(symdev#)

Specifies the VMAX device number(s) in the remote VMAX storage system. If SYMDV# is specified, then the UNIT and VOLUME, and INDDNAME and OUTDDNAME parameters are not allowed.

IMPORTANT

If you use SYMDV#, you must use it throughout the operation. That is, if you use SYMDV# for the source device, you must also use SYMDV# for the target device.

Default value

None

Example

UNIT(AA0F)

VDEVICE(VOLume(volser)|UNIT(cuu)|SYMDV#(symdev#))

Note: You can use this parameter only if you install the TF/Snap Licensed Feature Code.

The VDEVICE parameter identifies the virtual device to use for the restore operation.

VOLume(volser)

Specifies the volser of the virtual device.

UNIT(cuu[,cuu])

Specifies the unit address of the virtual device or range of devices.

SYMDV#(symdev#)

Specifies the remote VMAX device number(s) to be used as the target device(s). If SYMDV# is specified, then the UNIT and VOLUME, and INDDNAME and OUTDDNAME parameters are not allowed.

Default value

None

Example

UNIT(C100)
Optional parameters

AUTOMATIC_CLEANUP(YES|NO)

See “AUTOMATIC_CLEANUP(YES|NO)” on page 154.

For the duration of the current RESTORE VOLUME command, the value of AUTOMATIC_CLEANUP overrides any value set by the GLOBAL command AUTOMATIC_CLEANUP parameter or by the &AUTOCLN site option.

CHECKBCVholdstatus(YES|NO)

See “CHECKBCVholdstatus(YES|NO)” on page 157.

For the duration of the current RESTORE VOLUME command, the value of CHECKBCVHOLDSTATUS overrides any value set by the GLOBAL command CHECKBCVHOLDSTATUS parameter or by the &CHECKBCV site option.

CHECKONLINEpathstatus(YES|NO|NEVER)

See “CHECKONLINEpathstatus(YES|NO|NEVER)” on page 157.

For the duration of the current RESTORE VOLUME command, the value of CHECKONLINEpathstatus overrides any value set by the GLOBAL command CHECKONLINEpathstatus parameter or by the &CHECKONLIN site option.

CONDITIONVOLUME(ALL|LaBeL|DUMP)

See “CONDITIONVOLUME(ALL|LaBeL|DUMP)” on page 158.

For the duration of the current RESTORE VOLUME command, the value of CONDITIONVOLUME overrides any value set by the GLOBAL command CONDITIONVOLUME parameter or by the &CONDVOL site option.

CONTROLLER([xxxxxxx-]xxxxx|name)

See “CONTROLLER([xxxxxxx-]xxxxx|name)” on page 159.

The CONTROLLER parameter is only needed and can only be used if you use the SYMDV# parameter.

COPYVOLID(YES|NO)

See “COPYVOLID(YES|NO)” on page 161.

For the duration of the current RESTORE VOLUME command, the value of COPYVOLID overrides any value set by the GLOBAL command COPYVOLID parameter or by the ©VOL site option.

DEBUG(ON|OFF)

See “DEBUG(ON|OFF)” on page 164.

EXclude_PathGroupID(pathlist)

See “EXclude_PathGroupID(pathlist)” on page 169.

For the duration of the current RESTORE VOLUME command, the value of EXCLUDE_PATHGROUPID overrides any value set by the GLOBAL command EXCLUDE_PATHGROUPID parameter or by the &EXPATHGRP site option.

INDDname(ddname)

The INDDNAME parameter refers to a DD statement already allocated to the virtual volume to be restored.
ddname

The DD statement that refers to the virtual volume to be restored.

Default value

None

Example

INDD(INVOL)

LOCAL(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname) [CONTROLLER([xxxxxxxx-]xxxxx|name)])

See “LOCAL(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname) [CONTROLLER([xxxxxxxx-]xxxxx|name)])” on page 175.

The LOCAL parameter is only needed and can only be used if you use the SYMDV# parameter.

NEWVOLID(volser)

See “NEWVOLID(volser)” on page 183.

NOTIFYwhencomplete[[GROUP(name)][DATASET|JOB|STEP|SNAP]]

See “NOTIFYwhencomplete[[GROUP(name)][DATASET|JOB|STEP|SNAP]]” on page 183.

For the duration of the current RESTORE VOLUME command, the value of NOTIFYWHENCOMPLETE overrides any value set by the GLOBAL command NOTIFYWHENCOMPLETE parameter or by the &NTFYLVLI site option.

OUTDDname(ddname)

The OUTDDNAME parameter refers to a DD statement already allocated to the target volume of the restore.

ddname

Identifies the DD statement that refers to the target volume of the restore.

Default value

None

Example

OUTDD(OUTVOL)

PERSISTent(YES|NO)

See “PERSISTent(YES|NO)” on page 186.

For the duration of the current RESTORE VOLUME command, the value of PERSISTENT overrides any value set by the GLOBAL command PERSISTENT parameter or by the &PERSIST site option.

REMOTE(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname) RAGROUP(nn.nn.nn.nn) [CONTROLLER([xxxxxxxx-]xxxxx|name)])

See “REMOTE(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname) RAGROUP(nn.nn.nn.nn) [CONTROLLER([xxxxxxxx-]xxxxx|name)])” on page 190.
The REMOTE parameter is only needed and can only be used if you use the SYMDV# parameter.

Example

RESTORE VOLUME (TO (SYMDV# (008C)) VDEV (SYMDV# (021E))-
REMOTE{VOL(U6A230) RAGROUP(06) CONTROLLER(0001879-90132) })

REPLace(YES|NO)

See “REPLace(YES|NO)” on page 192.

For the duration of the current RESTORE VOLUME command, the value of REPLACE overrides any value set by the GLOBAL command REPLACE parameter or by the &REPLACE site option.

TOLerateENQFailure(YES|NO)

See “TOLerateENQFailure(YES|NO)” on page 205.

For the duration of the current RESTORE VOLUME command, the value of TOLERATEENQFAILURE overrides any value set by the GLOBAL command TOLERATEENQFAILURE parameter or by the &ENQFAIL site option.

TRACE(ON|OFF)

See “TRACE(ON|OFF)” on page 206.

VARY_Offline(AUTO|NEVER)

See “VARY_Offline(AUTO|NEVER)” on page 207.

For the duration of the current RESTORE VOLUME command, the value of VARY_OFFLINE overrides any value set by the GLOBAL command VARY_OFFLINE parameter or by the &VARYOFF site option.

VARY_Online(AUTO|YES|NO)

See “VARY_Online(AUTO|YES|NO)” on page 207.

For the duration of the current RESTORE VOLUME command, the value of VARY_ONLINE overrides any value set by the GLOBAL command VARY_ONLINE parameter or by the &VARYON site option.

VCLOSE(YES|NO)

See “VCLOSE(YES|NO)” on page 208.

For the duration of the current RESTORE VOLUME command, the value of VCLOSE overrides any value set by the GLOBAL command VCLOSE parameter or by the &VCLOSE site option.

WAITFORCOMPLETION([YES|NO] hh:mm:ss) [,MeSsaGes],[R1R2SYNC] [TIMEOUT(Informational|WARNing|ERRor)])

See “WAITFORCOMPLETION([YES|NO]hh:mm:ss][,MeSsaGes][,R1R2SYNC] [TIMEOUT(Informational|WARNing|ERRor)])” on page 210.
SNAP DATASET (TF/Clone)

Use the SNAP DATASET command to create a copy of the specified dataset. Source and target devices must be the identical models. That is, you can snap from a 3390 device to another 3390 device, but you cannot snap from a 3390 to a 3380 device.

Note: “Performing a SNAP DATASET copy” on page 122 provides more information about SNAP DATASET operations.

Syntax

```
SNAP Dataset
(
SOurce(dsname)|INDDname(ddname)
TaRget(dsname)|OUTDDname(ddname)
[optional_parameters]
)
```

Where **optional_parameters** are as follows:

- `[ADMINISTRATOR(YES|NO)]`
- `[ALLOCATE_UNUSED_SPACE(YES|NO)]`
- `[ALLOCATION_SEQUENCE(DATASET|NONE|SIZE)]`
- `[BACKGROUND_COPY(YES|NO|NOCOPYRD)]`
- `[BCVGROUP(groupname)]`
- `[BCVOnly(YES|NO)]`
- `[BUILD_VTOCIX(YES|NO)]`
- `[BY(DSORG=|EQ|NE|NQ[(]BDAM|EXCP|HFS|ISAM|PAM|PDS|PDSE|SAM|VSAM[)])|
 DATACLAS=|EQ|NE|NQ[(]classname...) |
 MGMTCLAS=|EQ|NE|NQ[(]classname...) |
 STORCLAS=|EQ|NE|NQ[(]classname...)]
- `[CATalog(YES|NO)]`
- `[COLLAPSE_dataset_extents(VSAM|NONVSAM|VSAM,NONVSAM)]`
- `COPYsourceSMSclasses([DATACLASs],[ManaGeMenTCLASs],[STORageCLASs],[ALL])`
- `[DATACLASs(classname)]`
- `[DataMoverName(ADRDSSU|COPYCYL|COPYTRK|DFDSS|DSS|FDR|FDRDSF|IDCAMS|NONE)]`
- `[DATASET_CHANGED_indicator(SET|RESET|LEAVE)]`
- `[DEBUG(OFF|ON)]`
- `[DFDSS_ADMIN(YES|NO)]`
- `[DFDSS_CC(YES|NO)]`

[DIFFERENTIAL_DATASET(YES|NO)]
[EATTR(NO|OPT)]
[ENQSCOPE(REquest|STEP)]
[ENQWAIT(YES|NO)]
[ERROR_CHecking(NORmal|REDUCED)]
[ERRor_DISPosition(DELete|KEEP)]
[ERROR_REcovery(NORmal|ENHanced)]
[ESNP220(ERROR|WARNING)]
[ESOTERIC(esoteric_name)]
[EXAMINE(YES|NO)]
[EXClude(exclude_list)]
[EXPlain(VOLUME_SELECTION(YES|NO)])
[EXTENT_ALLOcation(YES[,CONSOLIDATE_VOLUME|CONSOLIDATE_ALL]|NO)]
[EXTALLOC_EMC_ONLY(YES|NO)]
[EXTENT_EXPAND(YES|NO,[ADDNEW(YES|NO)],[SAMEVOL],[NEWVOL])]]
[FLASH_SNAP(FLASHCOPY|SNAP)]
[FORCE(YES|NO)]
[HostCoPYMODE(ShaRed|EXClusive|NONE)]
[INDDname(ddname)]
[INVALIDATE_PDSE_buffers(YES|NO)]
[LOGIN_DYNAM(volume[,volume,..])]]
[ManageMenTCLASs(classname)]
[MIGrate([PURge(YES|NO)][RECall(YES|NO |IGNORE)]])
[MODE(COPY|NOCOPY|NOCOPYRD)]
[NOTIFYwhencomplete([[GROUP(name)][DATASET|JOB|STEP|SNAP]])
[OUTDDname(ddname)]
[PARALLEL_CLONE(YES|NO|PREFerred|REQuired)]
[R1FULLCOPYonly(YES|NO)]
[RECALCULATE_FREESPACE(YES|NO)]
[RNAMEUnconditional(pfx) |
RNAMEUnconditional((pfx) (oldnamemask, newnamemask)...)|
RNAMEUnconditional((oldnamemask, newnamemask)...)]
[RELate(dsname)]
[REPLACE(YES|NO)]
[REUSE(YES|NO[,WAIT])]}
[REUSE_AUTO_expand(YES|NO)]
[SCFGroup(scfGroup)]
[SELECTMULTI(ALL|ANY|FIRST)]
[SMS_PASS_volumes(YES|NO)]
[SNAP_UNUSED_SPACE(YES|NO)]
[SOURCE_VOLUME_LIST(vollist)]
[SPHERE(YES|NO)]
[SRDFA_R1_target(Yes|No|DATAMOVERNaMe|PHYsical|INFormational)]
[SRDFA_R2_sync(WARNING|DATAMOVER|R1R2SYNC)]
[SRDFS_R1_target(Yes|No|DATAMOVERNaMe|PHYsical|INFormational)]
[STORageClASs(classname)]
[TARGET_ENQ_dataset_wait(YES|NO|hh:mm:ss)]
[TOLerate_REUSe_Failure(YES|NO)]
[TOLerateALLOcationFailure(YES|NO)]
[TOLerate_COPY_Failure(YES|NO)]
[TOLerateENQFailure(YES|NO)]
[TOLerateTRUNCation(YES|NO)]
[TOLerateVSAMENQFailure(YES|NO)]
[TRACE(ON|OFF)]
[UNITName(unitname)]
[VERIFY(YES|NO|NEVER)]
[VERIFY_OPEN_SOURCE(YES|NO)]
[VOLUME(volser)]
[VOLUMECount(volumecount)]
[VSAMENQMODE(NONE|SHAREd|EXClusive)]
[WAITFORCOMPLETION([YES|NO|R1R2SYNC|hh:mm:ss]
[,MeSSaGes],[R1R2SYNC],[,TIMEOUT(INFormational|WARNing|ERRor)])]
[WAITforsession(Yes|NO|hh:mm:ss)]

Note: The optional parameters must be separated from each other by a blank space. If a parameter has YES and NO keywords, you can substitute ON for YES and OFF for NO.

Required parameters

INDDname(ddname)

You must specify either INDDname or the SOURCE parameter. INDDname refers to a DD statement already allocated to the source dataset to be snapped.

ddname

Identifies the DD statement referring to the dataset to be snapped. The dataset may be any supported dataset type.

The INDDname parameter is the only way to specify a source dataset that is not cataloged.
Concatenated DD statements are not supported.

The ENQWAIT and HOSTCOPYMODE parameters are ignored with the INDDname parameter.

Default value

None

Example

INDD(INFILE)

OUTDDname (ddname)

The OUTDDname parameter refers to a DD statement already allocated to the target dataset that is reused. You must specify either this parameter or the TARGET parameter.

ddname

Identifies the DD statement that refers to the dataset to be reused. The dataset may be any supported dataset type, but must match the source dataset type.

You should not attempt to snap a dataset onto itself.

If you use the OUTDDname parameter, the dataset is automatically reused. REPLACE(YES) and REUSE(YES) are assumed, and do not need to be specified.

Concatenated DD statements are not supported.

Default value

None

Example

OUTDD(OUTFILE)

SOURCE (dsname)

The SOURCE parameter specifies the name of the dataset to be snapped. You must specify either SOURCE or the INDDname parameter.

To use TF/Clone, both the source and target datasets must resolve to compatible devices within the same VMAX system. All extents for the source dataset must reside on devices that are currently online and accessible.

The source device can be either a VMAX standard device or a business continuance volume (BCV).

The dataset is located by using the standard catalog search sequence. JOBCAT and or STEPCAT statements are not supported. The source dataset name must be different from the target dataset name.

dsname

Specifies the dataset name of the source dataset. It can contain from one to 44 alphanumeric or national ($ @ #) characters, and two special characters (- or {).
When special characters are used, the name must be surrounded by quotation marks and the special characters cannot be used as the first character of the name.

You can use wildcard characters in the source dataset name:

- `%` = a single character wildcard.
- `*` = a number of characters, up to the next period.
- `**` = a number of characters, including periods.

Wildcard characters (`*`,`%`) do not need to be enclosed in quotation marks.

You must have SAF READ or equivalent authorization for the source dataset.

Default value

None

Example

The following example identifies the source by standard dataset name:

```
SOURCE (PAYROLL.EMPLOYEE.MASTER)
```

TARGET *(dsname)*

Note: You can only use this parameter if you install the TF/Clone Licensed Feature Code.

The TARGET parameter specifies the name of the target dataset. You must specify either this parameter or the OUTDDname parameter.

dsname

Specifies the dataset name of the target dataset. It can contain from one to 44 alphanumeric or national ($ @ #) characters, and two special characters (- or `{`).

When special characters are used, the name must be surrounded by quotation marks and the special characters cannot be used as the first character of the name.

The value can be:

You can use wildcard characters in the target dataset name:

- `%` = a single character wildcard.
- `*` = a number of characters, up to the next period.
- `**` = a number of characters, including periods.

Wildcard characters (`*`,`%`) do not need to be enclosed in quotation marks.

The source and target datasets may be on the same VMAX system, on different VMAX system, or even other compatible storage devices.

Normally, the source and target dataset must reside within the same physical VMAX system for the snap operation to be performed by the VMAX system. In some situations, this is not feasible. The DataMoverNaMe parameter allows for a utility program to be specified to be invoked and actually copy the physical tracks.
For new non-VSAM target allocations, TF/Clone copies the LSTAR, TRBAL, BLKSIZE, DSORG, RECFM, LRECL, RKP and KEYLEN attributes from the source dataset to the target dataset. For existing non-VSAM target allocations which is reused, TF/Clone copies the LSTAR, TRBAL, BLKSIZE, RECFM, LRECL, RKP and KEYLEN attributes from the source dataset to the target dataset. The DSORG of the target dataset must match that of the source dataset, or the snap fails.

During the target dataset allocation process for VSAM clusters, if a new index or data component name can be made by appending the appropriate suffix to the cluster name, then TF/Clone builds the new name. Otherwise, TF/Clone does not generate the new name. Instead, TF/Clone simply passes the request to IDCAMS, which uses IBM rules for component name generation.

Note: The TimeFinder Utility for z/OS Product Guide provides more information about IDCAMS.

After the new dataset is successfully allocated, TF/Clone obtains the new component names from the catalog.

Note: You can find an explanation of VSAM component naming in the appropriate IBM Access Method Service manual.

SAF ALTER authorization is required for the target dataset. To ensure that the requestor has access to the target, TF/Clone opens the dataset for output.

You cannot specify the same dataset name on both the SOURCE and TARGET parameters.

DB2 linear datasets have a specific naming convention. The second level qualifier denotes whether it is the cluster or the data portion of the dataset. TF/Clone can only be used against the cluster. The component of the cluster can not be specified.

The following two examples use TF/Clone to duplicate DB2 linear datasets. Both of the options require the use of wildcarding that is available in TF/Clone.

For the following source dataset:

```
SOURCE(EMCDB2.DSNDBC.STORE.TSSTORA.I00001.A001)
```

- **Option 1:** Use a wildcard to denote the single unique level in the target dataset name. If the single level wildcard specification is used, it must be the second level qualifier:

```
TARGET(BCVDB2.*.STORE.TSSTORA.I0001.A001)
```

- **Option 2:** Use a wildcard to denote the entire target dataset name after the specification of a unique high level qualifier (HLQ):

```
TARGET(BCVDB2.**)
```

Default value

None
Example

The following example identifies the target by standard dataset name:

TARGET (PAYROLL.EMPLOYEE.SNAP)

Optional parameters

ADMINISTRATOR (YES | NO)
See “ADMINISTRATOR (YES | NO)” on page 153.

For the duration of the current SNAP DATASET command, the value of ADMINISTRATOR overrides any value set by the GLOBAL command ADMINISTRATOR parameter or by the &ADMIN site option.

ALLOCATE UNUSED SPACE (YES | NO)
See “ALLOCATE UNUSED SPACE (YES | NO)” on page 153.

For the duration of the current SNAP DATASET command, the value of ALLOCATE UNUSED SPACE overrides any value set by the GLOBAL command ALLOCATE UNUSED SPACE parameter or by the &ALUNUSED site option.

ALLOCATION SEQUENCE (DATASET | NONE | SIZE)
See “ALLOCATION SEQUENCE (DATASET | NONE | SIZE)” on page 154.

For the duration of the current SNAP DATASET command, the value of ALLOCATION SEQUENCE overrides any value set by the GLOBAL command ALLOCATION SEQUENCE parameter or by the &ALLOSEQ site option.

BACKGROUND COPY (YES | NO | NOCOPYRD)
See “BACKGROUND COPY (YES | NO | NOCOPYRD | VSE)” on page 155.

For the duration of the current SNAP DATASET command, the value of BACKGROUND COPY overrides any value set by the GLOBAL command BACKGROUND COPY parameter or by the &BACKGRND site option.

BCVGROUP (groupName)

The BCVGROUP parameter allows a group of BCV volumes to be indirectly referenced. The BCVGROUP input file contains a list of valid BCVGROUPs. This list is searched for a matching BCVGROUP name. All volumes referenced by the BCVGROUP are added to the SNAP DATASET volume candidate list. The BCVGROUP you specify can reference no more than 60 volumes.

groupName

Specifies a name that represents a BCV group.

If you choose BCVONLY (NO) (the default option), you can include standard volumes in the BCVGROUP as well.

Default value

None

Examples

BCVGROUP (IMGROUP1)
The following is an example of a definition of a BCVGROUP in line in the JCL.

```plaintext
//BCVGROUP DD *
BCVGROUP IMGROUP1 VOL(VOL001 VOL002 VOL003) /*
```

Note: You create BCV groups using the BCVGROUP command of TimeFinder/Mirror. For detailed instructions and JCL, refer to the *TimeFinder/Mirror for z/OS Product Guide*.

BCVOnly(YES|NO)

See “BCVOnly(YES|NO)” on page 156.

For the duration of the current SNAP DATASET command, the value of BCVONLY overrides any value set by the GLOBAL command BCVONLY parameter or by the &BCVONLY site option.

BUILD_VTOCIX(YES|NO)

See “BUILD_VTOCIX(YES|NO)” on page 156.

For the duration of the current SNAP DATASET command, the value of BUILD_VTOCIX overrides any value set by the GLOBAL command BUILD_VTOCIX parameter or by the &VTOCIX site option.

BY

```
BY(DSORG=|EQ|NE|NQ[(]BDAM|EXCP|HFS|ISAM|PAM|PDS|PDSE|SAM|VSAM[)]) |
     DATACLAS=|EQ|NE|NQ[(]classname...()) |
     MGMTCLAS=|EQ|NE|NQ[(]classname...()) |
     STORCLAS=|EQ|NE|NQ[(]classname...())
```

The BY parameter determines how datasets are selected:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATACLAS</td>
<td>Selection based on membership in the specified SMS data class.</td>
</tr>
<tr>
<td>DSORG</td>
<td>Selection based on dataset allocation type. This can be a comma delimited list of dataset allocation types. EXCP = Exclude datasets types that are not supported, such as HFS.</td>
</tr>
<tr>
<td>MGMTCLAS</td>
<td>Selection based on membership in the specified SMS management class.</td>
</tr>
<tr>
<td>STORCLAS</td>
<td>Selection based on membership in the specified SMS storage class. Valid values are: EQ — equal, NE — not equal, NQ — not equal</td>
</tr>
</tbody>
</table>

Default value

None

Example

```
BY(DSORG EQ (PDS PDSE))
```

CATalog(YES|NO)

See “CATalog(YES|NO)” on page 156.
For the duration of the current SNAP DATASET command, the value of CATALOG overrides any value set by the GLOBAL command CATALOG parameter or by the &CATALOG site option.

COLLAPSE_dataset_extents(VSAM|NONVSAM|VSAM,NONVSAM)

See “COLLAPSE_dataset_extents(VSAM|NONVSAM|VSAM,NONVSAM)” on page 158.

For the duration of the current SNAP DATASET command, the value of COLLAPSE_DATASET_EXTENTS overrides any value set by the GLOBAL command COLLAPSE_DATASET_EXTENTS parameter or by the &COLLAPSE site option.

COPYsourceSMSclasses([DATACLASs] [ManaGeMenTCLASs] [STORageCLASs] [ALL])

See “COPYsourceSMSclasses([DATACLASs] [ManaGeMenTCLASs] [STORageCLASs] [ALL])” on page 160.

For the duration of the current SNAP DATASET command, the value of COPYSOURCESMSCLASSES overrides any value set by the GLOBAL command COPYSOURCESMSCLASSES parameter.

DATACLASs(classname)

See “DATACLASs(classname)” on page 162.

For the duration of the current SNAP DATASET command, the value of DATACLASS overrides any value set by the GLOBAL command DATACLASS parameter or by the &DATACLAS site option.

DataMoverNaMe(ADRDSU|COPYCYL|COPYTRK|DFDSS|DSS|FDR|FDRDSF|IDCAMS|NONE)

See “DaTaMoverNaMe(ADRDSU|COPYCYL|COPYTRK|DFDSS|DSS|FDR|FDRDSF|IDCAMS|NONE)” on page 162.

For the duration of the current SNAP DATASET command, the value of DATAMOVERNAME overrides any value set by the GLOBAL command DATAMOVERNAME parameter or by the &DATAMOVR site option.

DATASET_CHANGED_indicator(SET|RESET|LEAVE)

See “DATASET_CHANGED_indicator(SET|RESET|LEAVE)” on page 164.

For the duration of the current SNAP DATASET command, the value of DATASET_CHANGED_indicator overrides any value set by the GLOBAL command DATASET_CHANGED_indicator parameter or by the &DS1DSCHA site option.

DEBUG(OFF|ON)

See “DEBUG(ON|OFF)” on page 164.

DFDSS_ADMIN(YES|NO)

See “DFDSS_ADMIN(YES|NO)” on page 164.

For the duration of the current SNAP DATASET command, the value of DFDSS_ADMIN overrides any value set by the GLOBAL command DFDSS_ADMIN parameter or by the &DFDSS_ADMIN site option.
DFDSS_CC(YES|NO)

See “DFDSS_CC(YES|NO)” on page 165.

For the duration of the current SNAP DATASET command, the value of DFDSS_CC overrides any value set by the GLOBAL command DFDSS_CC parameter or by the &DFDSS_CC site option.

DIFFERENTIAL_DATASET(YES|NO)

See “DIFFERENTIAL_DATASET(YES|NO)” on page 165.

For the duration of the current SNAP DATASET command, the value of DIFFERENTIAL_DATASET overrides any value set by the GLOBAL command DIFFERENTIAL_DATASET parameter or by the &DIFFDSN site option.

EATTR(NO|OPT)

See “EATTR(NO|OPT)” on page 166.

ENQSCOPE(REQuest|STEP)

See “ENQSCOPE(REQuest|STEP)” on page 166.

For the duration of the current SNAP DATASET command, the value of ENQSCOPE overrides any value set by the GLOBAL command ENQSCOPE parameter or by the &ENQSCOPE site option.

ENQWAIT(YES|NO)

See “ENQWAIT(YES|NO)” on page 166.

For the duration of the current SNAP DATASET command, the value of ENQWAIT overrides any value set by the GLOBAL command ENQWAIT parameter or by the &ENQWAIT site option.

ERROR_CHecking(NORmal|REDUCED)

See “ERROR_CHecking(NORmal|REDUCED)” on page 167.

For the duration of the current SNAP DATASET command, the value of ERROR_CHECKING overrides any value set by the GLOBAL command ERROR_CHECKING parameter or by the &ERRCHK site option.

ERROR_DISPosition(DELETE|KEEP)

See “ERROR_DISPosition(DELETE|KEEP)” on page 168.

For the duration of the current SNAP DATASET command, the value of ERROR_DISPOSITION overrides any value set by the GLOBAL command ERROR_DISPOSITION parameter or by the &EFFDISP site option.

ERROR_RECovery(NORmal|ENHanced)

See “ERROR_RECovery(NORmal|ENHanced)” on page 168.

For the duration of the current SNAP DATASET command, the value of ERROR_RECOVERY overrides any value set by the GLOBAL command ERROR_RECOVERY parameter or by the &ERRREC site option.

ESNP220(ERROR|WARNING)

See “ESNP220(ERROR|WARNING)” on page 168.
ESOteric(esoteric_name)

The ESOTERIC parameter specifies the device group name of the DASD devices onto which the source dataset is snapped.

esoteric_name

The device group name.

The ESOteric parameter may be ignored for SMS targets. When the ESOteric is passed to ACS routines, the routine determines if the ESOteric is ignored.

The ESOteric and UNITname parameters are aliases of each other and are mutually exclusive. If you use ESOteric, you cannot use UNITname.

Default value

None

Examples

ESO(DASD)

EXAMINE (YES | NO)

See “EXAMINE(YES|NO)” on page 169.

For the duration of the current SNAP DATASET command, the value of EXAMINE overrides any value set by the GLOBAL command EXAMINE parameter or by the &EXAMINE site option.

EXCLUDE(exclude_list)

The EXCLUDE parameter prevents datasets that are already selected from being snapped. If the SOURCE parameter causes several datasets to be selected, the EXCLUDE parameter may be used to eliminate some of them from the selection list. You can specify a comma-delimited list of up to 127 names or masks.

exclude_list

Specifies a list of up to 127 names or masks of datasets.

Default value

None

Examples

SNAP DATASET(SOURCE(EMC.**.ASM)
EXCLUDE(EMC.TEST*.**))TARGET(BACKUP.**.ASM)
VOL(EMCBCV))

Selects all datasets with the high level index EMC and the third index of ASM. All datasets where the second index begins with TEST are not snapped.

SNAP DATASET(SOURCE(EMC.**.ASM)
EXCLUDE(EMC.MASK*.**,EMC.DATASET1,EMC.DATASET2,
EMC.OTHER.**)TARGET(BACKUP.**.TEXT)
VOL(EMCBCV))

Selects all datasets with the high level index EMC and the third index of ASM. All datasets where the second index begins with MASK, EMC.DATASET1,EMC.DATASET2, and all datasets where the second level index is OTHER are not snapped.
EXPlain(VOLUME_SELECTION(YES|NO))

See “EXPlain(VOLUME_SELECTION(YES|NO))” on page 169.

EXTENT_ALLOCATION(YES[, CONSOLIDATE_Volume|CONSOLIDATE_ALL]|NO)

For the duration of the current SNAP DATASET command, the value of EXTENT_ALLOCATION overrides any value set by the GLOBAL command EXTENT_ALLOCATION parameter or by the following site options:

- &EXTALLOC = EXTENT_ALLOCATION(YES|NO)
- &CONSALL = EXTENT_ALLOCATION(YES, CONSOLIDATE_ALL)
- &CONSO VOL = EXTENT_ALLOCATION(YES, CONSOLIDATE_VOL)

EXTALLOC_EM C_ONLY(YES|NO)

See “EXTALLOC_EM C_ONLY(YES|NO)” on page 170.

For the duration of the current SNAP DATASET command, the value of EXTALLOC_EM C_ONLY overrides any value set by the GLOBAL command EXTALLOC_EM C_ONLY parameter or by the &EMCCOPY site option.

EXTENT_EXPAND(YES|NO, [ADDNEW(YES|NO)], [SAMEVOL], [NEWVOL])

See “EXTENT_EXPAND(YES|NO, [ADDNEW(YES|NO)], [SAMEVOL], [NEWVOL])” on page 171.

For the duration of the current SNAP DATASET command, the value of EXTENT_EXPAND overrides any value set by the GLOBAL command EXTENT_EXPAND parameter or by the following site options:

- &EXTADDNEW
- &EXTXPVOL
- &EXTXPAND

FLASH_SNAP(FLASHCOPY|SNAP)

See “FLASH_SNAP(FLASHCOPY|SNAP)” on page 171.

For the duration of the current SNAP DATASET command, the value of FLASH_SNAP overrides any value set by the GLOBAL command FLASH_SNAP parameter or by the &FLASH_SNAP site option.

IMPORTANT
Do not change the value of this parameter unless directed to do so by EMC.

FORCE(YES|NO)

See “FORCE(YES|NO)” on page 172.

For the duration of the current SNAP DATASET command, the value of FORCE overrides any value set by the GLOBAL command FORCE parameter or by the &FORCE site option.
HostcoPYMODE(SHaReD|EXClusive|NONE)

See “HostcoPYMODE(SHaReD|EXClusive|NONE)” on page 173.

For the duration of the current SNAP DATASET command, the value of HOSTCOPYMODE overrides any value set by the GLOBAL command HOSTCOPYMODE parameter or by the &HOSTCOPY site option.

INVALIDATE_PDSE_buffers(YES|NO)

See “INVALIDATE_PDSE_buffers(YES|NO)” on page 174.

For the duration of the current SNAP DATASET command, the value of INVALIDATE_PDSE_BUFFERS overrides any value set by the GLOBAL command INVALIDATE_PDSE_BUFFERS parameter or by INVALIDATE_PDSE site option.

LOGINDYNAM(volume[,volume...])

See “LOGINDYNAM(volume[,volume...])” on page 176.

For the duration of the current SNAP DATASET command, the value of LOGINDYNAM overrides any value set by the GLOBAL command LOGINDYNAM parameter.

ManaGeMenTCLASs(classname)

See “ManaGeMenTCLASs(classname)” on page 176.

For the duration of the current SNAP DATASET command, the value of MANAGEMENTCLASS overrides any value set by the GLOBAL command MANAGEMENTCLASS parameter or by the &MGMTCLAS site option.

MIGrate([PURge(YES|NO)] [RECall(YES|NO|IGNORE)])

See “MIGrate([PURge(YES|NO)] [RECall(YES|NO)])” on page 177.

For the duration of the current SNAP DATASET command, the value of MIGRATE overrides any value set by the GLOBAL command MIGRATE parameter and the following site options:

- &PURGE (MIGRATE PURGE)
- &RECALL (MIGRATE RECALL)

MODE(COPY|NOCOPY|NOCOPYRD)

See “MODE(COPY|NOCOPY|NOCOPYRD|VSE)” on page 177.

For the duration of the current SNAP DATASET command, the value of MODE overrides any value set by the GLOBAL command MODE parameter.

NOTIFYwhencomplete([[GROUP(name)][DATASET|JOB|STEP|SNAP]])

See “NOTIFYwhencomplete([[GROUP(name)][DATASET|JOB|STEP|SNAP]])” on page 183.

For the duration of the current SNAP DATASET command, the value of NOTIFYWHENCLOSE completes any value set by the GLOBAL command NOTIFYWHENCLOSE parameter or by the &NTFYLVL site option.

OUTDDname(ddname)

The OUTDDNAME parameter refers to a DD statement already allocated to the target volume to be snapped.
ddname

Identifies the DD statement that refers to the volume to be snapped. The volume may be any supported dataset type.

PARALLEL_CLONE(YES|NO|PREFerred|REQuired)

See “PARALLEL_CLONE(YES|NO|PREFerred|REQuired)” on page 184.

R1FULLCOPYonly(YES|NO)

See “R1FULLCOPYonly(YES|NO)” on page 187.

For the duration of the current SNAP DATASET command, the value of R1FULLCOPYONLY overrides any value set by the GLOBAL command R1FULLCOPYONLY parameter or by the &R1FULLCOPY site option.

RECALCULATE_FREESPACE(YES|NO)

See “RECALCULATE_FREESPACE(YES|NO)” on page 189.

For the duration of the current SNAP DATASET command, the value of RECALCULATE_FREESPACE overrides any value set by the GLOBAL command RECALCULATE_FREESPACE parameter or by the &RECALC_FREE site option.

RENAMEUnconditional(pfx)|RENAMEUnconditional((pfx)(oldnamemask,newnamemask)...) | RENAMEUnconditional((oldnamemask,newnamemask)...)

See “RENAMEUnconditional(pfx)|RENAMEUnconditional((pfx)(oldnamemask,newnamemask)...) | RENAMEUnconditional((oldnamemask,newnamemask)...)” on page 191.

RELate(dsname)

The RELATE parameter is used when snapping an alternate index dataset. By default, the target dataset is related to the same base cluster to which the source dataset is related. You can change this base cluster name by using the RELATE parameter. If the target dataset is being reused, this parameter is ignored.

dsname

Specifies the name of the base cluster that the new target alternate index is related.

The RELATE and SPHERE parameters are mutually exclusive. The RELATE parameter is used with alternate indexes, whereas the SPHERE parameter is used with primary clusters.

The RELATE parameter may be used only with a single source dataset. The SOURCE and TARGET parameters may not be wildcarded.

Default value

None

Example

REL(EMC.BASE.MASTER)

REPlace(YES|NO)

See “REPLace(YES|NO)” on page 192.
For the duration of the current SNAP DATASET command, the value of REPLACE overrides any value set by the GLOBAL command REPLACE parameter or by the &REPLACE site option.

REUSE(YES|NO[,WAIT])

See “REUSE(YES|NO[,WAIT])” on page 193.

For the duration of the current SNAP DATASET command, the value of REUSE overrides any value set by the GLOBAL command REUSE parameter or by the &REUSE site option.

REUSE_AUTO_expand(YES|NO)

See “REUSE_AUTO_expand(YES|NO)” on page 193.

For the duration of the current SNAP DATASET command, the value of REUSE_AUTO_EXPAND overrides any value set by the GLOBAL command REUSE_AUTO_EXPAND parameter or by the &AUTOXPND site option.

SCFGRouP(scfgroup)

The SCFGROUP parameter specifies an SCF Group that is made up of a candidate list of volumes.

`scfgroup`

Specifies an SCF group name. The name can consist of up to 64 characters. If the name includes any special characters (including spaces), enclose the name in single quotes.

The SCF group name must be predefined to ResourcePak Base.

Note: The *ResourcePak Base for z/OS Product Guide* provides more information.

SELECTMULTI(ALL|ANY|FIRST)

See “SELECTMULTI(ALL|ANY|FIRST)” on page 194.

For the duration of the current SNAP DATASET command, the value of SELECTMULTI overrides any value set by the GLOBAL command SELECTMULTI parameter.

SMS_PASS_volumes(YES|NO)

See “SMS_PASS_volumes(YES|NO)” on page 195.

For the duration of the current SNAP DATASET command, the value of SMS_PASS_VOLUMES overrides any value set by the GLOBAL command SMS_PASS_VOLUMES parameter or by the &SMSPASSVOL site option.

SNAP_UNUSED_SPACE(YES|NO)

See “SNAP_UNUSED_SPACE(YES|NO)” on page 196.

For the duration of the current SNAP DATASET command, the value of SNAP_UNUSED_SPACE overrides any value set by the GLOBAL command SNAP_UNUSED_SPACE parameter or by the &SNUSED_SITE option.

SOURCE_VOLUME_LIST(vollist)

See “SOURCE_VOLUME_LIST(vollist)” on page 198.
SPHERE (YES | NO)

The SPHERE parameter specifies that, for any VSAM cluster copied, all associated AIX clusters and paths are to be copied. Individual names of sphere components do not need to be specified. The base cluster name must be specified through the SOURCE or INDDname parameters.

Values can be:

YES All associated AIX clusters and PATHs are to be copied.
NO Only the selected base cluster is copied.

Because you can copy multiple components without a common naming structure in a single action, you can use the RENAMEUNCONDITIONAL parameter to provide the naming convention used for the copied PATH and AIX names.

DB2 linear datasets have a specific naming convention. The second level qualifier denotes whether it is the cluster or the data portion of the dataset. TF/Clone can only be used against the cluster. A component of the cluster can not be specified.

SPHERE can be used with wildcarded sources and targets.

Default value
None

Example

SPHERE (YES)

SRDFA_R1_target (Yes | No | DATAMOVERName | Physical | Informational)

See “SRDFA_R1_target (Yes | No | DATAMOVERName | Physical | Informational)” on page 199.

For the duration of the current SNAP DATASET command, the value of SRDFA_R1_TARGET overrides any value set by the GLOBAL command SRDFA_R1_TARGET parameter or by the &SRDFAR1 site option.

SRDFA_R2_sync (WARNING | DATAMOVER | R1R2SYNC)

See “SRDFA_R2_sync (WARNING | DATAMOVER | R1R2SYNC)” on page 200.

For the duration of the current SNAP DATASET command, the value of SRDFA_R2_SYNC overrides any value set by the GLOBAL command SRDFA_R2_SYNC parameter or by the &SRDFAR2 site option.

SRDFS_R1_target (Yes | No | DATAMOVERName | Physical | Informational)

See “SRDFS_R1_target (Yes | No | DATAMOVERName | Physical | Informational)” on page 201.

For the duration of the current SNAP DATASET command, the value of SRDFS_R1_TARGET overrides any value set by the GLOBAL command SRDFS_R1_TARGET parameter or by the &SRDFSR1 site option.

STORageCLASs (classname)

See “STORageCLASs (classname)” on page 201.
TARGET_ENQ_dataset_wait(YES|NO|hh:mm:ss)

The TARGET_ENQ_DATASET_WAIT parameter allows you to wait for a target dataset enqueue to become available:

- YES means waiting forever.
- NO (default) means no waiting.
- The hh:mm:ss option allows you to wait the specified amount of time before failing the job.

The aliases for this parameter are TENQDSWAIT and TENQDSW.

This parameter has a matching site option, &TARGET_WAIT.

TOLERate_REUSE_Failure(YES|NO)

See “TOLERate_REUSE_Failure(YES|NO)” on page 204.

For the duration of the current SNAP DATASET command, the value of TOLERATE_REUSE_FAILURE overrides any value set by the GLOBAL command TOLERATE_REUSE_FAILURE parameter or by the &REUSFAIL site option.

TOLERateALLOCationFailure(YES|NO)

See “TOLERateALLOCationFailure(YES|NO)” on page 204.

For the duration of the current SNAP DATASET command, the value of TOLERATEALLOCATIONFAILURE overrides any value set by the GLOBAL command TOLERATEALLOCATIONFAILURE parameter or by the &ALLOFAIL site option.

TOLERate_COPY_Failure(YES|NO)

See “TOLERate_COPY_Failure(YES|NO)” on page 205.

For the duration of the current SNAP DATASET command, the value of TOLERATECOPYFAILURE overrides any value set by the GLOBAL command TOLERATECOPYFAILURE parameter or by the ©FAIL site option.

TOLERateENQFailure(YES|NO)

See “TOLERateENQFailure(YES|NO)” on page 205.

For the duration of the current SNAP DATASET command, the value of TOLERATEENQFAILURE overrides any value set by the GLOBAL command TOLERATEENQFAILURE parameter or by the &ENQFAIL site option.

TOLERateTRUNCation(YES|NO)

See “TOLERateTRUNCation(YES|NO)” on page 206.

For the duration of the current SNAP DATASET command, the value of TOLERATETRUNCATION overrides any value set by the GLOBAL command TOLERATETRUNCATION parameter or by the &TRUNC site option.

TOLERateVSAMENQFailure(YES|NO)

See “TOLERateVSAMENQFailure(YES|NO)” on page 206.

For the duration of the current SETSNAP command, the value of TOLERATEVSAMENQFAILURE overrides any value set by the GLOBAL command TOLERATEVSAMENQFAILURE parameter or by the &VSAMFAIL site option.
TRACE (ON | OFF)
See “TRACE (ON | OFF)” on page 206.

UNITName (unitname)
The UNITName parameter specifies the device group name of the DASD devices onto which the source dataset is snapped. This optional parameter is only valid with the TARGET parameter.

unitname
Specifies the name of the generic locally defined group.

The UNITName parameter may be ignored for SMS targets. When the UNITName is passed to ACS routines, the routine determines if UNITName is ignored.

The ESoteric and UNITName parameters are aliases of each other and are mutually exclusive. If UNITName is used, ESoteric can not be used.

Default value
None

Example
UNITN (DASD)

VERIFY (YES | NO | NEVER)
See “VERIFY (YES | NO | NEVER)” on page 209.

For the duration of the current SETSNAP command, the value of VERIFY overrides any value set by the GLOBAL command VERIFY parameter or by the &VERIFY site option.

VERIFY_OPEN_SOURCE (YES | NO)
See “VERIFY_OPEN_SOURCE (YES | NO)” on page 209.

For the duration of the current SETSNAP command, the value of VERIFY_OPEN_SOURCE overrides any value set by the GLOBAL command VERIFY_OPEN_SOURCE parameter or by the &VERIFY_OPEN_SOURCE site option.

VOLUME (volser)
The VOLUME parameter specifies the target volume candidate list to which the dataset is to be snapped. This optional parameter is only valid with the TARGET parameter.

volser
Specifies the volume serial number of a device that is online to the host attempting the snap. You can specify up to 59 volumes. Multiple volsers are separated by a space.

- Guaranteed space is required, if this parameter is used in an SMS environment, or SMS could ignore the request for a specific target volume.

- The snap operation terminates when TF/Clone makes a request to obtain an extent and:
- An allocation cannot be satisfied on the specified volume.
- The VOLUME parameter does not resolve to an eligible device (the specified device has an invalid device type, is offline, or is unknown).

Note: If the source data set is SMS controlled, the allocation may be resolved to another volume that is not in the VOLUME list. This would occur if none of the volumes in the VOLUME list were eligible, but there were eligible volumes in the SMS storage group.

Default value

None

Example

```
VOL(BKUP44)
VOL(BKUP44 BKUP45 BKUP46)
```

VOLUMECOUNT

The VOLUMECOUNT parameter specifies the maximum number of volumes on which a new target dataset can be allocated. This optional parameter is only valid with the TARGET parameter.

```
volumecount
```

Specifies the maximum number of volumes of which the target dataset is allocated. The `volumecount` must be a decimal number from 1 to 59 without quotes.

The rules of precedence are:

- If VOLUMECOUNT is coded on the request statement, it is used with no override.
- If a data class is detected for the dataset, the volume count is used from that data class.
- If COPYSMS(DATACLAS) is specified and the source dataset has a data class, the volume count is used from that data class.
- If a data class is coded on the request statement, the volume count is used from that data class.
- If no data class is selected, coded, or implied, the source volume count (including candidates) is used.

If you do not specify the VOLUMECOUNT parameter, TF/Clone uses, by default, specifies the same number of volumes for the target that the source uses.

The VOLUMECOUNT parameter, is ignored for striped datasets.

In an SMS environment, when the VOLUMECOUNT parameter, specifies a number greater than the actual number of source volumes, TF/Clone assigns candidate volumes to the target datasets.

Default value

Use the same number of volumes for the target as the number used for the source.
Example

VOLCNT(4)

VSAMENQMODE (NONE | SHAREd | EXClusive)

See “VSaMENQMODE(SHAREd|EXClusive|NONE)” on page 210.

For the duration of the current SET DATASET command, the value of VSAMENQMODE overrides any value set by the GLOBAL command VSAMENQMODE parameter or by the &VSAMENQ site option.

WAITFORCOMPLETION([YES|NO|hh:mm:ss] [,MeSsaGes] [,R1R2SYNC] [,TIMEOUT(INFormational|WARNing|ERRor)])

See “WAITFORCOMPLETION([YES|NO|hh:mm:ss] [,MeSsaGes] [,R1R2SYNC] [TIMEOUT(INFormational|WARNing|ERRor)])” on page 210.

Note: Under HYPERMAX OS 5977, WAITFORCOMPLETION(YES) is ignored.

For the duration of the current SNAP DATA command, the value of WAITFORCOMPLETION overrides any value set by the GLOBAL command WAITFORCOMPLETION parameter or by the &CMPLT site option.

WAITforSession(YES|NO|hh:mm:ss)

See “WAITforSession(YES|NO|hh:mm:ss)” on page 212.

For the duration of the current SNAP DATASET command, the value of WAITFORSESSION overrides any value set by the GLOBAL command WAITFORSESSION parameter or by the &WAIT site option.
SNAP VOLUME

The SNAP VOLUME command duplicates a single volume to another volume. You can snap only between devices of the same device type and model.

Note: The SNAP VOLUME command is not native for HYPERMAX OS 5977 and higher, and may not be supported in future HYPERMAX OS levels.

“Performing a SNAP VOLUME copy” on page 101 and “Performing a SNAP VOLUME using virtual devices” on page 111 provide more information about SNAP VOLUME operations.

Syntax

```
SNAP VOLUME
(
 SOURCE(VOLUME(volser)|UNIT(cuu)|SYMDV#(symdev#))|
 SOURCE_VDEV(UNIT(cuu)|VOLUME(volser)|SYMDV#(symdev#))|
 INDDname(ddname)
 Target(VOLUME(volser)|UNIT(cuu)|SYMDV#(symdev#))|
 TARGET_VDEV(VOLUME(volser)|UNIT(device[s])|SYMDV#(symdev#))|
 OUTDDname(ddname)|
 VDEVice(VOLUME(volser)|UNIT(cuu)|SYMDV#(symdev#))|
 [optional_parameters]
)
```

Where **optional_parameters** are as follows:

- [ADMINISTRATOR(YES|NO)]
- [AUTO_BIND_thin_device(YES|NO)]
- [AUTOMATIC_DEALLOC(YES|NO)]
- [AUTOMATIC_RELEASE_hold(YES|NO)]
- [BACKGROUNDCOPY(YES|NO|NOCOPYRD)]
- [BCVOnly(YES|NO)]
- [CHECKBCVholdstatus(YES|NO)]
- [CHECKONLINEpathstatus(YES|NO|NEVER)]
- [CHECK_POOL_usable(YES|NO)]
- [CONDITIONVOLUME(ALL|LaBeL|DUMP)]
- [CONTROLLER([xxxxxxxxx-]xxxxxxx|name)]
- [COPYVolid(YES|NO)]
- [DataMoverName(ADDRSSU|COPYCYL|COPYTRK|DFDSS|DSS|FDR|FDRDSF|IDCAMS|NONE)]
- [DEBUG(ON|OFF)]
[DFDSS_ADMIN(YES|NO)]
[DFDSS_CC(YES|NO)]
[Differential(YES|NO)]
[ERROR_CHECKing(NORMAL|REDUCED)]
[ERROR_REcovery(NORMAL|ENHanced)]
[EXclude_PathGroupID(pathlist)]
[FREESPACE(YES|NO)]
[GROUP(grpname[, grpname,...])]
[INDDname(ddname)]
[INVALIDATE_PDSE_buffers(YES|NO)]
[LOCAL(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname)
 [CONTROLLER([xxxxxxxx]-xxxxx)|name])]
[MULTI_VIRTual(YES|NO)]
[NAME(snapshot_name[%date[4|6|8]%][%time[4|6]%])]
[NEWVOLID(volser)]
[NOTIFYWhencomplete([[GROUP(name)]|DATASET|JOB|STEP|SNAP])]
[OUTDDname(ddname)]
[PARALLEL_CLONE(YES|NO|PREFERRED|REQUIRED)]
[POOL(poolname)]
[POSTSNAP(YES|NO)]
[PRECOPY(YES|NO)]
[PRESNAP(YES|NO)]
[R1FULLCOPYonly(YES|NO)]
[READY(YES|NO)]
[REFVToc(YES|NO)]
[REMOTE(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname)
 RAGROUP(nn.nn.nn.nn) [CONTROLLER([xxxxxxxx]-xxxxx)|name])]
[REPLACE(YES|NO)]
[SOFTlink(YES|NO)]
[SREDFA_R1_target(YES|NO|DATAMOVERName|PHYSical|INFormational)]
[SREDFA_R2_sync(WARNING|DATAMOVER|R1R2SYNC)]
[SREDFS_R1_target(YES|No|DATAMOVERName|PHYSical|INFormational)]
[TDEV_RECLAIM(YES|NO)]
[Terminate_Session_when_complete(YES|NO)]
[TOLERateENQFailure(YES|NO)]
[TRACE(ON|OFF)]
[VARY_OFFline(AUTO|NEVER)]
[VARY_ONline(AUTO|YES|NO)]
[VCLOSE(YES|NO)]
[VDEVWAIT(YES|NO)]
[WAITFORCOMPLETION([YES|NO]|hh:mm:ss]
[,Messages][,RI2SYNC][,TIMEOUT(INformational|WARNing|ERRor)])
[WAIT_FOR_PRECOPY_PASS1(YES|NO)]
[WAITforSESSION(YES|NO]|hh:mm:ss)]
[WHEN_SAVEDEV_FULL(READY|NOTREADY)]

Note: The optional parameters must be separated from each other by a blank space. If a parameter has YES and NO keywords, you can substitute ON for YES and OFF for NO.

Note: GROUP, PRESNAP or POSTSNAP parameters are not allowed in SNAP VOLUME statements that are stored within a group. These parameters are allowed when the SNAP VOLUME statements occur in regular input, such as after a //QCINPUT DD * JCL statement.

Note: Only one of the following can be present: CONTROLLER, LOCAL, or REMOTE. These parameters are mutually exclusive.

Required parameters

INDDname(ddname)

You must specify either the SOURCE parameter or the INDDname parameter. You may use either, but not both. The INDDname parameter refers to a DD statement already allocated to the source volume to be snapped.

ddname

Identifies the DD statement that refers to the volume to be snapped. The volume may be any supported dataset type.

If you use the SOURCE or INDDNAME parameters, then you must also use the TARGET or OUTDDNAME parameters. However, if you use the GROUP parameter, do not use either the SOURCE or TARGET parameters.

If you use TARGET subparameter SYMDV#, you cannot use INDDname.

Default value

None

Example

INDD(INVOL)
OUTDDname (ddname)

The OUTDDNAME parameter refers to a DD statement already allocated to the target volume to be snapped. You must specify either this parameter, the TARGET parameter, or the VDEVICE parameter.

ddname

Identifies the DD statement that refers to the volume to be snapped. The volume may be any supported dataset type.

If you use the SOURCE or INDDNAME parameters, then you must also use the TARGET or OUTDDNAME parameter. However, if you use the GROUP parameter, do not use either the SOURCE or TARGET parameters.

If you specify the TARGET subparameter SYMDV#, then you cannot specify OUTDDName.

Default value

None

Example

OUTDD(OUTVOL)

SOUrce (VOLUME(volser) | UNIT(cuu) | SYMDV#(symdev#))

You must specify an input source device by using the INDDName or SOUrce parameters. Either may be used, but not both.

VOLUME(volser)

The volume serial number of a device that is online to the host attempting the snap.

If the volser contains a hyphen, enclose it in single quotes, for example: VOL('vol-ser')

UNIT(cuu)

The unit address of one or more devices that are online to the host attempting the snap. See “UNIT(cuu)” on page 207.

SYMDV#(symdev#)

See “SYMDV#(symdev#)” on page 202.

If you use SYMDV#, you must use it throughout the operation. That is, if you use SYMDV# for the source device, you must also use SYMDV# for the target device.

If you use SOURCE, you must also use TARGET. However, if you use the GROUP parameter, do not use either the SOURCE or TARGET parameters.

The number of devices specified in the SOURCE parameter must be the same as the number of devices specified in the TARGET parameter.

Default value

None

1. With Mainframe Enablers 8.1 and higher.
Example

SOU(VOLUME(STDVOL))

SOURCE_VDEV(UNIT(cuu)|VOLUME(volser)|SYMDV#(symdev#))

Note: You can use this parameter for virtual volume operations only if you have installed the TF/Snap licensed feature code.

The SOURCE_VDEV parameter determines whether a virtual device is used as the source device of a “duplicate snap” operation. This would mean creating a point-in-time copy of a virtual device that is already participating in a previously activated Snap Session.

Note: Duplicate snaps are not supported with HYPERMAX OS 5977 and higher.

By specifying a virtual device as both the source and target of a SNAP VOLUME statement, the source VDEV is duplicated to the target VDEV and the target VDEV is based on the same original standard device.

UNIT(cuu)

Specifies using the virtual device(s) addressed as a VMAX device number. See “UNIT(cuu)” on page 207.

VOLUME(volser)

Specifies to use the virtual device labeled volser.

If the volser contains a hyphen, enclose it in single quotes, for example: VOL('vol-ser')1.

SYMDV#(symdev#)

Specifies the device number to be used as the source device. See “SYMDV#(symdev#)” on page 202.

If SYMDV# is specified, then the UNIT and VOLUME, and INDDNAME and OUTDDNAME parameters are not allowed. However, you must use either the LOCAL, REMOTE, or CONTROLLER parameters when you specify SYMDV#.

A duplicate VDEV is counted as part of the 128 multi-virtual limit off of a source device.

There is a maximum of 2 duplicate VDEVs per source in an “established and inactive” state at any time. Once activated, up to 2 more can be established.

Termination or re-snap of the original VDEV session is not allowed with an inactive duplicate VDEV.

Default

None

1. With Mainframe Enablers 8.1 and higher.
Example

```
SNAP VOLUME (SOURCE_VDEV VOLUME(scrdvdev) TARGET_VDEV VOLUME(tgtvdev))
```

TARGET_VDEV(VOLUME(volser) | UNIT(cuu) | SYMDV#(symdev#))

Note: You can only use this parameter for full-volume snaps if you install the TF/Clone Licensed Feature Code.

The TARGET parameter defines the target of the snap. With Enginuity 5876, the target device can also be a virtual device that participates in a “duplicate snap” operation.

Note: Duplicate snaps are not supported with HYPERMAX OS 5977 and higher.

With HYPERMAX OS 5977 and higher, the system always allows 32 virtual device sessions with the TARGET_VDEV parameter. To overcome this limitation, use the SOFTlink parameter.

TARGET_VDEV is an alias for TARGET.

VOLUME(volser)

Specifies the volume serial number of a device that is online to the host attempting the snap.

If the volser contains a hyphen, enclose it in single quotes, for example: VOL('vol-ser')\(^1\).

Note: TARGET parameters that apply to a group must use the UNIT subparameter instead of the VOLUME subparameter.

UNIT(cuu)

Specifies the unit address of a device that is online to the host attempting the snap. See “UNIT(cuu)” on page 207.

SYMDV#(symdev#)

Identifies the internal VMAX device number in the target VMAX for the snap operation. See “SYMDV#(symdev#)” on page 202.

If you specify SYMDV#, then the UNIT and VOLUME parameters are not allowed. However, you must use either the LOCAL, REMOTE, or CONTROLLER parameters when you specify SYMDV#.

IMPORTANT

If you use SYMDV#, you must use it throughout the operation. That is, if you use SYMDV# for the source device, you must also use SYMDV# for the target device.

\(^1\) With Mainframe Enablers 8.1 and higher.
If you use the TARGET or OUTDDNAME parameters, then you must also use the SOURCE or INDDNAME parameters. However, if you use the GROUP parameter, do not use either the SOURCE or TARGET parameters.

The number of devices specified in the TARGET parameter must be the same as the number of devices specified in the SOURCE parameter.

Default value
None

Example

TRG(VOLUME(TGT Vol))
VDEVice(UNIT(cuu)|VOLUME(volser)|SYMDV#(symdev#))

Note: You can use this parameter for virtual volume operations only if you have installed the TF/Snap licensed feature code.

The VDEVICE parameter determines whether a virtual device is used for the snap.

UNIT(cuu)

Specifies using the virtual device(s) addressed as a VMAX device number. See “UNIT(cuu)” on page 207.

VOLUME(volser)

Specifies to use the virtual device labeled volser.

If the volser contains a hyphen, enclose it in single quotes, for example: VOL('vol-ser')

SYMDV#(symdev#)

Specifies the device number to be used as the target device. See “SYMDV#(symdev#)” on page 202.

If SYMDV# is specified, then the UNIT and VOLUME, and INDDNAME and OUTDDNAME parameters are not allowed. However, you must use either the LOCAL, REMOTE, or CONTROLLER parameters when you specify SYMDV#.

Default
None

Optional parameters

ADMINISTRATOR (YES|NO)

See “ADMINISTRATOR(YES|NO)” on page 153.

For the duration of the current SNAP VOLUME command, the value of ADMINISTRATOR overrides any value set by the GLOBAL command ADMINISTRATOR parameter or by the &ADMIN site option.

1. With Mainframe Enablers 8.1 and higher.
AUTO_BIND_thin_device(YES|NO)

AUTO_BIND_THIN_DEVICE(YES), along with the required pool name, binds a thin device to a requested pool prior to the SNAP VOLUME processing. This parameter is used when an unbound thin device is referenced as a target device in a SNAP VOLUME statement.

The AUTO_BIND_thin_device parameter has a matching site option, &AUTO_BIND_TDEV.

AUTOMATIC_DEALLOC(YES|NO)

See “AUTOMATIC_DEALLOC(YES|NO)” on page 154.

For the duration of the current SNAP VOLUME command, the value of AUTOMATIC_DEALLOC overrides any value set by the GLOBAL command AUTOMATIC_DEALLOC parameter or by the &AUTODEAL site option.

AUTOMATIC_RELEASE_hold(YES|NO)

See “AUTOMATIC_RELEASE_hold(YES|NO)” on page 155.

For the duration of the current SNAP VOLUME command, the value of AUTOMATIC_RELEASE_HOLD overrides any value set by the GLOBAL command AUTOMATIC_RELEASE_HOLD parameter or by the &AUTORLSE site option.

BACKGROUND_COPY(YES|NO|NOCOPYRD)

See “BACKGROUND_COPY(YES|NO|NOCOPYRD|VSE)” on page 155.

For the duration of the current SNAP VOLUME command, the value of BACKGROUNDCOPY overrides any value set by the GLOBAL command BACKGROUND_COPY parameter or by the &BACKGRND site option.

BCVOnly(YES|NO)

See “BCVOnly(YES|NO)” on page 156.

For the duration of the current SNAP VOLUME command, the value of BCVONLY overrides any value set by the GLOBAL command BCVONLY parameter or by the &BCVONLY site option.

CHECKBCVholdstatus(YES|NO)

See “CHECKBCVholdstatus(YES|NO)” on page 157.

For the duration of the current SNAP VOLUME command, the value of CHECKBCVHOLDSTATUS overrides any value set by the GLOBAL command CHECKBCVHOLDSTATUS parameter or by the &CHECKBCV site option.

CHECKONLINEpathstatus(YES|NO|NEVER)

See “CHECKONLINEpathstatus(YES|NO|NEVER)” on page 157.

For the duration of the current SNAP VOLUME command, the value of CHECKONLINEPATHSTATUS overrides any value set by the GLOBAL command CHECKONLINEPATHSTATUS parameter or by the &CHKONLIN site option.

CHECK_POOL_usable(YES|NO)

See “CHECK_POOL_usable(YES|NO)” on page 157.

CONDITION_VOLUME(ALL|LaBeL|DUMP)

See “CONDITION_VOLUME(ALL|LaBeL|DUMP)” on page 158.
For the duration of the current SNAP VOLUME command, the value of CONDITIONVOLUME overrides any value set by the GLOBAL command CONDITIONVOLUME parameter or by the &CONDVOL site option.

CONTROLLER([xxxxxxx-]xxxxx|name)

See “CONTROLLER([xxxxxxx-]xxxxx|name)” on page 159.

The CONTROLLER parameter is only needed and can only be used if you use the SYMDV# parameter.

COPYVolid(YES|NO)

See “COPYVolid(YES|NO)” on page 161.

For the duration of the current SNAP VOLUME command, the value of COPYVOLID overrides any value set by the GLOBAL command COPYVOLID parameter or by the ©VOLID site option.

DataMoverNaMe(ADRDSSU|COPYCYL|COPYTRK|DFDSS|DSS|FDR|FDRDSF|IDCAMS|NONE)

See “DataMoverNaMe(ADRDSSU|COPYCYL|COPYTRK|DFDSS|DSS|FDR|FDRDSF|IDCAMS|NONE)” on page 162.

For the duration of the current SNAP VOLUME command, the value of DATAMOVERNAME overrides any value set by the GLOBAL command DATAMOVERNAME parameter or by the &DATAMOVR site option.

DEBUG(ON|OFF)

See “DEBUG(ON|OFF)” on page 164.

DFDSS_ADMIN(YES|NO)

See “DFDSS_ADMIN(YES|NO)” on page 164.

For the duration of the current SNAP VOLUME command, the value of DFDSS_ADMIN overrides any value set by the GLOBAL command DFDSS_ADMIN parameter or by the &DFDSS_ADMIN site option.

DFDSS_CC(YES|NO)

See “DFDSS_CC(YES|NO)” on page 165.

For the duration of the current SNAP VOLUME command, the value of DFDSS_CC overrides any value set by the GLOBAL command DFDSS_CC parameter or by the &DFDSS_CC site option.

DIFFerential(YES|NO)

See “DIFFerential(YES|NO)” on page 165.

For the duration of the current SNAP VOLUME command, the value of DIFFERENTIAL overrides any value set by the GLOBAL command DIFFERENTIAL parameter or by the &DIFFDSN site option.

ERROR_CHecking(NORmal|REDUCED)

See “ERROR_CHecking(NORmal|REDUCED)” on page 167.
For the duration of the current SNAP VOLUME command, the value of ERROR_CHECKING overrides any value set by the GLOBAL command ERROR_CHECKING parameter or by the &ERRCHK site option.

ERROR_RECovery|ERRREC (NORmal|ENHanced)

See “ERROR_RECovery(NORmal|ENHanced)” on page 168.

For the duration of the current SNAP VOLUME command, the value of ERROR_RECOVERY overrides any value set by the GLOBAL command ERROR_RECOVERY parameter or by the &ERRREC site option.

EXclude_PathGroupID(pathlist)

See “EXclude_PathGroupID(pathlist)” on page 169.

For the duration of the current SNAP VOLUME command, the value of EXCLUDE_PATHGROUPID overrides any value set by the GLOBAL command EXCLUDE_PATHGROUPID parameter or by the &EXPATHGRP site option.

FREESPACE(YES|NO)

See “FREESPACE(YES|NO)” on page 172.

For the duration of the current SNAP VOLUME command, the value of FREESPACE overrides any value set by the GLOBAL command FREESPACE parameter or by the &FREESPC site option.

GROUP(grpname[,grpname,...])

See “GROUP(grpname[,grpname,...])” on page 173.

If you use the GROUP parameter, do not use either the SOURCE or TARGET parameters.

INVALIDATE_PDSE_buffers(YES|NO)

See “INVALIDATE_PDSE_buffers(YES|NO)” on page 174.

For the duration of the current SNAP VOLUME command, the value of INVALIDATE_PDSE_buffers overrides any value set by the GLOBAL command INVALIDATE_PDSE_buffers parameter or by INVALIDATE_PDSE site option.

LOCAL(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname)
[CONTROLLER([xxxxxx-]xxxxx|name)])

See “LOCAL(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname)
[CONTROLLER([xxxxxx-]xxxxx|name)])” on page 175.

The LOCAL parameter is only needed and can only be used if you use the SYMDV# parameter.

MODE(COPY|NOCOPY|NOCOPYRD|VSE)

See “MODE(COPY|NOCOPY|NOCOPYRD|VSE)” on page 177.

For the duration of the current SNAP VOLUME command, the value of MODE overrides any value set by the GLOBAL command MODE parameter.

MULTI_VIRTual(YES|NO)

See “MULTI_VIRTual(YES|NO)” on page 182.
NAME(snapshot_name[%date[4|6|8]%][%time[4|6]%=])

See “NAME(snapshot_name[%date[4|6|8]%][%time[4|6]%=])” on page 182.

NEWVOLID(volser)

See “NEWVOLID(volser)” on page 183.

NOTIFYwhencomplete([(GROUP(name)][DATASET|JOB|STEP|SNAP)])]

See “NOTIFYwhencomplete([(GROUP(name)][DATASET|JOB|STEP|SNAP)])]” on page 183.

For the duration of the current SNAP VOLUME command, the value of NOTIFYWHENCOMPLETE overrides any value set by the GLOBAL command NOTIFYWHENCOMPLETE parameter or by the &NTFYVLVL site option.

PARALLEL_CLONE(YES|NO|PREFERred|REQuired)

See “PARALLEL_CLONE(YES|NO|PREFERred|REQuired)” on page 184.

POOL(poolname)

See “POOL(poolname)” on page 186.

For the duration of the current SNAP VOLUME command, the value of POOL overrides any value set by the GLOBAL command POOL parameter or by the &POOL site option.

POSTSNAP(YES|NO)

See “POSTSNAP(YES|NO)” on page 186.

PRECOPY(YES|NO)

See “PRECOPY(YES|NO)” on page 187.

For the duration of the current SNAP VOLUME command, the value of PRECOPY overrides any value set by the GLOBAL command PRECOPY parameter or by the &PRECOPY site option.

PRESNAP(YES|NO)

See “PRESNAP(YES|NO)” on page 187.

PRESNAP may only be used if GROUP is also specified.

R1FULLCOPYonly(YES|NO)

See “R1FULLCOPYonly(YES|NO)” on page 187.

For the duration of the current SNAP VOLUME command, the value of R1FULLCOPYONLY overrides any value set by the GLOBAL command R1FULLCOPYONLY parameter or by the &R1FULLCOPY site option.

READY(YES|NO)

See “READY(YES|NO)” on page 188.

REFVTOC(YES|NO)

See “REFVTOC(YES|NO)” on page 189.
REMOTE(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname)
RAGROUP(nn.nn.nn.nn) [CONTROLLER([xxxxxxx-]xxxxx|name)])

See “REMOTE(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname)
RAGROUP(nn.nn.nn.nn) [CONTROLLER([xxxxxxx-]xxxxx|name)])” on page 190.

The REMOTE parameter is only needed and can only be used if you use the SYMDV# parameter.

REPLACE(YES|NO)

See “REPLACE(YES|NO)” on page 192.

If the existing device contains user data and you leave REPLACE with the default value of NO, the snap operation terminates. If you specify REPLACE(YES) and the target volume is not empty, old data on that volume is overwritten.

For the duration of the current SNAP VOLUME command, the value of REPLACE overrides any value set by the GLOBAL command REPLACE parameter or by the &REPLACE site option.

SOFTlink(YES|NO)

See “SOFTlink(YES|NO)” on page 196.

SRDFA_R1_target(YES|NO|DATAMOVERName|PHysical|INformational)

See “SRDFA_R1_target(Yes|No|DATAMOVERName|PHysical|INformational)” on page 199.

For the duration of the current SNAP VOLUME command, the value of SRDFA_R1_TARGET overrides any value set by the GLOBAL command SRDFA_R1_TARGET parameter or by the &SRDFAR1 site option.

SRDFA_R2_sync(WARNING|DATAMOVER|R1R2SYNC)

See “SRDFA_R2_sync(WARNING|R1R2SYNC|DATAMOVER)” on page 200.

For the duration of the current SNAP VOLUME command, the value of SRDFA_R2_SYNC overrides any value set by the GLOBAL command SRDFA_R2_SYNC parameter or by the &SRDFAR2 site option.

SRDFS_R1_target(YES|NO|DATAMOVERName|PHysical|INformational)

See “SRDFS_R1_target(Yes|No|DATAMOVERName|PHysical|INformational)” on page 201.

For the duration of the current SNAP VOLUME command, the value of SRDFS_R1_TARGET overrides any value set by the GLOBAL command SRDFS_R1_TARGET parameter or by the &SRDFSR1 site option.

TDEV_RECLAIM(YES|NO)

See “TDEV_RECLAIM(YES|NO)” on page 203.

TERMINATE_SESSION_when_complete(YES|NO)

See “TERMINATE_SESSION_when_complete(YES|NO)” on page 203.

For the duration of the current SNAP VOLUME command, the value of TERMINATE_SESSION_WHEN_COMPLETE overrides any value set by the GLOBAL command TERMINATE_SESSION_WHEN_COMPLETE parameter or by the &TERMSESS site option.
TOLERATEENQFAILURE(YES|NO)

See “TOLERATEENQFAILURE(YES|NO)” on page 205.

For the duration of the current SNAP VOLUME command, the value of TOLERATEENQFAILURE overrides any value set by the GLOBAL command TOLERATEENQFAILURE parameter or by the &ENQFAIL site option.

TRACE(ON|OFF)

See “TRACE(ON|OFF)” on page 206.

VARY_OFFline(AUTO|NEVER)

See “VARY_OFFline(AUTO|NEVER)” on page 207.

For the duration of the current SNAP VOLUME command, the value of VARY_OFFLINE overrides any value set by the GLOBAL command VARY_OFFLINE parameter or by the &VARYOFF site option.

VARY_ONline(AUTO|YES|NO)

See “VARY_ONline(AUTO|YES|NO)” on page 207.

For the duration of the current SNAP VOLUME command, the value of VARY_ONLINE overrides any value set by the GLOBAL command VARY_ONLINE parameter or by the &VARYON site option.

VCLOSE(YES|NO)

See “VCLOSE(YES|NO)” on page 208.

For the duration of the current SNAP VOLUME command, the value of VCLOSE overrides any value set by the GLOBAL command VCLOSE parameter or by the &VCLOSE site option.

VDEVWAIT(YES|NO)

See “VDEVWAIT(YES|NO)” on page 209.

For the duration of the current SNAP VOLUME command, the value of VDEVWAIT overrides any value set by the GLOBAL command VDEVWAIT parameter or by the &VDEVWAIT site option.

WAITFORCOMPLETION([YES|NO] hh:mm:ss][,MesSaGes][,R1R2SYNC][TIMEOUT(INFormational|WARNing|ERRor)])

See “WAITFORCOMPLETION([YES|NO]hh:mm:ss][,MesSaGes][,R1R2SYNC][TIMEOUT(INFormational|WARNing|ERRor)])” on page 210.

Note: Under HYPERMAX OS 5977, WAITFORCOMPLETION(YES) is ignored.

For the duration of the current SNAP VOLUME command, the value of WAITFORCOMPLETION overrides any value set by the GLOBAL command WAITFORCOMPLETION parameter or by the &CMPLTMSG site option.

WAIT_FOR_PRECOPY_PASS1(YES|NO)

See “WAIT_FOR_PRECOPY_PASS1(YES|NO)” on page 212.

For the duration of the current SNAP VOLUME command, the value of WAIT_FOR_PRECOPY_PASS1 overrides any value set by the GLOBAL command WAIT_FOR_PRECOPY_PASS1 parameter or by the &WAIT_PRECOPY site option.
WAITforsession(YES|NO|hh:mm:ss)

See “WAITforsession(YES|NO|hh:mm:ss)” on page 212.

For the duration of the current SNAP VOLUME command, the value of WAITFORSESSION overrides any value set by the GLOBAL command WAITFORSESSION parameter or by the &WAIT site option.

WHEN_SAVEDEV_FULL(READY|NOTREADY)

See “WHEN_SAVEDEV_FULL(READY|NOTREADY)” on page 213.

For the duration of the current SNAP VOLUME command, the value of WHEN_SAVEDEV_FULL overrides any value set by the GLOBAL command WHEN_SAVEDEV_FULL parameter or by the &SAVEFULL site option.
STOP SNAP TO DATASET (TF/Clone)

The STOP SNAP TO DATASET command stops the specified target dataset.

Syntax

```plaintext
STOP SNAP TO DATASET
  (OUTDDname(ddname) | TARGET(dsname) [SCRATCHdataset(YES|NO)])
```

Required parameters

OUTDDname(ddname)

The OUTDDNAME parameter specifies the target dataset.

ddname

The DD name of the target dataset.

Default value

None

Example

None

TARGET(dsname)

Note: You can use this parameter only if you install the TF/Clone Licensed Feature Code.

Specifies the target dataset by name. The value can be:

dsname

The dsname of the target dataset.

No wildcard name patterns are allowed with this command.

Default value

None

Example

None

Optional parameters

SCRATCHdataset(YES|NO)

The SCRATCHDATASET parameter is valid only when used with the TARGET parameter. SCRATCHdataset erases the dataset specified in TARGET(dsname), even if the dataset specified is the source of a dataset snap:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td>Erases the scratch dataset identified by the TARGET(dsname) parameter.</td>
</tr>
<tr>
<td>NO</td>
<td>(Default) Does not erase the scratch dataset identified by the TARGET(dsname) parameter.</td>
</tr>
</tbody>
</table>

You can substitute ON for YES and OFF for NO.
STOP SNAP TO VOLUME

The STOP SNAP TO VOLUME command stops the specified target volume. When you issue a STOP SNAP TO VOLUME, you may need to reinitialize the target volume before you can use it again.

Syntax

STOP SNAP TO VOLUME
(OUTDDname(ddname) |
TaRGet(VOLUME(volser)|UNIT(cuu)|SYMDV#(symdev#)) |
VDEVice(VOLUME(volser)|UNIT(cuu)|SYMDV#(symdev#)) |
[optional_parameters]
)

Where optional_parameters are as follows:
[AUTO_UNBIND_thin_device(YES|NO)]
[GROUPE(grpname[, grpname,...])]
[CONTROLLER([xxxxxxx-]xxxxx|name)])
[LOCAL(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname) |
CONTROLLER([xxxxxxx-]xxxxx|name)])]

[NAME(snapshot_name)]
[REMOTE(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname) |
RAGROUP(nn.nn.nn.nn) [CONTROLLER([xxxxxxx-]xxxxx|name)])]]

[WAIT_FOR_Definition(YES|NO)]

Note: The optional parameters must be separated from each other by a blank space. If a parameter has YES and NO keywords, you can substitute ON for YES and OFF for NO.

Note: Only one of the following can be present: CONTROLLER, LOCAL, or REMOTE. These parameters are mutually exclusive.

Note: The OUTDDNAME, TARGET, VDEV, and GROUP parameters are required, but mutually exclusive. That is, you need to specify one of these parameters, but you cannot specify any of the other three in the same statement.

Required parameters

OUTDDname (ddname)

The OUTDDNAME parameter specifies the target volume.

dname

Specifies the DDname of the target volume.
TaRGet (VOLume(volser) | UNIT(cuu) | SYMDV#(symdev#))

Note: You can use this parameter only if you install the TF/Clone licensed feature code.

The TARGET parameter defines the target of the snap.

VOLUME(volser)

The volume serial number of a device that is online to the host attempting the snap.

UNIT(cuu)

The unit address(es) of one or more devices that is online to the host attempting the snap. See “UNIT(cuu)” on page 207.

SYMDV#(symdev#)

The internal VMAX device number(s) in the target VMAX system for the snap operation. See “SYMDV#(symdev#)” on page 202.

If you specify SYMDV#, then the UNIT and VOLUME parameters are not allowed. You must, however, include the LOCAL REMOTE, or CONTROLLER parameter.

The OUTDDNAME, TARGET, VDEV, and GROUP parameters are required, but mutually exclusive. That is, you need to specify one of these parameters, but you cannot specify any of the other three in the same statement.

Default

None

Example

None

VDEVice (VOLume(volser) | UNIT(cuu) | SYMDV#(symdev#))

Note: This parameter is only available if you install the TF/Snap licensed feature code.

Identifies which virtual device to use as the target.

VOLUME(volser)

The volser of the virtual device.

UNIT(cuu)

The unit addresses of one or more virtual devices.

You can specify a single device or a range of devices.

SYMDV#(symdev#)

The internal VMAX device number(s) in the target VMAX system for the SNAP operation. See “SYMDV#(symdev#)” on page 202.
If SYMDV# is specified, then the UNIT and VOLUME parameters are not allowed. You must include the LOCAL, REMOTE, or CONTROLLER parameter.

The OUTDDNAME, TARGET, VDEV, and GROUP parameters are required, but mutually exclusive. That is, you need to specify one of these parameters, but you cannot specify any of the other three in the same statement.

Default

None

Example 1

```
  //STOPDD DD DISP=SHR,UNIT=3390,VOL=SER=MV3493
  *
  *         ENTER STOP COMMAND
  *
  STOP SNAP TO VOLUME (OUTDDname (STOPDD))
  STOP SNAP TO VOLUME (TARGET (VOLUME (MV3494 )))
  STOP SNAP TO VOLUME (TARGET (UNIT (1200)))
  STOP SNAP TO VOLUME (TARGET (VOLSER(MV0088) UNIT(1300)))
  STOP SNAP TO VOLUME (VDEV (UNIT(A000))
```

Example 2

```
  STOP SNAP TO VOLUME (LOCAL (UNIT(8520)) (VDEV (SYMDV# (0010-1500))))
```

Example 3

This example issues a STOP SNAP to two volumes in a REMOTE VMAX system not defined in the SCF of the user.

```
  *
  STOP SNAP TO VOLUME (REMOTE (UNIT(7800) RAGROUP(90)
                             CONTROLLER (0001949-01031))
                             TARGET (SYMDV# (04D0-04D1 ) ) )
  *
```

Optional parameters

`AUTO_UNBIND_thin_device(YES|NO)`

During a STOP SNAP request against a thin device, AUTO_UNBIND_THIN DEVICE(YES) unbinds the device from any pool after the sessions have been terminated.

The AUTO_UNBIND_thin_device parameter has a matching site option, &AUTO_BIND_TDEV.

`GROUP(grpname[,grpname,...])`

See “GROUP(grpname[,grpname,...])” on page 173.

The OUTDDNAME, TARGET, VDEV, and GROUP parameters are required, but mutually exclusive. That is, you need to specify one of these parameters, but you cannot specify any of the other three in the same statement.

`CONTROLLER([xxxxxxx-]xxxxx|name)`

See “CONTROLLER([xxxxxxx-]xxxxx|name)” on page 159.
The CONTROLLER parameter is only needed and can only be used if you use the SYMDV# parameter.

LOCAL(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname) [CONTROLLER([xxxxxxxx-]xxxxx|name)])

See “LOCAL(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname) [CONTROLLER([xxxxxxxx-]xxxxx|name)])” on page 175.

The LOCAL parameter is only needed and can only be used if you use the SYMDV# parameter.

NAME(snapshot_name)

See “NAME(snapshot_name[%date[4|6|8]%][%time[4|6]%%])” on page 182.

The NAME parameter is used to indicate that you want to stop a softlinked snapshot. Using the NAME parameter has the effect of unlink terminating the specified snapshot. Only use the NAME(snapshot_name) parameter if the snapshot was created with the SOFTLINK(YES) option set, or if you are certain that the specified snapshot is softlinked.

REMOTE(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname) RAGROUP(nn.nn.nn.nn) [CONTROLLER([xxxxxxxx-]xxxxx|name)])

See “REMOTE(UNIT(cuu)|VOLUME(volser)|DDNAME(ddname) RAGROUP(nn.nn.nn.nn) [CONTROLLER([xxxxxxxx-]xxxxx|name)])” on page 190.

The REMOTE parameter is only needed and can only be used if you use the SYMDV# parameter.

WAIT_FOR_Definition(YES|NO)

See “WAIT_FOR_Definition(YES|NO)” on page 211.
General Pool Management commands (TF/Snap)

EMC ResourcePak Base provides a set of General Pool Management (GPM) commands that can be executed online, or in batch mode, to configure and manage a predefined set of devices that provide a pool of physical space.

For TimeFinder use, the devices for SNAPPOOLs come from a special pool called the DEFAULT_POOL. The DEFAULT_POOL contains snap pool devices that have not been assigned to any named pool, but are available for use.

Multiple SNAPPOOLs can be created to isolate workloads. This alleviates contention for device space among several users and lessens the possibility of a single pool consuming all the available space.

The ResourcePak Base for z/OS Product Guide describes the GPM commands and provides a complete description of creating pools and managing the pooling process.

Note: The GPM command CONFIGPOOL is no longer supported.

DEFINE GROUP

Allows you to define a group of SNAP VOLUME and GLOBAL statements which are then stored into a PDS or PDS/E file.

SNAP VOLUME statements are mandatory in DEFINE GROUP while GLOBAL statements are optional.

Note: Statements within the DEFINE GROUP definition cannot include a VOLUME(volser) parameter for a target.

Syntax

DEFINE GROUP grpname [(optional_parameters)]

Where optional_parameters are as follows.

[DESCRIPTION ('descriptive_text')] [FORCE(YES|NO)] [REPLACE(YES|NO)]

Note: If a parameter has YES and NO keywords, you can substitute ON for YES and OFF for NO.
Required parameters

grpname

The name of the group. The name can contain as many as eight characters, with no embedded spaces. The characters you use must be valid for a PDS member name.

Note: You cannot reference a group that was deleted in this job step.

Optional parameters

DESCRIPTION (‘descriptive_text’)

A text string, of up to 64 characters, that describes the group. The description is stored in the group member and listed each time you query the group.

Default value

None

FORCE (YES|NO)

If an existing group has a status of PRESNAP or ACTIVATE, then FORCE(YES) is required to replace the group definition. This is intended to prevent a group from being redefined while in use, possibly impacting the relationship or status of existing devices in the group.

If the existing group has a status of INITIAL, POSTSNAP or FAILED, then the FORCE parameter is not required.

For the duration of the current DEFINE GROUP command, the value of FORCE overrides any value set by the GLOBAL command FORCE parameter or by the &FORCE site option. “FORCE(YES|NO)” on page 172 provides more information.

REPLACE (YES|NO)

The REPLACE parameter indicates whether an existing group may be replaced with a new group definition.

For the duration of the current DEFINE GROUP command, the value of REPLACE overrides any value set by the GLOBAL command REPLACE parameter or by the &REPLACE site option. See “REPLace(YES|NO)” on page 192.
DELETE GROUP

Allows you to delete an existing group (that was defined with DEFINE GROUP). The deletion removes the definition from the PDS in which it is stored.

Note that you cannot edit a previously defined group to change its contents. Instead, you must:

1. Delete the group.
2. Redefine the group with DEFINE/REPLACE and a new set of SNAP VOLUME or GLOBAL commands.

Syntax

DELETE GROUP grupname [(FORCE(YES|NO))]

Note: If a parameter has YES and NO keywords, you can substitute ON for YES and OFF for NO.

Required parameters

grupname

The name of the group. The name can contain as many as eight characters, with no embedded spaces. The characters you use must be valid for a PDS member name.

Note: You cannot reference a group that was defined or already deleted in this jobstep.

Optional parameters

FORCE (YES|NO)

If an existing group has a status of PRESNAP or ACTIVATE, then FORCE(YES) is required to replace the group definition. This is intended to prevent a group from being redefined while in use. A redefinition of a group in use could impact the relationship or status of existing devices in the group. If a group has the status of INITIAL, POSTSNAP, or FAILED, then you would not have to use FORCE.

For the duration of the current DELETE GROUP command, the value of FORCE overrides any value set by the GLOBAL command FORCE parameter or by the &FORCE site option. “FORCE(YES|NO)” on page 172 provides more information.

END GROUP

The END GROUP command completes the definition of a group. You must enter an END GROUP after you finish entering the SNAP VOLUME and GLOBAL statements that define the group. You may follow END GROUP with other commands, including commands that refer to the group or commands that define other groups.

Syntax

END GROUP
CHAPTER 6
Messages and Error Codes

This chapter describes messages you may receive from TimeFinder/Mirror and provides a comprehensive list of error codes that can be issued by TimeFinder Clone Mainframe Snap Facility.

- TimeFinder/Mirror messages ... 316
- User abend codes .. 317
- DOIO error codes .. 317
- VMAX interface error codes ... 318
TimeFinder/Mirror messages

If you are using TimeFinder/Clone Mainframe Snap Facility with Enginuity 5876 or HYPERMAX OS 5977, or with Enginuity 5773 and lower with various RAID operations, you may receive messages from TimeFinder/Mirror.

These messages can include:

BCVM006E ESTABLISH failed on BCV xxxx, reason code yy
BCVM009E SPLIT failed on BCV xxxx, reason code yy
BCVM011E RE-ESTABLISH failed on BCV xxxx, reason code yy
BCVM013E RESTORE failed on BCV xxxx, reason code yy

When TimeFinder/Mirror ESTABLISH, SPLIT, RE-ESTABLISH, and RESTORE operations are invoked with Enginuity 5876 or HYPERMAX OS 5977, or with Enginuity 5773 and lower on clone emulation operations, TimeFinder/Clone Mainframe Snap Facility accomplishes the requested function. This is confirmed by the BCVM140I message, as shown in the following example:

BCVM140I COMMAND PROCESSED VIA TF/CLONE EMULATION

TimeFinder/Mirror reason code conversion

Whenever a TimeFinder/Mirror error occurs during the Snap operation, one of the usual TimeFinder/Mirror error messages is generated (as stated above), followed by message BCVM144I.

Message BCVM144I shows the original TimeFinder Mirror hexadecimal reason code (yy) converted into a decimal number (xxx) that translates to a specific EQCAxxxE message identifier.

BCVM144I - REFER TO EQCAxxxE JOBLOG MESSAGE

Refer to the EQCA message description in this manual for an explanation of the error.

WARNING

If the BCVM144I message is not contained in the JOBSTEP LOG, an error occurred where TimeFinder has not been able to generate a message. In this case, contact EMC Customer Support and save as much information as possible to help resolve the issue.

Note: You can find descriptions of these messages in the Mainframe Enablers Message Guide.

Example

The following is an example of one of those error conditions:

BCVM004I RE-ESTABLISH REMOTE BCV SYMDEV 07A0 THROUGH 93C8
BCVM140I COMMAND PROCESSED VIA TF/CLONE EMULATION
BCVM011E RE-ESTABLISH FAILED ON BCV 07A0, REASON CODE 78
BCVM144I - REFER TO EQCA120E JOBLOG MESSAGE
BCVM108E BCV 07A0 LOCK FREE FAILED, RC 001F, RSNC 0000001C
BCVM108E BCV 07A0 LOCK FREE FAILED, RC 001F, RSNC 0000001C
BCVM047I ALL CONTROL STATEMENTS PROCESSED, HIGHEST RC 8
Note the reason code of 78 in the BCVM011E message. The reason code of 78 is the hexadecimal equivalent of decimal 120, as in the TimeFinder message EQCA120E. This is confirmed in the next message:

BCVM144I - REFER TO EQCA120E JOBLOG MESSAGE

Using this information, you can then find:

EQCA120E DEVICE nnnn FAILED TO GO READY, RC: xx R0: xx R1: xx

User abend codes

The following user abend codes are issued in the event a error occurs before the message system is initialized.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>U0001</td>
<td>The SYSOUT DDNAME was not specified in the JCL.</td>
</tr>
<tr>
<td>U0002</td>
<td>The OPEN request failed for the SYSOUT DDNAME.</td>
</tr>
<tr>
<td>U0806</td>
<td>SCF Address space not found.</td>
</tr>
</tbody>
</table>

DOIO error codes

Figure 11 shows the format for DOIO error codes.

Table 14 Abend codes

DOIO error code format

VMAX interface error codes

The following tables contain reason codes related to TimeFinder operations. Table 15 contains return and reason codes for TimeFinder. Table 16 on page 320 contains error codes for the EXTENTS program:

Table 15 VMAX interface error codes (page 1 of 2)

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1701</td>
<td>The CRC is invalid in an individual extent in the extent track. A request to obtain the extents track pointer failed because the device number is invalid.</td>
</tr>
<tr>
<td>1702</td>
<td>The destination device number in an extent entry is not a valid destination device. A request to obtain the extents track pointer failed because the device count is invalid.</td>
</tr>
<tr>
<td>1703</td>
<td>The destination device number in an extent entry is not a valid BCV device.</td>
</tr>
<tr>
<td>1704</td>
<td>The beginning CCBH in an extent entry is not valid for the source device.</td>
</tr>
<tr>
<td>1705</td>
<td>The beginning CCBH in an extent entry is not valid for the target device.</td>
</tr>
<tr>
<td>1706</td>
<td>The flag setting in an extent entry is not valid or the feature is not available at the installed Enginuity/HYPERMAX OS level.</td>
</tr>
<tr>
<td>1707</td>
<td>The number of tracks to copy is not valid. Either the source CCBH plus the number of tracks to copy exceeds the capacity of the source device, or the target CCBH plus the number of tracks to copy exceeds the capacity of the target device.</td>
</tr>
<tr>
<td>1708</td>
<td>Protection is not on for the selected extent entry.</td>
</tr>
<tr>
<td>1709</td>
<td>The session ID in an extent entry is not valid.</td>
</tr>
<tr>
<td>1710</td>
<td>A timeout occurred.</td>
</tr>
<tr>
<td>1711</td>
<td>The request to remove a session failed because the session ID has not been established.</td>
</tr>
<tr>
<td>1712</td>
<td>The request to remove a session failed because the session selected is not a SNAP session.</td>
</tr>
<tr>
<td>1713</td>
<td>The request to remove a session has failed.</td>
</tr>
<tr>
<td>1721</td>
<td>The request to identify the extent track failed. The CCBH is invalid for the device.</td>
</tr>
<tr>
<td>1722</td>
<td>The request to identify the extent track failed. The device is a BCV device.</td>
</tr>
<tr>
<td>1723</td>
<td>The request to identify the extent track failed. The extent track is not in a Perma-Cache slot.</td>
</tr>
<tr>
<td>1724</td>
<td>The request to identify the extent track failed. The extent track is not in cache.</td>
</tr>
<tr>
<td>1725</td>
<td>The request to identify the extent track failed. The VMAX number is invalid.</td>
</tr>
<tr>
<td>1726</td>
<td>The request to identify the extent track failed. The extent track has no record one.</td>
</tr>
<tr>
<td>1727</td>
<td>Snap to destination R2 device is disabled.</td>
</tr>
<tr>
<td>1731</td>
<td>The request to establish or remove an extent failed. The extent track address is invalid.</td>
</tr>
<tr>
<td>1732</td>
<td>The request to establish or remove an extent failed. The extent track is not in a Perma-Cache slot.</td>
</tr>
</tbody>
</table>
Table 15 VMAX interface error codes (page 2 of 2)

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1733</td>
<td>The request to establish or remove an extent failed. The destination device in an extent entry is not a BCV device.</td>
</tr>
<tr>
<td>1735</td>
<td>The request to establish or remove an extent failed. The extent track slot is invalid.</td>
</tr>
<tr>
<td>1736</td>
<td>The request to establish or remove an extent failed. The start extent entry is invalid.</td>
</tr>
<tr>
<td>1737</td>
<td>The request to establish or remove an extent failed. The end extent entry is invalid.</td>
</tr>
<tr>
<td>1738</td>
<td>The request to establish or remove an extent failed. The number of extents to process exceeds the maximum permissible.</td>
</tr>
<tr>
<td>1739</td>
<td>The request to establish or remove an extent failed. An invalid extent entry was detected.</td>
</tr>
<tr>
<td>173A</td>
<td>The request to establish or remove an extent failed. The GST queue is full.</td>
</tr>
<tr>
<td>173B</td>
<td>The request to establish or remove an extent failed. More than one target device is specified in a single request.</td>
</tr>
<tr>
<td>173C</td>
<td>The request to establish or remove an extent failed. Unable to obtain the lock for the destination device.</td>
</tr>
<tr>
<td>173D</td>
<td>The request to establish or remove an extent failed. The destination device is not ready.</td>
</tr>
<tr>
<td>173E</td>
<td>The request to establish or remove an extent failed. The destination and the source devices are not of the same emulation type.</td>
</tr>
<tr>
<td>1741</td>
<td>Device is not a BCV.</td>
</tr>
<tr>
<td>1742</td>
<td>Device already set or released.</td>
</tr>
<tr>
<td>1743</td>
<td>BCV device is established.</td>
</tr>
<tr>
<td>1744</td>
<td>BCV has active TimeFinder sessions.</td>
</tr>
<tr>
<td>1746</td>
<td>Device has active concurrent copy session.</td>
</tr>
<tr>
<td>1751</td>
<td>The request to remove protection failed. The command was issued to a non-BCV device.</td>
</tr>
<tr>
<td>1752</td>
<td>The request to remove protection failed. The extent indicated is not a valid extent.</td>
</tr>
<tr>
<td>1761</td>
<td>The request to establish an extent failed. The maximum of 16 sessions has been exceeded.</td>
</tr>
<tr>
<td>1779</td>
<td>Displayed when an establish occurs against a thin pool with insufficient available tracks.</td>
</tr>
<tr>
<td>1792</td>
<td>DA error.</td>
</tr>
<tr>
<td>1799</td>
<td>The request has failed. Cannot lock extents track.</td>
</tr>
<tr>
<td>179A</td>
<td>The request has failed. GST (Global Special Task) call failed.</td>
</tr>
<tr>
<td>17FF</td>
<td>DA failure/timeout on syscall.</td>
</tr>
</tbody>
</table>
Table 16 EXTENTS error codes

<table>
<thead>
<tr>
<th>R15</th>
<th>Reason</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>Successful</td>
</tr>
<tr>
<td>4 or 8</td>
<td>1</td>
<td>Illegal mask specified</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>No matching datasets found</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Unknown function code</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Overflow, unable to return all matching datasets.</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>UCB not found</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Dataset not found on volume</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>DSCB not type 1 or type 4</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Tracks allocated = 0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Extents not available due to HSM migrate</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>Caller not APF authorized</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Extents program logic error</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Entry type not GDG base</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Entry name and catalog name match</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>Volume serial not supplied</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>DEVTYPE indicates unsupported device type geometry</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>DEVTYPE failed</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Catalog management return code</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Locate failed - the reason code contains the locate return code</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Dataset is not catalogued</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>EXTWA Failed validation</td>
</tr>
</tbody>
</table>
APPENDIX A

DFDSS COPY Command Support

This appendix discusses DFDSS command support through EMCDSSU.

- Introduction ... 322
- Installation considerations ... 322
- EMCDSSU parameters .. 323
Introduction

TimeFinder supports the invoking of TimeFinder processing within a VMAX system in response to a DFDSS COPY DATASET and COPY FULL statements for dataset or volume copies.

This support is provided through the module, EMCDSSU, which handles the SYSIN and SYSPRINT files for the DFDSS syntax.

EMCDSSU accepts DFDSS supported syntax and processes COPY statements by invoking TimeFinder to create copies of datasets or volumes with a VMAX system. There are four categories of EMCDSSU COPY parameters:

- Fully supported.
- Partially supported; that is, supported for one action and not another or for one subparameter and not more than one.
- Not supported.
- Ignored.

For a command to be processed by EMCDSSU, all of the parameters on that command must be either supported or ignored.

- If a parameter is supported, EMCDSSU processes the command and that parameter.
- If a parameter is one that is ignored, then EMCDSSU processes the command, but does not process that parameter.
- If a parameter is one that is not supported, then the command with that parameter is not processed by EMCDSSU. Instead, it is passed to the module ADRDSSU for processing.

Installation considerations

You can install EMCDSSU as a replacement for ADRDSSU. In this case, you must rename ADRDSSU to IBMDSSU and rename EMCDSSU to ADRDSSU.

Note: IBMDSSU is the only valid rename or alias for ADRDSSU.

Keep in mind that this approach has additional considerations for the application of future maintenance to the IBM ADRDSSU module.
EMCDSSU parameters

Table 17 lists the EMCDSSU parameters and their categories. A Yes in a column indicates that the parameter is in that category. If a parameter is partially supported, the supported column lists the supported form(s) and the unsupported column lists the unsupported forms.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Fully supported?</th>
<th>Partially supported?</th>
<th>Not supported?</th>
<th>Ignored?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADMINISTRATOR</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALLEXCP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTORELBLOCKADDR</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bypassacs</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANCELERROR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CATALOG</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CGCREATE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHECKVTOC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CICSVRBACKUP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONCURRENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONVERT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COPYVOLID</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPVOLUME</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DATASET</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEBUG</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DELETE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUMPCONDITIONING</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DYNALLOC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXCLUDE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FASTREPLICATION</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>FCFREEZE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCNOCOPY</td>
<td></td>
<td>COPY VOLUME</td>
<td>Yes</td>
<td>COPY DATASET</td>
</tr>
<tr>
<td>FCTOPPRCPrimary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FILTERDD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORCE</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORCECP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Fully supported?</td>
<td>Partially supported?</td>
<td>Not supported?</td>
<td>Ignored?</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>FREESPACE</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>FULL</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INCAT</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>INCLUDE</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>INDDNAME</td>
<td>COPY VOLUME</td>
<td>Yes</td>
<td>COPY DATASET</td>
<td></td>
</tr>
<tr>
<td>INDYNAM</td>
<td>COPY DATASET</td>
<td>COPY VOLUME</td>
<td>COPY VOLUME</td>
<td>COPY VOLUME (multiple volumes)</td>
</tr>
<tr>
<td>LOGINDDNAME</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>LOGINDYNAM</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>MAKEMULTI</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>MENTITY</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>MGMTCLAS</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>NOPACKING</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>NOTIFYCONCURRENT</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>NULLMGMTCLAS</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>NULLSTORCLAS</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>ONLYINCAT</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>OUTDDNAME</td>
<td>COPY VOLUME</td>
<td>Yes</td>
<td>COPY VOLUME</td>
<td>COPY VOLUME (multiple volumes)</td>
</tr>
<tr>
<td>OUTDYNAM</td>
<td>COPY VOLUME</td>
<td>Yes</td>
<td>COPY VOLUME</td>
<td>COPY VOLUME (multiple volumes)</td>
</tr>
<tr>
<td>OUTTRACKS</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>PASSWORD</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>PERCENTUTILIZED</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>PROCESS</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>PURGE</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>READIOPACING</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>REBLOCK</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>RECATALOG</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>RELBLOCKADDRESS</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>RENAMEUNCONDITIONALY</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Fully supported?</td>
<td>Partially supported?</td>
<td>Not supported?</td>
<td>Ignored?</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>REPLACE</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REPLACEUNCONDITIONAL</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SELECTMULTI</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SHARE</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPHERE</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STORCLAS</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STORGRP</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>TGTALLOC</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>TGTGDS</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>TOLERATE (ENQFAILURE)</td>
<td>TOLERATE (IOERROR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRACKS</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>TTRADDRESS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNCATALOG</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>VOLCOUNT</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>WAIT</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>WRITECHECK</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>
This appendix shows the SMF record layout, which is contained in the macro SNSMFRCD and is a distributable macro.

- SMF record layout ... 328
- SMF record sub-sections and TimeFinder actions .. 338
SMF record layout

The volume and variety of information in the SMF records enables sites to produce many types of analysis and summary reports. By keeping historical SMF data and determining trends, an installation can evaluate changes in the configuration, workload, or job scheduling procedures. Similarly, an installation can use SMF data to determine where system resources are wasted because of problems, such as inefficient operational procedures or poor programming conventions.

Note: Refer to the IBM Manual z/OS MVS System Management Facilities (SMF), section Using SMF Macros, subsection SMFWTM -- Writing SMF Records for more information about the value and use of the SMF record.

MACRO ,
SNSMFRCD ,
SNSMFRCD DSECT ,
*
* STANDARD SMF RECORD HEADER *
SNSMFLEN DS H RECORD LENGTH
SNSMSSEG DS H SEGMENT DESCRIPTOR (ALWAYS 0)
SNSMSFSYS DS XL1 SYSTEM INDICATOR
SNSMFR# DS XL1 SMF RECORD NUMBER
SNSMFTME DS XL4 TIME IN 100THS OF A SECOND
SNSMSFUTE DS XL4 DATE IN PACK DECIMAL - 0CYYDDDF
SNSMSFID DS XL4 SYSTEM ID
DS 0F ALIGN TO WORD BOUNDARY
*
* COMMON SNAP SMF RECORD PREFIX *
SNSMFSY DS XL1 SUBTYPE
SNSMFBAD DS XL1 RECORD IS INCOMPLETE OR BAD
SNSMSG# DS H SEGMENT COUNT
DS 5H
SNSMFHDR_LEN EQU *-SNSMFRCD LENGTH OF RECORD HEADER
*
* COMMON SEGMENT PORTION (1ST 4 BYTES) *
SNSMFMCN DSECT ,
SCMSGLEN DS H SEGMENT LENGTH
SCMSGID# DS XL1 SEGMENT ID
DS XL1
*
* IDENTIFICATION SEGMENT *
SNSMFID DSECT ,
SIDNLEN DS H SEGMENT LENGTH
SIDSID DS XL1 SEGMENT ID
SNSMFID# EQU 1 . 1 = SEGMENT ID FOR IDENTIFICATION
DS XL1
SIDJOBNM DS CL8 JOBNAME FROM
SIDPROCS DS CL8 PROC STEP NAME JOB
SIDSTPNM DS CL8 STPTNAME TIOT
SIDPGMNDS CL8 PROGRAM NAME
SIDVERLV DS CL6 VVLLRR
SNSMFID_LEN EQU *-SNSMFID LENGTH OF SNSMFID
*
* REQUEST INFORMATION *
SNSMFREQ DSECT ,
SRQSGLEN DS H SEGMENT LENGTH
SRQSGID DS XL1 SEGMENT ID
SMF Record Layout

SNSMFREQ# EQU 2 . 2 = SEGMENT ID FOR REQUEST
 DS XL1
*
SRQTYPE DS XL2 REQUEST TYPE
SRQTYPE#DSN EQU 1 . COPY DATASET
SRQTYPE#VOL EQU 2 . COPY VOLUME
SRQTYPE#RST EQU 3 . RESET EXTENT TRACK
SRQTYPE#CLN EQU 4 . CLEANUP EXTENT TRACK
SRQTYPE#DBG EQU 5 . DEBUG DATASET
SRQTYPE#STD EQU 6 . STOP SNAP TO DATASET
SRQTYPE#STV EQU 7 . STOP SNAP TO VOLUME
SRQTYPE#RVD EQU 8 . RESTORE VIRTUAL DEVICE
SRQTYPE#ACT EQU 9 . ACTIVATE
SRQTYPE#QDS EQU 10 . QUERY DATASET
SRQTYPE#QSD EQU 11 . QUERY SAVEDEV
SRQTYPE#QVD EQU 12 . QUERY VDEV
SRQTYPE#CFG EQU 13 . CONFIG
SRQTYPE#QVL EQU 14 . QUERY VOLUME
SRQTYPE#SER EQU 15 . SERIAL
SRQTYPE#PAR EQU 16 . PARALLEL
SRQTYPE#CPL EQU 17 . CONFIGPOOL (SEE SRQSACTN)¹
SRQTYPE#QGR EQU 18 . QUERY GROUP
SRQTYPE#FGR EQU 19 . DEFINE GROUP
SRQTYPE#EGR EQU 20 . END GROUP
SRQTYPE#DRQ EQU 21 . DELETE GROUP
SRQTYPE#GRP EQU 22 . EXTERNAL GRP RQST (SEE SRQSACTN)
SRQTYPE#QGL EQU 23 . QUERY GLOBAL
SRQTYPE#CDS EQU 24 . COMPARE DATASET
SRQTYPE#CVL EQU 25 . COMPARE VOLUME
*
** IF SRQTYPE = SRQTYPE#CPL, THEN USE THE FOLLOWING VALUES
** IF SRQTYPE = SRQTYPE#GRP, THEN USE SRQTYPE IN THIS FIELD
SRQSACTN DS XL2 SUB-ACTION
SRQSACTN_ADD EQU 01 . ADD
SRQSACTN_CREATE EQU 02 . CREATE
SRQSACTN_DELETE EQU 03 . DELETE
SRQSACTN_DISABLE EQU 04 . DISABLE
SRQSACTN_DISPLAY EQU 05 . DISPLAY
SRQSACTN_ENABLE EQU 06 . ENABLE
SRQSACTN_REMOVE EQU 07 . REMOVE
SRQSACTN_DRAIN EQU 08 . DRAIN
SRQSACTN_UNDRAIN EQU 09 . UNDRAIN
*
SRQSTMT# DS A STATEMENT NUMBER
SRQC DS H HIGHEST RETURN CODE
SRQE DS H . ASSOCIATED REASON CODE
SRQTIME DS D COPY START TIME (TIME BIN)
SRQETIME DS D COPY END TIME (TIME BIN)
SRQPSTIM DS D PARSE START TIME (TIME STCK)
SRQPETIM DS D PARSE END TIME (TIME STCK)
SRQESTIM DS D EXECUTION START TIME (TIME STCK)
SRQSETIM DS D EXECUTION SUSPEND TIME (TIME STCK)
SRQRESTIM DS D EXECUTION RESUME TIME (TIME STCK)
SRQETIM DS D EXECUTION END TIME (TIME STCK)
SNSMFREQ_LEN EQU *-SNSMFREQ LENGTH OF SNSMFREQ
*
* OPTIONS INFORMATION
*
SNSMFOPT DSECT ,
SOPSGLEN DS H SEGMENT LENGTH
SOPSGID DS XL1 SEGMENT ID
SNSMFOPT# EQU 3 . 3 = SEGMENT ID FOR OPTIONS
 DS XL1

¹ The GPM command CONFIGPOOL is no longer supported.
*
SOPFLG01 DS XL1 FLAG BYTE 1
SOP_SRC_WILD EQU B'10000000' - SOURCE IS WILD
SOP_TGT_WILD EQU B'01000000' - TARGET IS WILD
SOP_EXCLUDE_HERE EQU B'00100000' - EXCLUDE IS PRESENT
SOP_RELATE_HERE EQU B'00010000' - RELATE IS PRESENT
SOP_RELATE_MADE EQU B'00001000' - RELATE WAS DERIVED FROM SOURCE
SOP_SPHERE EQU B'00000100' - SPHERE (YES)
SOP_EXECUTED EQU B'00000010' - REQUEST WAS EXECUTED
SOP_ERRDISP_KEEP EQU B'00000001' - ERRDISP(KEEP)
SOPFLG02 DS XL1 FLAG BYTE 2
SOP_PERMINDIRECT EQU B'10000000' - PERMANENTINDIRECT(Y) REQUESTED
SOP_NO_BACKGRND EQU B'01000000' - BACKGROUNDCOPY(N) REQUESTED
SOP_UCODE_FULL EQU B'00100000' - SNAP "FULL" VOLUME REQUESTED
SOP_SYMM_CYL EQU B'00010000' - SYMMETRIX_CYLINDER(Y) REQUESTED
SOP_VIRTUAL EQU B'00001000' - VIRTUAL_DEVICE(Y) REQUESTED
SOP_SUBSPACE EQU B'00000100' - VDEV(UNIT()/VOL()) REQUESTED
SOP_MIG_IGNORE EQU B'00000010' - MIGRATE(RECALL-IGNORE) SPECIFIED
SOP_R1R2SYNC EQU B'00000001' - WAITFORCOMPLETION(R1R2SYNC) SPECIFIED
SOPFLG03 DS XL1 FLAG BYTE 3
SOP_NEED_REFVTOC EQU B'10000000' - REFVTOC NEEDED
SOP_CSMS_DATA EQU B'01000000' - COPYSMS(DATACLAS) SPECIFIED
SOP_CSMS_MGMT EQU B'00100000' - COPYSMS(MGMTCLAS) SPECIFIED
SOP_CSMS_STG EQU B'00010000' - COPYSMS(STGCLASS) SPECIFIED
SOP_MIG_PURGE EQU B'00001000' - MIGRATE(PURGE) SPECIFIED
SOP_VERIFY EQU B'00000100' - VERIFY(YES) SPECIFIED
SOP_EXAMINE EQU B'00000010' - EXAMINE(YES) SPECIFIED
SOPFLG04 DS XL1 FLAG BYTE 4
SOP_CONSIST EQU B'10000000' - CONSISTENT(YES)
SOP_VIBBLD EQU B'01000000' - BUILD_VTOCIX(YES)
SOP_VALIDATE EQU B'00100000' - VALIDATE(YES)
SOP_VSAMFAIL EQU B'00010000' - TOLERATE VSAMENQ FAILURE (YES)
SOP_CHK_BCVHOLD EQU B'00001000' - CHECKBCVHOLDSTATUS(YES)
SOP_SCRATCH EQU B'00000100' - SCRATCH(YES)
SOP_VCLOSE EQU B'00000010' - VCLOSE(YES)
SOP_DFDSS_ADMIN EQU B'00000001' - DFDSS_ADMIN(YES)
SOPFLG05 DS XL1 FLAG BYTE 5 (DDNAME SETTINGS)
SOP_SRC_DSNAME EQU B'10000000' - SOURCE DSNAME PRESENT
SOP_TGT_DSNAME EQU B'01000000' - TARGET DSNAME PRESENT
SOP_SRC_DDNAME EQU B'00100000' - SOURCE DDNAME PRESENT
SOP_TGT_DDNAME EQU B'00010000' - TARGET DDNAME PRESENT
SOP_SRC_DD_JCL EQU B'00001000' - SOURCE DDNAME ORIGINALLY PRESENT
SOP_TGT_DD_JCL EQU B'00000100' - TARGET DDNAME ORIGINALLY PRESENT
SOPFLG06 DS XL1 FLAG BYTE 6
SOP_REPLACE EQU B'10000000' - REPLACE(YES)
SOP_REUSE EQU B'01000000' - REUSE(YES)
SOP_COPYVOLID EQU B'00100000' - COPYVOLID(YES)
SOP_FORCE EQU B'00010000' - FORCE(YES)
SOP_ENQFAIL EQU B'00001000' - TOLERATE ENQ FAILURE (YES)
SOP_ALLOFAIL EQU B'00000100' - TOLERATE ALLLOCATION FAILURE(YES)
SOP_COPYFAIL EQU B'00000010' - TOLERATE COPY FAILURE (YES)
SOP_TRUNC EQU B'00000001' - TOLERATE TRUNCATION (YES)
SOPFLG07 DS XL1 FLAG BYTE 7
SOP_CATALOG EQU B'10000000' - CATALOG(YES)
SOP_ENQWAIT EQU B'01000000' - ENQWAIT(YES)
SOP_REFVTOC EQU B'00100000' - REFVTOC(YES)
SOP_CONDVOL_ALL EQU B'00010000' - CONDITIONVOLUME(ALL) OFF=LABEL
SOP_BCONLY EQU B'00001000' - BCONLY(YES)
SOP_CHKONLIN EQU B'00000100' - CHECKONLINEPATHSTATUS(YES)
SOP_DFDSS_CC EQU B'00000010' - DFDSS_CC(YES)
SOP_RECALCFREE EQU B'00000001' - RECALCULATE_FREESPACE(YES)
SOPFLG08 DS XL1 FLAG BYTE 8
SOP_SRCDSORG_VS EQU B'10000000' - INDSORG (VS) PRESENT
SOP_TGTSORG_PS EQU B'01000000' - OUTDSORG (PS) PRESENT
SMF record layout

SOP_SPACECYL EQU B'00100000' - NONVSAMSPACE (CYL)
SOP_SPACETRK EQU B'00010000' - NONVSAMSPACE (TRK)
SOP_DATACYL EQU B'00001000' - DATASPACE (CYL)
SOP_DATATRK EQU B'00000100' - DATASPACE (TRK)
SOP_INDEXCYL EQU B'00000010' - INDEXSPACE (CYL)
SOP_INDEXTRK EQU B'00000001' - INDEXSPACE (TRK)
SOP_NOTIFY_DATASET EQU B'10000000' - NOTIFY(DATASET)
SOP_NOTIFY_JOB EQU B'01000000' - NOTIFY(JOB)
SOP_NOTIFY_SNAP EQU B'00100000' - NOTIFY(SNAP)
SOP_NOTIFY_STEP EQU B'00010000' - NOTIFY(STEP)
SOP_VARYOFF EQU B'00001000' - VARY_OFFLINE(NEVER)
SOP_FREESPC EQU B'00000100' - FREESPACE(YES)
SOP_ORDER_NAME EQU B'00000010' - ORDER(NAME)
SOP_ORDER_SIZE EQU B'00000001' - ORDER(SIZE)
SOP_EXTALLOC_YES EQU B'10000000' - EXTENT_ALLOCATION(YES)
SOP_EXTALLOC_NO EQU B'01000000' - EXTENT_ALLOCATION(NO)
SOP_EXTXPAND EQU B'00100000' - EXTENT_EXPAND(YES)
SOP_ACTIVATE EQU B'00010000' - WAIT FOR ACTIVATE
SOP_ACTIVATE1 EQU B'00001000' - ACTIVATE PHASE 1 DONE
SOP_ACTIVATE2 EQU B'00000100' - ACTIVATE PHASE 2 DONE
SOP_DIFF_VOL EQU B'00000010' - DIFFERENTIAL(YES)
SOP_DONE_EMCSNAP EQU B'10000000' - EMCSNAP USED FOR COPY
SOP_DONE_EMCCOPY EQU B'01000000' - EMCCOPY USED FOR COPY
SOP_DONE_IBMSNAP EQU B'00100000' - IBMSNAP USED FOR COPY
SOP_DONE_IBMFLISH EQU B'00010000' - IBM FLASH COPY USED FOR COPY
SOP_DONE_UTILITY EQU B'00001000' - UTILITY PROGRAM USED FOR COPY
SOP_DONE_UTILITY EQU B'00000100' - EMCCOPY USED FOR COPY
SOP_COPY_ERROR EQU B'10000000' - COPY_TRACKS HAD AN ERROR
SOP_CHKONL_NEVER EQU B'00100000' - CHECKONLINEPATHSTATUS(NEVER)
SOP_MSG_DISPLAY EQU B'00010000' - MESSAGE(DISPLAY)
SOP_MSG_PROMPT EQU B'00001000' - MESSAGE(PROMPT)
SOP_QUERY_CNTL EQU B'00000100' - CONTROLLER(#) SUPPLIED FOR QUERY
SOP_CONDVOL_DUMP EQU B'00000010' - CONDITIONVOLUME(DUMP)
SOP_AUTO_EXPAND EQU B'00000001' - REUSE_AUTO_EXPAND(YES)
SOP_RELEASE_YES EQU B'00000001' - RELEASE(YES)
SOP_RELEASE_NO EQU B'00000000' - RELEASE(NO)
SOP_VARYON EQU B'10000000' - VARY_ONLINE(YES)
SOP_VARYON_AUTO EQU B'01000000' - VARY_ONLINE(AUTO)
SOP_AUTODEAL EQU B'00100000' - AUTOMATIC_DEALLOC(YES)
SOP_AUTORLSE EQU B'00010000' - AUTOMATIC_RELEASE(YES)
SOP_R1FULLCOPY EQU B'00001000' - R1FULLCOPYONLY(YES)
SOP_MODE_COPY EQU B'00000100' - MODE(COPY) REQUESTED
SOP_MODE_NOCOPY EQU B'00000001' - MODE(NOCOPY) REQUESTED
SMF Record Layout

SOPFLG16 DS XL1 FLAG BYTE 16
SOP_VOL_LEVEL EQU B'10000000' - VOLUME LEVEL REQUEST
SOP_DSN_LEVEL EQU B'01000000' - DATASET LEVEL REQUEST
SOP_COLLAPSE_LEVEL EQU B'00100000' - CONTROLLER LEVEL REQUEST
SOP_COLLAPSE_NV EQU B'00010000' - COLLAPSE_DATASET_EXTENTS(NV)
SOP_COLLAPSE_VS EQU B'00001000' - COLLAPSE_DATASET_EXTENTS(VS)
SOP_PRECOPY EQU B'00000100' - PRECOPY
SOP_DUMPTRK EQU B'00000010' - DUMP_TRACK_CONTENTS
SOP(MemberState) EQU B'00000001' - MEMBERSTATE(ENABLE)

SOPFLG17 DS XL1 FLAG BYTE 17
SOP_SRC_SYMDV EQU B'10000000' - SOURCE SYMDV# PRESENT
SOP_TGT_SYMDV EQU B'01000000' - TARGET SYMDV# PRESENT
SOP_TERMSESS EQU B'00100000' - TERMINATE_SESSION
SOP_SESSLIST EQU B'00010000' - SESSION_LIST
SOP_RMT_DDNAME EQU B'00001000' - REMOTE DDNAME PRESENT
SOP_RMT_DD_JCL EQU B'00000100' - REMOTE DDNAME ORIGINAL
SOP_LCL_DDNAME EQU B'00000010' - LOCAL DDNAME PRESENT
SOP_LCL_DD_JCL EQU B'00000001' - LOCAL DDNAME ORIGINAL

SOPFLG18 DS XL1 FLAG BYTE 18
SOP_DEV_NM EQU B'10000000' - DEV(N:M) SPECIFIED
SOP_SRDFA_WARN EQU B'01000000' - SRDFA_R2_SYNC(WARNING)
SOP_SRDFA_DATAMOVR EQU B'00100000' - SRDFA_R2_SYNC(DATAMOVR)
SOP_FORCE_FLASHCOPY EQU B'00010000' - FLASH_SNAP(FLASH)
SOP_SRCEXTS EQU B'00001000' - SOURCE_VOLUME_EXTENTS_ONLY
SOP_EXTXPVOL_NEW EQU B'00000100' - EXTXPAND(NEWVOL)
SOP_EXTXPVOLSAME EQU B'00000010' - EXTXPAND(SAMEVOL)

SOPFLG19 DS XL1 FLAG BYTE 19
SOP_OPT_CKD EQU B'10000000' - QUERY VOLUME CKD OPTION
SOP_OPT_FBA EQU B'01000000' - QUERY VOLUME FBA OPTION
SOP_OPT_NOTREADY EQU B'00100000' - QUERY VOLUME NOTREADY OPT
SOP_OPT_READY EQU B'00010000' - QUERY VOLUME READY OPTION
SOP_OPT_SAVEDDEV EQU B'00001000' - QUERY VOLUME SAVEDDEV OPTION
SOP_OPT_VDEV EQU B'00000100' - QUERY VOLUME VDEV OPTION
SOP_SESSDETL EQU B'00000010' - SESSION_LIST W/DETAIL
SOP_OPT_SIZE EQU B'00000001' - QUERY VOLUME SIZE OPTION

SOPFLG20 DS XL1 FLAG BYTE 20
SOP_OPT_RD_ALL EQU B'10000000' - QUERY VOLUME RAID(ALL)
SOP_OPT_RD_NONE EQU B'01000000' - QUERY VOLUME RAID(NONE)
SOP_OPT_RD_S EQU B'00100000' - QUERY VOLUME RAID(RAIDS)
SOP_OPT_RD_1 EQU B'00010000' - QUERY VOLUME RAID(RAID1)
SOP_OPT_RD_5 EQU B'00001000' - QUERY VOLUME RAID(RAID5)
SOP_OPT_RD_10 EQU B'00000100' - QUERY VOLUME RAID(RAID10)
SOP_OPT_RD_6 EQU B'00000010' - QUERY VOLUME RAID(RAID6)

SOPFLG21 DS XL1 FLAG BYTE 21
SOP_SRDFAR1_ALLOW EQU B'10000000' - ALLOW SRDFA-R1 FOR TARGET
SOP_SRDFAR1_DMOVR EQU B'01000000' - ALLOW SRDFA-R1 W/DATAMOVER
SOP_SRDFSR1_ALLOW EQU B'00100000' - ALLOW SRDFS-R1 FOR TARGET
SOP_SRDFSR1_DMOVR EQU B'00010000' - ALLOW SRDFS-R1 W/DATAMOVER
SOP_SRDFSR1_PHYSC EQU B'00001000' - ALLOW SRDFS-R1 W/DATAMOVER
SOP_SRDFA_WARN_R1 EQU B'00000100' - WARNING MESSAGE ISSUED
SOP_SRDFS_WARN_R1 EQU B'00000010' - WARNING MESSAGE ISSUED

SOPFLG22 DS XL1 FLAG BYTE 22
SOP_SEL FIRST EQU B'10000000' - SELECTMULTI(FIRST)
SOP_SEL_ANY EQU B'01000000' - SELECTMULTI(ANY)
SOP_SEL ALL EQU B'00100000' - SELECTMULTI(ALL)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOP_LISTSTMT</td>
<td>EQU B'00010000' - LIST(STATEMENTS)</td>
</tr>
<tr>
<td>SOP_LISTHIST</td>
<td>EQU B'00001000' - LIST(HISTORY)</td>
</tr>
<tr>
<td>SOP_GROUP</td>
<td>EQU B'00000100' - PART OF GROUP INVOCATION</td>
</tr>
<tr>
<td>SOP_POSTSNAP</td>
<td>EQU B'00000010' - POSTSNAP(YES)</td>
</tr>
<tr>
<td>SOP_PRESNAP</td>
<td>EQU B'00000001' - PRESNAP(YES)</td>
</tr>
<tr>
<td>SOPFLG24 DS XL1</td>
<td>FLAG BYTE 24</td>
</tr>
<tr>
<td>SOP_EXTXPVOL_ADDNEW</td>
<td>EQU B'10000000' - EXTXPAND(ADDNEW)</td>
</tr>
<tr>
<td>SOP_IGNORE_RDF</td>
<td>EQU B'01000000' - IGNORE_RDF(YES)</td>
</tr>
<tr>
<td>SOP_EMONLY</td>
<td>EQU B'00100000' - EMC_ONLY(YES)</td>
</tr>
<tr>
<td>SOP_LDMF_DIVERT</td>
<td>EQU B'00010000' - LDMF_DIVERT(YES)</td>
</tr>
<tr>
<td>SOP_SRDFAR1_INFO</td>
<td>EQU B'00001000' - SRDFA-R1 SEVERITY=I (RC=0)</td>
</tr>
<tr>
<td>SOP_SRDFSR1_INFO</td>
<td>EQU B'00000100' - SRDFA-R1 SEVERITY=I (RC=0)</td>
</tr>
<tr>
<td>SOP_IGNORE_SYMVD#</td>
<td>EQU B'00000010' - IGNORE SYMDV#</td>
</tr>
<tr>
<td>SOP_CCUU_NM</td>
<td>EQU B'00000001' - CCUU(N:M) SPECIFIED</td>
</tr>
<tr>
<td>SOPFLG25 DS XL1</td>
<td>FLAG BYTE 25</td>
</tr>
<tr>
<td>SOP_USESVL4LG</td>
<td>EQU B'10000000' - USE_SVL_FOR_LOGINDYNAM</td>
</tr>
<tr>
<td>SOP_USESVL4SV</td>
<td>EQU B'01000000' - USE_SVL_FOR_LOGINDYNAM</td>
</tr>
<tr>
<td>SOP_EXTALLOC_CONSALL</td>
<td>EQU B'00100000' - EXTALLOC(CONSALL)</td>
</tr>
<tr>
<td>SOP_EXTALLOC_CONSVOL</td>
<td>EQU B'00010000' - EXTALLOC(CONSVOL)</td>
</tr>
<tr>
<td>SOP_EXTALLOC_TRKALIGN</td>
<td>EQU B'00001000' - ALIGN_TRACKS</td>
</tr>
<tr>
<td>SOP_VDEVWAIT</td>
<td>EQU B'00000100' - VDEVWAIT(YES)</td>
</tr>
<tr>
<td>SOP_SESSDIFF</td>
<td>EQU B'00000010' - SESSION_LIST W/DIFFERENTIAL</td>
</tr>
<tr>
<td>SOP_PROCGATE</td>
<td>EQU B'00000001' - PROCESSING GATEKEEPER</td>
</tr>
<tr>
<td>SOPFLG26 DS XL1</td>
<td>FLAG BYTE 26</td>
</tr>
<tr>
<td>SOP_GRPAPIVER</td>
<td>EQU B'10000000' - GROUP_EMCQCAPI_VERIFY</td>
</tr>
<tr>
<td>SOP_GRPDEVRDY</td>
<td>EQU B'01000000' - GROUP_DEVICE_READY_STATE</td>
</tr>
<tr>
<td>SOP_UNIT_RANGE</td>
<td>EQU B'00100000' - 1ST OF UNIT RANGE</td>
</tr>
<tr>
<td>SOP_UNIT_NRANGE</td>
<td>EQU B'00010000' - NOT 1ST OF UNIT RANGE</td>
</tr>
<tr>
<td>SOP_SYMDV_RANGE</td>
<td>EQU B'00001000' - 1ST OF SYMDV RANGE</td>
</tr>
<tr>
<td>SOP_SYMDV_NRANGE</td>
<td>EQU B'00000100' - NOT 1ST OF SYMDV RANGE</td>
</tr>
<tr>
<td>SOP_TVOL_PRESENT</td>
<td>EQU B'00000010' - SOURCE VOLUME SPECIFIED</td>
</tr>
<tr>
<td>SOP_TVOL_PRESENT</td>
<td>EQU B'00000001' - TARGET VOLUME SPECIFIED</td>
</tr>
<tr>
<td>SOPFLG27 DS XL1</td>
<td>FLAG BYTE 27</td>
</tr>
<tr>
<td>SOP_MODE_NOCOPYRD</td>
<td>EQU B'10000000' - MODE(NOCOPYRD) REQUESTED</td>
</tr>
<tr>
<td>SOP_NO_BACKGGRNDRD</td>
<td>EQU B'01000000' - BACKGROUNDCOPY(NOCOPYRD)</td>
</tr>
<tr>
<td>SOP_VDEVLDELock</td>
<td>EQU B'00100000' - VDEV DEL LOCK ACQUIRED</td>
</tr>
<tr>
<td>SOP_PREPARE</td>
<td>EQU B'00010000' - PREPARE FOR SNAP</td>
</tr>
<tr>
<td>SOP_SKIP</td>
<td>EQU B'00001000' - SKIP EXECUTION OF THIS REQ</td>
</tr>
<tr>
<td>SOP_ERRCHK_REDUCED</td>
<td>EQU B'00000100' - REDUCED ERROR CHECKING</td>
</tr>
<tr>
<td>SOP_ERRREC_ENHANCED</td>
<td>EQU B'00000010' - ENHANCED ERROR RECOVERY</td>
</tr>
<tr>
<td>SOP_CTRLNAME</td>
<td>EQU B'00000001' - CONTROLLER NAME SUPPLIED</td>
</tr>
<tr>
<td>SOPFLG28 DS XL1</td>
<td>FLAG BYTE 28</td>
</tr>
<tr>
<td>SOP_CG_IGNORE</td>
<td>EQU B'10000000' - NO CONGROUP CHECKING</td>
</tr>
<tr>
<td>SOP_CG_SAME</td>
<td>EQU B'01000000' - CONGROUP SRC/TGT SAME</td>
</tr>
<tr>
<td>SOP_CG_ANY</td>
<td>EQU B'00100000' - CONGROUP SRC/TGT ANY</td>
</tr>
<tr>
<td>SOP_CG_TARGET</td>
<td>EQU B'00010000' - CONGROUP TGT REQUIRED</td>
</tr>
<tr>
<td>SOP_CG_WARNING</td>
<td>EQU B'00001000' - CONGROUP SRC/TGT WARNING</td>
</tr>
<tr>
<td>SOP_CG_NONE</td>
<td>EQU B'00000100' - CONGROUP NONE REQUIRED</td>
</tr>
<tr>
<td>SOP_PRECOPY_WAIT</td>
<td>EQU B'00000010' - WAITFORPRECOPYPASS1</td>
</tr>
<tr>
<td>SOP_FORCECMP</td>
<td>EQU B'00000001' - FORCE_COMPLETION</td>
</tr>
<tr>
<td>SOPFLG29 DS XL1</td>
<td>FLAG BYTE 29</td>
</tr>
<tr>
<td>SOP_LOCAL</td>
<td>EQU B'10000000' - LOCAL KEYWORD</td>
</tr>
<tr>
<td>SOP_REMOTE</td>
<td>EQU B'01000000' - REMOTE KEYWORD</td>
</tr>
<tr>
<td>SOP_LDMF_CLUSTER</td>
<td>EQU B'00100000' - LDMF_COMPONENT(CLUSTER)</td>
</tr>
<tr>
<td>SOP_LDMF_DATA</td>
<td>EQU B'00010000' - LDMF_COMPONENT(DATA)</td>
</tr>
<tr>
<td>SOP_LDMF_INDEX</td>
<td>EQU B'00001000' - LDMF_COMPONENT(INDEX)</td>
</tr>
<tr>
<td>SOP_EXTALLOC_MRGEXIST</td>
<td>EQU B'00000100' - EXTALLOC(MRGEXIST)</td>
</tr>
<tr>
<td>SOP_EXTALLOC_XTNTBNDRY</td>
<td>EQU B'00000010' - EXTALLOC(XTNTBNDRY)</td>
</tr>
<tr>
<td>SOP_VERIFY_NEVER</td>
<td>EQU B'00000001' - VERIFY(NEVER)</td>
</tr>
<tr>
<td>SOPFLG30 DS XL1</td>
<td>FLAG BYTE 30</td>
</tr>
<tr>
<td>SOP_SRC_SYMVD#_OK</td>
<td>EQU B'10000000' - SOURCE SYMDV# SECURITY OK</td>
</tr>
<tr>
<td>SOP_TGT_SYMVD#_OK</td>
<td>EQU B'01000000' - TARGET SYMDV# SECURITY OK</td>
</tr>
<tr>
<td>SOP_INVALIDATE_PDESE</td>
<td>EQU B'00100000' - INVALIDATE_PDESE_BUFFER</td>
</tr>
<tr>
<td>SOP_REMOVE_REMOTE</td>
<td>EQU B'00010000' - REMOVE_REMOTE_EXTENT_SESSIONS</td>
</tr>
<tr>
<td>SOP_OPT_TDEV</td>
<td>EQU B'00001000' - QUERY VOLUME TDEV OPTION</td>
</tr>
<tr>
<td>SOP_EXAMINE_INDEX</td>
<td>EQU B'00000100' - EXAMINE(INDEXTEST)</td>
</tr>
</tbody>
</table>
SMF Record Layout

SOP_EXAMINE_DATA EQU B'00000010' - EXAMINE(DATATEST)
SOP_EXAMINE_NEVER EQU B'00000001' - EXAMINE(NEVER)
SOPFLG31 DS XL1 FLAG BYTE 31
SOP_MULTIVDEV EQU B'10000000' - MULTI_VIRTUAL(YES)
SOP_EATTR_NO EQU B'01000000' - EATTR(NO)
SOP_EATTR_OPT EQU B'00100000' - EATTR(OPT)
SOP_VALVOLID EQU B'00010000' - VALIDATE(VOLID)
SOP_VALBWD EQU B'00001000' - VALIDATE(BACKWARD)
SOP_IOMODE_TRK EQU B'00000100' - VALIDATE(IOMODE(TRACK))
SOP_IOMODE_BLK EQU B'00000010' - VALIDATE(IOMODE(BLOCK))
SOP_IOMODE_RDM EQU B'00000001' - VALIDATE(IOMODE(RANDOM))
SOPFLG32 DS XL1 FLAG BYTE 32
SOP_VALUNUSE EQU B'10000000' - VALIDATE(UNUSED)
SOP_POOLUSE EQU B'01000000' - CHECK_POOL_USAGE(YES)
SOP_OPT_THINPOOL EQU B'00100000' - QUERY_VOLUME_THINPOOL
SOP_XXX_ESNP231W EQU B'00010000' - MAKE ESNP231E INTO ESNP231W
SOP_CMPRSV EQU B'00001000' - RESERVE(YES)
SOP_SRCVDEV EQU B'00000100' - VDEV(UNIT()/VOL()) REQUESTED
SOP_ALLOWFC_YES EQU B'00000010' - ALLOW_FLASHCOPY(YES)
SOP_ALLOWFC_NO EQU B'00000001' - ALLOW_FLASHCOPY(NO)
SOPFLG33 DS XL1 FLAG BYTE 33
SOP_PCLONE EQU B'10000000' - PARALLEL_CLONE(YES)
SOP_NOUCODE EQU B'01000000' - DATAMOVER(NOUCODE)
SOP_PCLONE_REQ EQU B'00100000' - PARALLEL_CLONE(REQUIRED)
SOP_PCLONE_PREF EQU B'00010000' - PARALLEL_CLONE(PREFERRED)
SOP_INACTIVE_OFF EQU B'00001000' - ACTIVATE?
SOP_RPTDIFF EQU B'00000100' - REPORT(DIFFERENTIAL(YES))
SOPFLG34 DS XL1 FLAG BYTE 34
SOP_PCLONE EQU B'10000000' - PARALLEL_CLONE(YES)
SOP_MODELS_WARN EQU B'01000000' - EMSN220(WARNING)
SOP_TOL_COMPACT EQU B'00100000' - TOLERATEDDATACLASSCOMPACTION...
SOP_EXPLAIN_VOL EQU B'00010000' - EXPLAIN(VOLUMEOPTION)
SOP_CLEAN_R2 EQU B'00001000' - AUTOCLEANR2
SOP_CRC_COMPARE EQU B'00000100' - CRC_COMPARE(ALWAYS)
SOP_CRC_COMPARE EQU B'00000010' - CRC_COMPARE(NEVER)
SOPFLG35 DS XL1 FLAG BYTE 35
SOPFLG36 DS XL1 FLAG BYTE 36
SOPFLG37 DS XL1 FLAG BYTE 37
SOPFLG38 DS XL1 FLAG BYTE 38
SOPFLG39 DS XL1 FLAG BYTE 39
SOPFLG40 DS XL1 FLAG BYTE 40
SOPFLG41 DS XL1 FLAG BYTE 41
SOPFLG42 DS XL1 FLAG BYTE 42
SOPFLG43 DS XL1 FLAG BYTE 43
SOPFLG44 DS XL1 FLAG BYTE 44
SOPFLG45 DS XL1 FLAG BYTE 45
SOPFLG46 DS XL1 FLAG BYTE 46
SOPFLG47 DS XL1 FLAG BYTE 47
SOPFLG48 DS XL1 FLAG BYTE 48
SOPDEBUG DS XL1 DEBUG FLAG
SOP_DEBUG EQU B'10000000' - DEBUG(ON)
SOP_TRACE EQU B'01000000' - TRACED(ON)
SOP_ERROR EQU B'00100000' - DEBUG(ERROR)
SOP_EXTRA EQU B'00010000' - DEBUG(EXTRA)
SOP_QCAPI EQU B'00001000' - DEBUG(EMCQCAPI)
SOP_ALLOC EQU B'00000100' - DEBUG(EMCALLOC)
SOP_DBGSKIP EQU B'00000010' - DEBUG(SKIP)
SOPMOVER DS CL8 DATA MOVER NAME
SOPMOVYTE DS YL2 DATA MOVER KEYWORD
SOPMOVYTE_NO EQU 1 - NO DATA MOVER SPECIFIED
SOPMOVYTE_EMCCOPY EQU 2 - EMCCOPY SPECIFIED
SOPMOVYTE_COPYTRK EQU 3 - COPYTRK SPECIFIED
SOPMOVYTE_COPYCYL EQU 4 - COPYCYL SPECIFIED
SMF Record Layout

1. The GPM command CONFIGPOOL is no longer supported.
SMF Record Layout

* EXWAATYP_ALIAS EQU 'X' ALIAS NAME
SSDSTRP DS XL1 SOURCE STRIPE COUNT
SSDDS G DS XL2 DSORG
SSDLRLC DS XL2 LRECL
SSDBLKLZ DS XL2 BLOCKSIZE
SSDRFM DS XL1 RECFM
SSD CG DS CL8 SOURCE CONGROUP NAMES
SSD CG2 DS CL8 . . .
SNSMFSRC_LEN EQU *-SNSMFSRC LENGTH OF SNSMFSRC

* TARGET DATASET INFORMATION *
SNSMFTGT DSECT ,
STDSGLLEN DS H SEGMENT LENGTH
STDSGID DS XL1 SEGMENT ID
SNSMFTD# EQU 5 . 5 = SEGMENT ID FOR TARGET DATASET
STDDSNAM DS CL44 TARGET DATASET NAME
STDDDNAM DS CL8 TARGET DDNAME
STDCATNM DS CL44 TARGET CATALOG NAME
STDDATCL DS CL8 NEW DATA CLASS (FROM ACS ROUTINES)
STDMGTCL DS CL8 NEW MGMT CLASS (FROM ACS ROUTINES)
STDSSTGCL DS CL8 NEW STG CLASS (FROM ACS ROUTINES)
STDTRK# DS F NUMBER OF TRACKS IN TARGET FILE
STDXTN# DS Y TARGET NUMBER OF EXTENTS
STDDSTRP DS XL1 TARGET STRIPE COUNT
STDDS G DS XL2 DSORG
STDLRLC DS XL2 LRECL
STDBLKLZ DS XL2 BLOCKSIZE
STDRFM DS XL1 RECFM
STD_CG DS CL8 TARGET CONGROUP NAMES
STD_CG2 DS CL8 . . .
SNSMFTGT_LEN EQU *-SNSMFTGT LENGTH OF SNSMFTGT

* GATEKEEPER INFORMATION *
SNSMGTK DSECT ,
SGKSGLLEN DS H SEGMENT LENGTH
SGKSgid DS XL1 SEGMENT ID
SNSMFGK# EQU 6 . 6 = SEGMENT ID FOR GATEKEEPER
SNSMGTK# DS XL1
SGKVOL DS CL6 SPECIFIED GATEKEEPER VOLUME
SGKUNIT DS XL2 SPECIFIED GATEKEEPER UNIT ADDRESS
SGKDDN DS CL8 SPECIFIED GATEKEEPER DDNAME
SGMMHOP DS CL8 SPECIFIED GATEKEEPER MULTI-HOP LIST X
. (ALL X'FF' IF LOCAL GATEKEEPER)
SGKAVOL DS CL6 ACTUAL GATEKEEPER VOLUME
SGKAUNIT DS XL2 ACTUAL GATEKEEPER UNIT ADDRESS
SNSMGTK_LEN EQU *-SNSMGTK LENGTH OF SNSMGTK

* SOURCE EXTENT LIST *
SNSMFSXL DSECT ,
SSXSGLLEN DS H SEGMENT LENGTH
SSXSgid DS XL1 SEGMENT ID
SNSMFSX# EQU 7 . 7 = SEGMENT ID FOR SOURCE EXTENTS
SSXSXTN# DS XL1 NUMBER OF TRACKS IN EXTENT
SSXUCB@ DS AL4 UCB ADDRESS
SSXVOL DS CL6 VOLSER FOR THIS EXTENT
SSXCCUU DS XL2 MVS CCUU
SSXECCHH DS XL4 BEGINNING CCHH OF EXTENT
SSXECCHH DS XL4 ENDING CCHH OF EXTENT
SSXXTN# DS XL2 ENTENT NUMBER (RELATIVE TO 1)
SMF Record Layout

SSXSTRK# DS FL4 STARTING TRACK NUMBER (REL. TO 0)
SSXVOL# DS XL1 VOLUME NUMBER (RELATIVE TO 1) X
. OR STRIPE NUMBER
SSXSER# DS CL12 SYMMETRIX SERIAL NUMBER (ALL 12)
SSXDEV# DS XL4 PHYSICAL DEVICE NUMBER
SSXMCODE DS XL2 MICROCODE LEVEL - 5065, 5066...
SNSMFSXL_LEN EQU *-SNSMFSXL LENGTH OF SNSMFSXL

* TARGET EXTENT LIST *

SNSMFTXL DSECT ,
STXSGLEN DS H SEGMENT LENGTH
STXSgid DS XL1 SEGMENT ID
SNSMFTXL# EQU 8 . 8 = SEGMENT ID FOR TARGET EXTENTS
STXSTRK# DS FL4 NUMBER OF TRACKS IN EXTENT
STXUCB@ DS AL4 UCB ADDRESS
STXVOL DS CL6 VOLSER FOR THIS EXTENT
STXCCUU DS XL2 MVS CCUU
STXBCCHH DS XL4 BEGINNING CCHH OF EXTENT
STXECCHH DS XL4 ENDING CCHH OF EXTENT
STXXTNT# DS XL2 ENTENT NUMBER (RELATIVE TO 1)
STXSTRK# DS FL4 STARTING TRACK NUMBER (REL. TO 0)
STXVOL# DS XL1 VOLUME NUMBER (RELATIVE TO 1) X
. OR STRIPE NUMBER
STXSER# DS CL12 SYMMETRIX SERIAL NUMBER (ALL 12)
STXDEV# DS XL4 PHYSICAL DEVICE NUMBER
STXMCODE DS XL2 MICROCODE LEVEL - 5065, 5066...
SNSMFTXL_LEN EQU *-SNSMFTXL LENGTH OF SNSMFTXL

* COPY EXTENT LIST *

SNSMFCXL DSECT ,
SCXSgLEN DS H SEGMENT LENGTH
SCXSGID DS XL1 SEGMENT ID
SNSMFCXL# EQU 9 . 9 = SEGMENT ID FOR COPY EXTENTS
SCXSUCB@ DS AL4 SOURCE UCB ADDRESS
SCXCCUUU DS XL2 SOURCE UCB CCUU
SCXSSYMD DS XL4 SOURCE INTERNAL DEVICE NUMBER
SCXTUCB@ DS AL4 TARGET UCB ADDRESS
SCXTCCUUU DS XL2 SOURCE UCB CCUU
SCXTSSYMD DS XL4 TARGET INTERNAL DEVICE NUMBER
SCXCMHOP DS XL8 REMOTE MULTI-HOP LIST
SCXASSTR DS XL4 SOURCE CCCCCCCCH (ASCENDING)
SCXTASSTR DS XL4 TARGET CCCCCCCCH (ASCENDING)
SCXSTR DS XL4 SOURCE CCHH (IBM FORMAT)
SCXTSTR DS XL4 TARGET CCHH (IBM FORMAT)
SCX#TRK DS XL4 NUMBER OF TRACKS TO COPY
SCXCPYT# DS XL1 COPY TYPE NECESSARY
SCXCPYT#_SKIP EQU 0 . SKIP COPY
SCXCPYT#_MCODE EQU 10 . USE MICROCODE TO COPY
SCXCPYT#_EMFLASH EQU 20 . USE FLASH MICROCODE TO COPY
SCXCPYT#_EMCOPY EQU 30 . USE EMCOPY TO COPY
SCXCPYT#_IBMSNAP EQU 40 . USE ANTRQST-SNAPSHOT TO COPY
SCXCPYT#_IBMFLASH2 EQU 50 . USE ANTRQST-FLASHCOPY V2
SCXCPYT#_IBMFLASH EQU 60 . USE ANTRQST-FLASHCOPY TO COPY
SCXCPYT#_COPYCYL EQU 70 . USE COPYCYL TO COPY
SCXCPYT#_UTILITY EQU 80 . USE UTILITY TO COPY
SCXSXTN# DS XL2 SOURCE EXTENT NUMBER
SCXTXTN# DS XL2 TARGET EXTENT NUMBER
SNSMFCXL_LEN EQU *-SNSMFCXL LENGTH OF SNSMFCXL
SMF record sub-sections and TimeFinder actions

The following tables identify which sub-sections of the SMF record are present for each TimeFinder action. In determining segment length values, check for the values embedded in the record content.

Table 18 SMF Record sub-sections and TimeFinder actions

<table>
<thead>
<tr>
<th>TimeFinder Action</th>
<th>SMF Record Sub-sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEANUP</td>
<td>EXTENT TRACK ACTIVATE</td>
</tr>
<tr>
<td>QUERY VDEV</td>
<td>RESTORE VIRTUAL DEVICE</td>
</tr>
<tr>
<td>DESTROY EXTENT TRACK</td>
<td>QUERY DATASET</td>
</tr>
<tr>
<td>STOP SNAP TO DATASET</td>
<td>SNAP DATASET</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Action</th>
<th>SCMSGIDN=1</th>
<th>SCMSGIDN=2</th>
<th>SCMSGIDN=3</th>
<th>SCMSGIDN=4</th>
<th>SCMSGIDN=5</th>
<th>SCMSGIDN=6</th>
<th>SCMSGIDN=7</th>
<th>SCMSGIDN=8</th>
<th>SCMSGIDN=9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEANUP</td>
<td>SCMSGLEN=42</td>
<td>SCMSGLEN=42</td>
<td>SCMSGLEN=42</td>
<td>SCMSGLEN=42</td>
<td>SCMSGLEN=42</td>
<td>SCMSGLEN=42</td>
<td>SCMSGLEN=42</td>
<td>SCMSGLEN=42</td>
<td>SCMSGLEN=42</td>
</tr>
<tr>
<td>EXTENT TRACK ACTIVATE</td>
<td>SCMSGIDN=1</td>
<td>SCMSGIDN=1</td>
<td>SCMSGIDN=1</td>
<td>SCMSGIDN=1</td>
<td>SCMSGIDN=1</td>
<td>SCMSGIDN=1</td>
<td>SCMSGIDN=1</td>
<td>SCMSGIDN=1</td>
<td>SCMSGIDN=1</td>
</tr>
<tr>
<td>QUERY VDEV</td>
<td>SCMSGLEN=42</td>
<td>SCMSGLEN=42</td>
<td>SCMSGLEN=42</td>
<td>SCMSGLEN=42</td>
<td>SCMSGLEN=42</td>
<td>SCMSGLEN=42</td>
<td>SCMSGLEN=42</td>
<td>SCMSGLEN=42</td>
<td>SCMSGLEN=42</td>
</tr>
<tr>
<td>RESTORE VIRTUAL DEVICE</td>
<td>SCMSGIDN=2</td>
<td>SCMSGIDN=2</td>
<td>SCMSGIDN=2</td>
<td>SCMSGIDN=2</td>
<td>SCMSGIDN=2</td>
<td>SCMSGIDN=2</td>
<td>SCMSGIDN=2</td>
<td>SCMSGIDN=2</td>
<td>SCMSGIDN=2</td>
</tr>
<tr>
<td>DESTROY EXTENT TRACK</td>
<td>SCMSGIDN=3</td>
<td>SCMSGIDN=3</td>
<td>SCMSGIDN=3</td>
<td>SCMSGIDN=3</td>
<td>SCMSGIDN=3</td>
<td>SCMSGIDN=3</td>
<td>SCMSGIDN=3</td>
<td>SCMSGIDN=3</td>
<td>SCMSGIDN=3</td>
</tr>
<tr>
<td>QUERY DATASET</td>
<td>SCMSGLEN=40</td>
<td>SCMSGLEN=40</td>
<td>SCMSGLEN=40</td>
<td>SCMSGLEN=40</td>
<td>SCMSGLEN=40</td>
<td>SCMSGLEN=40</td>
<td>SCMSGLEN=40</td>
<td>SCMSGLEN=40</td>
<td>SCMSGLEN=40</td>
</tr>
<tr>
<td>SNAP DATASET</td>
<td>SCMSGIDN=6</td>
<td>SCMSGIDN=6</td>
<td>SCMSGIDN=6</td>
<td>SCMSGIDN=6</td>
<td>SCMSGIDN=6</td>
<td>SCMSGIDN=6</td>
<td>SCMSGIDN=6</td>
<td>SCMSGIDN=6</td>
<td>SCMSGIDN=6</td>
</tr>
<tr>
<td>STOP SNAP TO DATASET</td>
<td>SCMSGLEN=154</td>
<td>SCMSGLEN=154</td>
<td>SCMSGLEN=154</td>
<td>SCMSGLEN=154</td>
<td>SCMSGLEN=154</td>
<td>SCMSGLEN=154</td>
<td>SCMSGLEN=154</td>
<td>SCMSGLEN=154</td>
<td>SCMSGLEN=154</td>
</tr>
<tr>
<td></td>
<td>SCMSGIDN=5</td>
<td>SCMSGIDN=5</td>
<td>SCMSGIDN=5</td>
<td>SCMSGIDN=5</td>
<td>SCMSGIDN=5</td>
<td>SCMSGIDN=5</td>
<td>SCMSGIDN=5</td>
<td>SCMSGIDN=5</td>
<td>SCMSGIDN=5</td>
</tr>
<tr>
<td></td>
<td>SCMSGLEN=40</td>
<td>SCMSGLEN=40</td>
<td>SCMSGLEN=40</td>
<td>SCMSGLEN=40</td>
<td>SCMSGLEN=40</td>
<td>SCMSGLEN=40</td>
<td>SCMSGLEN=40</td>
<td>SCMSGLEN=40</td>
<td>SCMSGLEN=40</td>
</tr>
<tr>
<td></td>
<td>SCMSGLen=6</td>
<td>SCMSGLen=6</td>
<td>SCMSGLen=6</td>
<td>SCMSGLen=6</td>
<td>SCMSGLen=6</td>
<td>SCMSGLen=6</td>
<td>SCMSGLen=6</td>
<td>SCMSGLen=6</td>
<td>SCMSGLen=6</td>
</tr>
<tr>
<td></td>
<td>SCMSGLEN=40</td>
<td>SCMSGLEN=40</td>
<td>SCMSGLEN=40</td>
<td>SCMSGLEN=40</td>
<td>SCMSGLEN=40</td>
<td>SCMSGLEN=40</td>
<td>SCMSGLEN=40</td>
<td>SCMSGLEN=40</td>
<td>SCMSGLEN=40</td>
</tr>
<tr>
<td></td>
<td>SCMSGLen=6</td>
<td>SCMSGLen=6</td>
<td>SCMSGLen=6</td>
<td>SCMSGLen=6</td>
<td>SCMSGLen=6</td>
<td>SCMSGLen=6</td>
<td>SCMSGLen=6</td>
<td>SCMSGLen=6</td>
<td>SCMSGLen=6</td>
</tr>
<tr>
<td></td>
<td>SCMSGLEN=53</td>
<td>SCMSGLEN=53</td>
<td>SCMSGLEN=53</td>
<td>SCMSGLEN=53</td>
<td>SCMSGLEN=53</td>
<td>SCMSGLEN=53</td>
<td>SCMSGLEN=53</td>
<td>SCMSGLEN=53</td>
<td>SCMSGLEN=53</td>
</tr>
<tr>
<td></td>
<td>SCMSGLen=7</td>
<td>SCMSGLen=7</td>
<td>SCMSGLen=7</td>
<td>SCMSGLen=7</td>
<td>SCMSGLen=7</td>
<td>SCMSGLen=7</td>
<td>SCMSGLen=7</td>
<td>SCMSGLen=7</td>
<td>SCMSGLen=7</td>
</tr>
<tr>
<td></td>
<td>SCMSGLEN=53</td>
<td>SCMSGLEN=53</td>
<td>SCMSGLEN=53</td>
<td>SCMSGLEN=53</td>
<td>SCMSGLEN=53</td>
<td>SCMSGLEN=53</td>
<td>SCMSGLEN=53</td>
<td>SCMSGLEN=53</td>
<td>SCMSGLEN=53</td>
</tr>
<tr>
<td></td>
<td>SCMSGLen=7</td>
<td>SCMSGLen=7</td>
<td>SCMSGLen=7</td>
<td>SCMSGLen=7</td>
<td>SCMSGLen=7</td>
<td>SCMSGLen=7</td>
<td>SCMSGLen=7</td>
<td>SCMSGLen=7</td>
<td>SCMSGLen=7</td>
</tr>
<tr>
<td></td>
<td>SCMSGLEN=57</td>
<td>SCMSGLEN=57</td>
<td>SCMSGLEN=57</td>
<td>SCMSGLEN=57</td>
<td>SCMSGLEN=57</td>
<td>SCMSGLEN=57</td>
<td>SCMSGLEN=57</td>
<td>SCMSGLEN=57</td>
<td>SCMSGLEN=57</td>
</tr>
<tr>
<td></td>
<td>SCMSGLen=9</td>
<td>SCMSGLen=9</td>
<td>SCMSGLen=9</td>
<td>SCMSGLen=9</td>
<td>SCMSGLen=9</td>
<td>SCMSGLen=9</td>
<td>SCMSGLen=9</td>
<td>SCMSGLen=9</td>
<td>SCMSGLen=9</td>
</tr>
</tbody>
</table>

Note: There may be multiple type 7, 8, or 9 segments.
APPENDIX C
TimeFinder REXX EXITS

This appendix contains the following topics:

- TimeFinder REXX Interface EXITS ... 340
- REXX keywords and parameters ... 341
- Using REXX EXECs ... 343
- REXX Examples .. 349
- Examples of REXX statement present in EMCSNAPO 351
TimeFinder REXX Interface EXITS

EMCSNAP allows users to either influence standard EMC processing or to perform related external user-defined processing, using EMC’s REXX Interface. This avoids the common problem in the customer environment where no one may understand how to take advantage of EXITS using the Assembler language.

The implementation points in the code will call a common REXX interface module, which will pass control to the customer REXX script, and then resume when the REXX script completes.

The parameters passed to the customer REXX script will be appropriate for the TimeFinder action being performed. The responses allowed from the REXX script are limited to the EXIT purpose.

The REXX scripts may be applied in any of the following ways:

1. They may be assembled into the site options table (EMCSNAP0) and will be executed in memory.
2. They may be present in a dataset (PDS or PDSE) identified in the site options table (EMCSNAP0) and will be executed from that dataset.
3. They may be present in the //SYSEXEC statement allocated to each job.

Some potential benefits of using REXX scripts include:

- Providing default GLOBAL statements for various users or job streams.
- Verifying that an entered pool name is appropriate for the user, or automatically providing the pool name for specific users or jobs.
- Verifying that the user entered SMS class names are appropriate for the user, or automatically providing the SMS class names for specific users or jobs.
- Pass control to a user exit before and after the activate process, which allows them to potentially auto-quietce databases or systems for only the short period (seconds only) necessary to issue the activate request.
- Verifying that the target dataset name (from SNAP DATASET) is appropriate for the users, or automatically providing a dataset name.
- Verifying that a user is allowed to scratch dataset.
- View the SMF records as they are being written.
- Receive control when a device VARY command is being issued.
Macro EMCSNAPO is changed to support the specification of the REXX exits to be invoked. There is also a new MACRO associated with EMCSNAPO that is used to specify the “in-memory” REXX statements (REXXSTMT).

Table 19 REXX TF command parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Allowed Values</th>
<th>REXX EXEC Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&REXX_EXEC_DSNAME</td>
<td>44-char dataset name</td>
<td>N/A</td>
<td>Single dataset name that is dynamically allocated to SYSEXEC during EMCSNAP initialization. This dataset contains all of the exits to be invoked that are specified as "YES".</td>
</tr>
<tr>
<td>&REXX_ACTIVATE</td>
<td>NO</td>
<td>YES</td>
<td>REXXSTMT label</td>
</tr>
<tr>
<td>&REXX_DATASET_NEWNAME</td>
<td>NO</td>
<td>YES</td>
<td>REXXSTMT label</td>
</tr>
<tr>
<td>&REXX_GLOBAL</td>
<td>NO</td>
<td>YES</td>
<td>REXXSTMT label</td>
</tr>
<tr>
<td>&REXX_SCRATCH</td>
<td>NO</td>
<td>YES</td>
<td>REXXSTMT label</td>
</tr>
<tr>
<td>&REXX_SMS_DATACLAS</td>
<td>NO</td>
<td>YES</td>
<td>REXXSTMT label</td>
</tr>
</tbody>
</table>
Table 19 REXX TF command parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Allowed Values</th>
<th>REXX EXEC Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&REXX_SMS_MGMTCLAS</td>
<td>NO</td>
<td>YES</td>
<td>REXXSTMT label</td>
</tr>
<tr>
<td>&REXX_SMS_STORCLAS</td>
<td>NO</td>
<td>YES</td>
<td>REXXSTMT label</td>
</tr>
<tr>
<td>&REXX_TDEV_POOL</td>
<td>NO</td>
<td>YES</td>
<td>REXXSTMT label</td>
</tr>
<tr>
<td>&REXX_VARYDEVICE</td>
<td>NO</td>
<td>YES</td>
<td>REXXSTMT label</td>
</tr>
<tr>
<td>&REXX_VDEV_POOL</td>
<td>NO</td>
<td>YES</td>
<td>REXXSTMT label</td>
</tr>
<tr>
<td>&REXX_WRITE_SMF</td>
<td>NO</td>
<td>YES</td>
<td>REXXSTMT label</td>
</tr>
</tbody>
</table>
Using REXX EXECs

REXX EXEC Name convention

The actual REXX code may be located in one of two places. The most efficient is to place it in the EMCSNAP Site Options Table. Then it is in resident in memory and no external I/O is required in order to execute the REXX.

As an alternative, the REXX code may be placed in a user supplied library dataset (PDS or PDSE). Each exit has a pre-assigned name that will be executed from the dataset.

Activate (before and after) - ESNAACTV

There are several calls made to the activate exit. Each call is passed a unique ACTION/SERIAL# combination based on the call.

Single PRE-ACTIVATE: ACTION=ACT0 SERIAL#=blanks
This call is the first of the pre-activate calls. It is made just before the activate is going to occur all validation and setup is complete.

Controller PRE-ACTIVATE: ACTION=ACT2 SERIAL#=Symm Serial#
This call is made after the ACT0 call, and before the ACT4 call. The exit is called one time for each VMAX system that is involved in the activate.

Single PRE-ACTIVATE: ACTION=ACT4 SERIAL#=blanks
This call completes the pre-activate calls.

Single POST-ACTIVATE: ACTION=ACT5 SERIAL#=blanks
This call is the first of the post-activate calls. It is made immediately after the activate has occurred.

Controller POST-ACTIVATE: ACTION=ACT7 SERIAL#=Symm Serial#
This call is made after the ACT5 call, and before the ACT9 call. The exit is called one time for each VMAX system that is involved in the activate.

SINGLE POST-ACTIVATE: ACTION=ACT9 SERIAL#=blanks
This call completes the post-activate calls.

ESNAACTV Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARG(1)</td>
<td>ACTION</td>
<td></td>
</tr>
<tr>
<td>ARG(2)</td>
<td>SERIAL#</td>
<td>VMAX Serial Number or blanks</td>
</tr>
</tbody>
</table>

No return values.
Global Statement - ESNAGBL

No Arguments Supplied

Return Values are allowed.

A valid GLOBAL statement that will be included in the user input stream must start with the word "GLOBAL" and follow the rules for syntax for the GLOBAL statement.

Dataset Newname Validation - ESNANEWD

Table 21 ESNANEWD arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARG(1)</td>
<td>REQUEST</td>
<td>'SNAP DATASET'</td>
</tr>
<tr>
<td>ARG(2)</td>
<td>SDSNAME</td>
<td>Source dataset name</td>
</tr>
<tr>
<td>ARG(3)</td>
<td>TDSNAME</td>
<td>Target dataset name</td>
</tr>
<tr>
<td>ARG(4)</td>
<td>DSNTYPE</td>
<td>'NONVSAM'</td>
</tr>
</tbody>
</table>

a. The GPM command CONFIGPOOL is no longer supported.
Return Values are allowed. The return value may be the replacement Target Dataset Name, or blanks to leave it unchanged.

Scratch Dataset - ESNASCRA

<table>
<thead>
<tr>
<th>Table 22 ESNASCRA arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argument</td>
</tr>
<tr>
<td>ARG(1)</td>
</tr>
<tr>
<td>ARG(2)</td>
</tr>
<tr>
<td>ARG(3)</td>
</tr>
<tr>
<td>ARG(4)</td>
</tr>
<tr>
<td>ARG(5)</td>
</tr>
<tr>
<td>ARG(6)</td>
</tr>
<tr>
<td>ARG(7)</td>
</tr>
</tbody>
</table>

\(^a\) The GPM command CONFIGPOOL is no longer supported.

Return Values are allowed:
- 0 = No action, continue.
- 4 = Do not scratch the dataset. Issue message ESNP071W. Sets the job high return code = 4.
8 = Do not scratch the dataset. Issue message ESNP071E. Sets the job high return code = 8.

SMS Class Name Validation

Table 23 contains arguments for the three SMS exits: ESNASDAT (SMS Dataclas), ESNASMGMT (SMS Mgmtclas), ESNASSTG (SMS Storclas).

<table>
<thead>
<tr>
<th>Argument</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARG(1)</td>
<td>REQUEST</td>
<td>'SNAP DATASET' 'SNAP VOLUME' 'DESTROY' 'CLEANUP' 'DEBUG' 'STOP DATASET'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>'STOP VOLUME' 'RESTORE' 'ACTIVATE' 'QUERY DATASET' 'QUERY SAVEDEV' 'QUERY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDEV' 'CONFIG' 'QUERY VOLUME' 'SERIAL' 'PARALLEL' 'CONFIGPOOL' 'QUERY GROUP'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>'DEFINE GROUP' 'END GROUP' 'DELETE GROUP' 'GROUP' 'QUERY GLOBAL' 'COMPARE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DATASET' 'COMPARE VOLUME'</td>
</tr>
<tr>
<td>ARG(2)</td>
<td>CLASSNAME</td>
<td>SMS class name as inputted by the user. May be blank if not specified. May</td>
</tr>
<tr>
<td></td>
<td></td>
<td>be 'COPYSMS' if COPYSMS was requested by the user.</td>
</tr>
<tr>
<td>ARG(3)</td>
<td>SDSNAME</td>
<td>Source dataset name as inputted by the user. (Before expanding wild cards</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and resolving names). May be blank if DDNAME was specified.</td>
</tr>
<tr>
<td>ARG(4)</td>
<td>SDDNAME</td>
<td>Source DDNAME as inputted by the user. May be blank if DSNAME was specified.</td>
</tr>
<tr>
<td>ARG(5)</td>
<td>TDSNAME</td>
<td>Target dataset name as inputted by the user. (Before expanding wild cards</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and resolving names). May be blank if DDNAME was specified.</td>
</tr>
<tr>
<td>ARG(6)</td>
<td>TDDNAME</td>
<td>Target DDNAME as inputted by the user. May be blank if DSNAME was specified.</td>
</tr>
</tbody>
</table>
Return Values are allowed:

- Blank = make no changes
- 'COPYSMS' = specify COPYSMS for the Classname
- String = use this as the classname for this request. Must be a valid SMS classname.

TDEV Pool Name Validation

<table>
<thead>
<tr>
<th>Argument</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARG(1)</td>
<td>POOLNAME</td>
<td>User specified poolname</td>
</tr>
<tr>
<td>ARG(2)</td>
<td>SRCVOL</td>
<td>The source volser (if specified) or 'OMIT' if not specified.</td>
</tr>
<tr>
<td>ARG(3)</td>
<td>SRCUNIT</td>
<td>The source CCUU (if specified) or zeros ('0000') if not specified.</td>
</tr>
<tr>
<td>ARG(4)</td>
<td>TGTVOL</td>
<td>The target volser (if specified) or 'OMIT' if not specified.</td>
</tr>
<tr>
<td>ARG(5)</td>
<td>TGTUNIT</td>
<td>The target CCUU (if specified) or zeros ('0000') if not specified.</td>
</tr>
<tr>
<td>ARG(6)</td>
<td>NEWVOL</td>
<td>The NEWVOLSER (if specified) or 'OMIT' if not specified.</td>
</tr>
</tbody>
</table>

Return Values are allowed.

The result returned may be blank, or a valid poolname to be used. If blank, the user supplied poolname is not changed.
VDEV Pool Name Validation

Table 25 VDEV Pool Name Validation arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARG(1)</td>
<td>POOLNAME</td>
<td>User specified poolname</td>
</tr>
<tr>
<td>ARG(2)</td>
<td>SRCVOL</td>
<td>The source volser (if specified) or 'OMIT' if not specified.</td>
</tr>
<tr>
<td>ARG(3)</td>
<td>SRCUNIT</td>
<td>The source CCUU (if specified) or zeros ('0000') if not specified.</td>
</tr>
<tr>
<td>ARG(4)</td>
<td>TGTVol</td>
<td>The target volser (if specified) or 'OMIT' if not specified.</td>
</tr>
<tr>
<td>ARG(5)</td>
<td>TGTUNIT</td>
<td>The target CCUU (if specified) or zeros ('0000') if not specified.</td>
</tr>
<tr>
<td>ARG(6)</td>
<td>NEWVOL</td>
<td>The NEWVOLSER (if specified) or 'OMIT' if not specified.</td>
</tr>
</tbody>
</table>

Return Values are allowed.

The result returned may be blank, or a valid poolname to be used. If blank, the user supplied poolname is not changed.
VARY Device Online/Offline

Table 26 VARY Device Online/Offline arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARG(1)</td>
<td>REQUEST</td>
<td>'SNAP DATASET' '<SNAP VOLUME' 'DESTROY' 'CLEANUP' 'DEBUG' 'STOP DATASET' 'STOP VOLUME' 'RESTORE' 'ACTIVATE' 'QUERY DATASET' 'QUERY SAVEDEV' 'QUERY VDEV' 'CONFIG' 'QUERY VOLUME' 'SERIAL' 'PARALLEL' 'CONFIGPOOL' 'QUERY GROUP' 'DEFINE GROUP' 'END GROUP' 'DELETE GROUP' 'GROUP' 'QUERY GLOBAL' 'COMPARE DATASET' 'COMPARE VOLUME'</td>
</tr>
<tr>
<td>ARG(2)</td>
<td>OPERATION</td>
<td>"ONLINE" or "OFFLINE"</td>
</tr>
<tr>
<td>ARG(3)</td>
<td>COMMAND</td>
<td>The actual VARY command that will be issued.</td>
</tr>
<tr>
<td>ARG(4)</td>
<td>VOLSER</td>
<td>The device volser.</td>
</tr>
<tr>
<td>ARG(5)</td>
<td>CCUU</td>
<td>The device CCUU.</td>
</tr>
<tr>
<td>ARG(6)</td>
<td>UCB@</td>
<td>The device UCB@ (in display hex).</td>
</tr>
</tbody>
</table>

a. The GPM command CONFIGPOOL is no longer supported.

Return Values are allowed.

The VARY command to be used MUST be returned. If no command is returned, no vary will be issued. The returned command must be less than 32 characters.
Write SMF

Table 27 Write SMF arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARG(1)</td>
<td>@SMF_RECORD</td>
<td>The address of the SMF record that is to be written. The address is in display hex format (i.e. the address 'x'12345678' will be presented as a character string 'c'12345678').</td>
</tr>
</tbody>
</table>

Return Values are allowed:

- 0 - Continue
- 4 - Do not write the SMF record.

REXX Examples

Sample ESNAGLBL

```rexx
/* REXX */
SAY ARG()
DO N=1 TO ARG()
   SAY 'PARM 'N' IS ' ARG(N)
END
PARSE ARG ARG1,ARG2,ARG3,ARG4,ARG5,ARG6
SAY ARG1 ARG2 ARG3 ARG4 ARG5 ARG6
JOBNAME = MVSVAR('SYMDEF','JOBNAME')
GLOBAL = '   GLOBAL   DEBUG ( EXTRA ) '
RETURN GLOBAL
```

Sample ESNASCRA

```rexx
/* REXX */
SAY ARG()
DO N=1 TO ARG()
   SAY 'PARM 'N' IS ' ARG(N)
END
PARSE ARG ARG1,ARG2,ARG3,ARG4,ARG5,ARG6,ARG7
SAY ARG1 ARG2 ARG3 ARG4 ARG5 ARG6 ARG7
REQUEST = ARG(1)
DSNAME = ARG(2)
VOLSER = ARG(3)
DATADSN = ARG(4)
DATAVOL = ARG(5)
INDXDSN = ARG(6)
INDXVOL = ARG(7)
JOBNAME = MVSVAR('SYMDEF','JOBNAME')
IF DSNAME="BAP.TESTING.PDS2"
THEN RETURN 4
RETURN 0
```
Sample ESNATPOL

/* REXX */
SAY ARG()
DO N=1 TO ARG()
 SAY 'PARM 'N' IS ' ARG(N)
END
PARSE ARG ARG1,ARG2,ARG3,ARG4,ARG5,ARG6
SAY ARG1 ARG2 ARG3 ARG4 ARG5 ARG6
JOBNAME = MVSVAR('SYMDEF','JOBNAME')
POOLNAME = ''
IF SUBSTR(JOBNAME,1,3) = 'BAP' THEN
 POOLNAME = 'ABCD'
RETURN POOLNAME

Sample ESNAVARY

/* REXX */
SAY ARG()
DO N=1 TO ARG()
 SAY 'PARM 'N' IS ' ARG(N)
END
PARSE ARG ARG1,ARG2,ARG3,ARG4,ARG5,ARG6
SAY ARG1 ARG2 ARG3 ARG4 ARG5 ARG6
REQUEST=ARG(1)
OPERATION=ARG(2)
COMMAND=ARG(3)
VOLSER=ARG(4)
CCUU=ARG(5)
UCB@=ARG(6)
JOBNAME = MVSVAR('SYMDEF','JOBNAME')
RETURN COMMAND' TEST ';

Sample ESNAVPOL

/* REXX */
SAY ARG()
DO N=1 TO ARG()
 SAY 'PARM 'N' IS ' ARG(N)
END
PARSE ARG ARG1,ARG2,ARG3,ARG4,ARG5,ARG6
SAY ARG1 ARG2 ARG3 ARG4 ARG5 ARG6
JOBNAME = MVSVAR('SYMDEF','JOBNAME')
POOLNAME = ''
IF SUBSTR(JOBNAME,1,3) = 'BAP' THEN
 POOLNAME = 'FGHIJ'
RETURN POOLNAME

Sample ESNAWSMF

/* REXX */
SAY ARG()
DO N=1 TO ARG()
 SAY 'PARM 'N' IS ' ARG(N)
END
PARSE ARG ARG1,ARG2,ARG3,ARG4,ARG5,ARG6
SAY ARG1 ARG2 ARG3 ARG4 ARG5 ARG6
JOBNAME = MVSVAR('SYMDEF','JOBNAME')
RETURN 0
Examples of REXX statement present in EMCSNAPO

*---
*
* PROGRAM DEFAULT OPTION SETTINGS - Changable by customer
*
*---
*
EMCSNAPO DSECT=NO, X
REXX_EXEC_DSNAMe=BAP.CLIST, X
REXX_DATASET_NEWNAME=NEWNAME, X
REXX_GLOBAL=YES, X
REXX_WRITE_SMF=WRITE_SMF
**
REXX_GLOBAL=GLOBAL,
**
REXX_SCRATCH=SCRATCH,
**
REXX_VARY_DEVICE=VARY_DEVICE
**
REXX_TDEV_POOL=TDEV_POOL,
**
REXX_VDEV_POOL=VDEV_POOL
NEWNAME REXXSTMT 'ESNANEWD: PROCEDURE'
REXXSTMT 'SAY ARG()' REXXSTMT 'DO N=1 TO ARG()' REXXSTMT 'SAY ''PARM ''N'' IS '' ARG(N)'' REXXSTMT 'END'
REXXSTMT 'PARSE ARG ARG1,ARG2,ARG3,ARG4,ARG5,ARG6'
REXXSTMT 'SAY ARG1 ARG2 ARG3 ARG4 ARG5 ARG6'
REXXSTMT 'REQUEST=ARG(1)'
REXXSTMT 'SDSNAMe=ARG(2)'
REXXSTMT 'TDSNAME=ARG(3)'
REXXSTMT 'DSNTYPE=ARG(4)'
REXXSTMT 'NEWNAME = '''
REXXSTMT 'JOBNAME = MVSVAR(''SYMDEF',''JOBNAME'')'
**
REXXSTMT 'IF SUBSTR(SDSNAME,1,9) = ''BAP.KSDS4'' THEN'
REXXSTMT 'NEWNAME = ''BAP.KSDS5''SUBSTR(SDSNAME,10,44)'
REXXSTMT 'IF SUBSTR(TDSNAME,1,9) = ''BAP.KSDS5'' THEN'
REXXSTMT 'NEWNAME = ''BAP.KSDS6''SUBSTR(TDSNAME,10,44)'
REXXSTMT 'RETURN NEWNAME '
TDEV_POOL REXXSTMT 'ESNATPOL: PROCEDURE'
REXXSTMT 'SAY ARG()' REXXSTMT 'DO N=1 TO ARG()' REXXSTMT 'SAY ''PARM ''N'' IS '' ARG(N)'' REXXSTMT 'END'
REXXSTMT 'PARSE ARG ARG1,ARG2,ARG3,ARG4,ARG5,ARG6'
REXXSTMT 'SAY ARG1 ARG2 ARG3 ARG4 ARG5 ARG6'
REXXSTMT 'REQUEST=ARG(1)'
REXXSTMT 'SDSNAMe=ARG(2)'
REXXSTMT 'TDSNAME=ARG(3)'
REXXSTMT 'DSNTYPE=ARG(4)'
REXXSTMT 'POOLNAME = '''
REXXSTMT 'JOBNAME = MVSVAR(''SYMDEF',''JOBNAME'')'
**
REXXSTMT 'IF SUBSTR(JOBNAME,1,3) = ''BAP'' THEN'
REXXSTMT 'POOLNAME = ''ABCDE''
REXXSTMT 'RETURN POOLNAME '
VDEV_POOL REXXSTMT 'ESNAVPOL: PROCEDURE'
REXXSTMT 'SAY ARG()' REXXSTMT 'DO N=1 TO ARG()' REXXSTMT 'SAY ''PARM ''N'' IS '' ARG(N)'' REXXSTMT 'END'
REXXSTMT 'PARSE ARG ARG1,ARG2,ARG3,ARG4,ARG5,ARG6'
REXXSTMT 'SAY ARG1 ARG2 ARG3 ARG4 ARG5 ARG6'
REXXSTMT 'REQUEST=ARG(1)'
REXXSTMT 'SDSNAMe=ARG(2)'
REXXSTMT 'TDSNAME=ARG(3)'
REXXSTMT 'DSNTYPE=ARG(4)'
REXXSTMT 'POOLNAME = '''
REXXSTMT 'JOBNAME = MVSVAR(''SYMDEF',''JOBNAME'')'
**
REXXSTMT 'IF SUBSTR(JOBNAME,1,3) = ''BAP'' THEN'
REXXSTMT 'POOLNAME = ''FGHIJ''
REXXSTMT 'RETURN POOLNAME '
VARY_DEVICE REXXSTMT 'ESNAVARY: PROCEDURE'
REXXSTMT 'SAY ARG()' REXXSTMT 'DO N=1 TO ARG()'
Examples of REXX statements present in EMCSNAPO:

```rexx
REXXSTMT 'SAY ''PARAM ''N'' IS '' ARG(N)''
REXXSTMT 'END'
REXXSTMT 'PARSE ARG ARG1,ARG2,ARG3,ARG4,ARG5,ARG6'
REXXSTMT 'SAY ARG1 ARG2 ARG3 ARG4 ARG5 ARG6'
REXXSTMT 'REQUEST=ARG(1)'
REXXSTMT 'OPERATION=ARG(2)'
REXXSTMT 'COMMAND=ARG(3)'
REXXSTMT 'VOLSER=ARG(4)'
REXXSTMT 'CCUU=ARG(5)'
REXXSTMT 'UCB@=ARG(6)'
REXXSTMT 'JOBNAME = MVSVAR(''SYMDEF'',''JOBNAME'')'
REXXSTMT 'RETURN COMMAND'' TEST ''
GLOBAL
REXXSTMT 'ESNAGLBL: PROCEDURE'
REXXSTMT 'SAY ARG()'
REXXSTMT 'DO N=1 TO ARG()'
REXXSTMT 'SAY ''PARAM ''N'' IS '' ARG(N)''
REXXSTMT 'END'
REXXSTMT 'PARSE ARG ARG1,ARG2,ARG3,ARG4,ARG5,ARG6'
REXXSTMT 'SAY ARG1 ARG2 ARG3 ARG4 ARG5 ARG6'
REXXSTMT 'REQUEST = ARG(1)'
REXXSTMT 'DSNAME = ARG(2)'
REXXSTMT 'VOLSER = ARG(3)'
REXXSTMT 'DATASIZE = ARG(4)'
REXXSTMT 'DATAVOL = ARG(5)'
REXXSTMT 'INDEXDSN = ARG(6)'
REXXSTMT 'INDEXVOL = ARG(7)'
REXXSTMT 'JOBNAME = MVSVAR(''SYMDEF'',''JOBNAME'')'
REXXSTMT 'RETURN ''GLOBAL DEBUG ( EXTRA )''
REXXSTMT 'RETURN GLOBAL'
SCRATCH
REXXSTMT 'ESNASCRA: PROCEDURE'
REXXSTMT 'SAY ARG()'
REXXSTMT 'DO N=1 TO ARG()'
REXXSTMT 'SAY ''PARAM ''N'' IS '' ARG(N)''
REXXSTMT 'END'
REXXSTMT 'PARSE ARG ARG1,ARG2,ARG3,ARG4,ARG5,ARG6,ARG7'
REXXSTMT 'SAY ARG1 ARG2 ARG3 ARG4 ARG5 ARG6 ARG7'
REXXSTMT 'REQUEST = ARG(1)'
REXXSTMT 'DSNAME = ARG(2)'
REXXSTMT 'VOLSER = ARG(3)'
REXXSTMT 'DATASIZE = ARG(4)'
REXXSTMT 'DATAVOL = ARG(5)'
REXXSTMT 'INDEXDSN = ARG(6)'
REXXSTMT 'INDEXVOL = ARG(7)'
REXXSTMT 'JOBNAME = MVSVAR(''SYMDEF'',''JOBNAME'')'
REXXSTMT 'IF DSNAME="BAP.TESTING.PDS2"'
REXXSTMT 'THEN RETURN 4'
REXXSTMT 'RETURN 0'
WRITE_SMF
REXXSTMT 'ESNAWSMF: PROCEDURE'
REXXSTMT 'SAY ARG()'
REXXSTMT 'DO N=1 TO ARG()'
REXXSTMT 'SAY ''PARAM ''N'' IS '' ARG(N)''
REXXSTMT 'END'
REXXSTMT 'PARSE ARG ARG1,ARG2,ARG3,ARG4,ARG5,ARG6'
REXXSTMT 'SAY ARG1 ARG2 ARG3 ARG4 ARG5 ARG6'
REXXSTMT 'JOBNAME = MVSVAR(''SYMDEF'',''JOBNAME'')'
REXXSTMT 'RETURN 4 ' - DON'T WRITE SMF RECORD !
END
```