CONTENTS

Preface

Chapter 1 Introduction

- Dell EMC Mainframe Enablers and Dell EMC TimeFinder Utility ... 10
- Licensing ... 10
- Introduction to TimeFinder Utility .. 10
- Limitations ... 11

Chapter 2 Getting Started

- Running TimeFinder Utility ... 14
- Sample JCL ... 14
- Messages and return codes ... 15

Chapter 3 Operations

- Updating catalogs .. 18
- Relabeling devices ... 18
- Renaming and recataloging datasets ... 18
- Defining execution settings ... 19
- Processing flow .. 20
- Processing of multivolume datasets ... 21
- Minimizing executing time ... 22

Chapter 4 Command Reference

- TimeFinder Utility commands ... 24
- Syntax conventions .. 24
- CATALOG ... 24
- DEBUG ... 26
- MAXRC .. 26
- MSG .. 26
- PROCESS ... 28
- RELABEL .. 28
- RENAME ... 29
- SIMULATE ... 30
- SOURCECATALOG .. 31
- Command sequence example .. 32
- IDCAMS model statements ... 33
- Syntax and parameters .. 33
- Substitution values ... 34
- Default statements ... 35
PREFACE

As part of an effort to improve its product lines, Dell EMC periodically releases revisions of its software and hardware. Therefore, some functions described in this document might not be supported by all versions of the software or hardware currently in use. The product release notes provide the most up-to-date information about product features.

Contact your Dell EMC representative if a product does not function properly or does not function as described in this document.

Note: This document was accurate at publication time. New versions of this document might be released on the Dell EMC Online Support website. Check the Dell EMC Online Support website to ensure that you are using the latest version of this document.

Audience

This document is intended for the host system administrator, system programmer, or operator who will be involved in managing or operating the storage system.

Related documentation

To access related documentation, go to the PowerMax and VMAX All Flash Technical Documentation webpage at:

www.dell EMC.com/en-us/documentation/vmax-all-flash-family.htm

The following documents provide information about Mainframe Enablers:

◆ Mainframe Enablers Release Notes
◆ Mainframe Enablers Installation and Customization Guide
◆ Mainframe Enablers Message Guide
◆ ResourcePak Base for z/OS Product Guide
◆ SRDF Host Component for z/OS Product Guide
◆ AutoSwap for z/OS Product Guide
◆ Consistency Groups for z/OS Product Guide
◆ TimeFinder SnapVX and zDP Product Guide
◆ TimeFinder/Clone Mainframe Snap Facility Product Guide
◆ TimeFinder/Mirror for z/OS Product Guide
◆ TimeFinder Utility for z/OS Product Guide

The following documents provide additional information:

◆ PowerMax Family Product Guide—Documents the features and functions of the PowerMax storage systems.
Conventions used in this document

Dell EMC uses the following type style conventions in this document:

Italic
Used for:
- Titles of publications referenced in text
- Emphasis, for example, a new term

Courier
Used for:
- Command syntax and parameters
- System output, such as messages

Courier bold
Used for user input, for example: Reply CONT.

Courier italic
Used for variables in command/parameter syntax and messages, for example: DISPLAY ccuu

Courier underline
Underline indicates the default value, for example: YES|NO

< >
Angle brackets enclose variables or explanatory text when it includes multiple words, for example: <list of device numbers>

[]
Square brackets enclose optional values, for example: DISPLAY [DETAIL]

|
Vertical bar indicates alternate selections (the bar means “or”), for example: RUN|NORUN

{}
Braces are used together with the vertical bar (|) to indicate the start and end of alternate selections, for example: {DEV symdv#|CUU ccuu}

...
Ellipses indicate nonessential information omitted from the example

Where to get help

Product information

For information about Dell EMC products, licensing, and service, go to www.dell EMC.com (registration required).

Technical support

To access the Dell EMC Online Support web site, go to www.dell.com/support and search for your product. You will be redirected to the product support page, offering quick links to Documentation, Downloads, Advisories, and Knowledgebase for your
product. The product support page also provides a link to the Service Center where you can create a service request, manage your service requests, and contact Dell EMC Customer Support either through Dell EMC Live Chat or using other options.

Note: To open a service request through Dell EMC Online Support, you must have a valid support agreement. Contact the Dell EMC sales representative for details about obtaining a valid support agreement or to answer any questions about your account.

eLicensing support

To activate your entitlements and obtain your license files, visit the Service Center as directed on your License Authorization Code (LAC) letter emailed to you.

For help with missing or incorrect entitlements after activation (that is, expected functionality remains unavailable because it is not licensed), contact your Dell EMC Account Representative or Authorized Reseller.

For help with any errors applying license files through Solutions Enabler, contact Dell EMC Customer Support.

If you are missing a LAC letter, or require further instructions on activating your licenses through the Online Support site, contact Dell EMC worldwide licensing team at licensing@emc.com or call:

- North America, Latin America, APJK, Australia, New Zealand: SVC4EMC (800-782-4362) and follow the voice prompts.
- EMEA: +353 (0) 21 4879862 and follow the voice prompts.

Your comments

Your suggestions will help us continue to improve the accuracy, organization, and overall quality of the user publications. Send your opinions of this document to:

VMAXContentFeedback@emc.com
CHAPTER 1
Introduction

This chapter covers the following topics:

◆ Dell EMC Mainframe Enablers and Dell EMC TimeFinder Utility 10
◆ Introduction to TimeFinder Utility .. 10
Dell EMC Mainframe Enablers and Dell EMC TimeFinder Utility

Dell EMC TimeFinder Utility is one of the Dell EMC Mainframe Enablers. The Dell EMC Mainframe Enablers include the following components that you can use to monitor and manage your storage:

- ResourcePak Base for z/OS
- SRDF Host Component for z/OS
- AutoSwap for z/OS
- Consistency Groups for z/OS
- TimeFinder SnapVX
- Data Protector for z Systems (zDP)\(^1\)
- TimeFinder/Clone Mainframe Snap Facility
- TimeFinder/Mirror for z/OS
- TimeFinder Utility

When you install the Mainframe Enablers kit, you install the software for all the components.

Licensing

Refer to the following documents for information about licensing:

- Mainframe Enablers Installation and Customization Guide
- PowerMax Family Product Guide
- VMAX All Flash Product Guide
- VMAX3 Family Product Guide
- VMAX Family Product Guide

Introduction to TimeFinder Utility

With TimeFinder Utility, you can relabel devices with new volsers and update the catalogs by renaming and recataloging both VSAM and non-VSAM datasets.

TimeFinder Utility enables you to perform the following operations in a production or simulation run:

- Assign a different volser to a device CUU
- Mass change the HLQs (high-level qualifiers) of datasets
- Recatalog the datasets to an existing or a new catalog

You can also execute IDCAMS\(^2\) statements when required.

1. zDP requires TimeFinder SnapVX but is a separately licensed product.
Typically, you use TimeFinder Utility with the following products:

- Dell EMC TimeFinder/Mirror
- Dell EMC TimeFinder/Clone Mainframe Snap Facility

TimeFinder Utility extends the processing of Business Continuance Volumes (BCVs) and standard devices. For example, it can be used to eliminate duplicate volume names in the mainframe environment.

Note: The *TimeFinder/Mirror for z/OS Product Guide* provides more information about BCVs and standard devices.

Limitations

- The following datasets are not processed:
 - Multivolume datasets, if the volumes are not relabeled with a RELABEL statement or by the TimeFinder/Mirror SPLIT command with a VOLID(volser,E) option.

 Note: For information about the SPLIT command, see *TimeFinder/Mirror for z/OS Product Guide*.

 - Non-VSAM datasets that have never been opened.
 - Key range VSAM datasets
 - IDF data space and IDF datasets, as they have different formats in comparison with VSAM clusters
 - Volumes and datasets under the GSM environment
 - Open Edition HFS datasets
 - A target dataset requires the original dataset to be a non-VSAM or a VSAM dataset cataloged to an EDF catalog.
 - For VSAM datasets, the original catalog and the catalog after RENAME must be different, and must have catalog names of the same length.

2. IDCAMS stands for IDC Access Method Services. IDC is the IBM product code for VSAM.
CHAPTER 2
Getting Started

This chapter covers the following topics:

◆ Running TimeFinder Utility ... 14
◆ Messages and return codes ... 15
Running TimeFinder Utility

Sample JCL

The sample JCL for the TimeFinder Utility is supplied in the SMFEvrm.SAMPLIB members TFSAMP04 and TFSAMP05.

The JCL to run TimeFinder Utility is as follows:

```
//EMCTFU EXEC PGM=EMCTFU,REGION=4M
//SYSOUT DD SYSOUT=*  
//TFINPUT DD *

TimeFinder Utility command statements
*/

//TFMODEL DD *
IDCAMS statement
*/
```

EXEC parameters

PGM

The main program of TimeFinder Utility is EMCTFU.

REGION

The region size of 4M is recommended.

DD statements

TFINPUT

Used to specify TimeFinder Utility commands.

Note: For information about available commands, see “Command Reference” on page 23.

TFINPUT must be 80-byte fixed length.

TFMODEL

Used to specify IDCAMS statements. This DD is optional.

Note: For information about IDCAMS statements, see “IDCAMS model statements” on page 33.

TFMODEL must be 80-byte fixed length.
Messages and return codes

Some messages you receive from TimeFinder Utility can be returned with a warning (W), an error (E), or a serious error message class (for example, E with a return code of 12). The message class you receive with these messages depends on the return code encountered.

The job step return codes can range from zero (0) to eight (8). Zero would be the least serious, as in an informational message. Eight would be an error.

The maximum return code to continue processing is defined by the MAXRC parameter described. If MAXRC is not set, TimeFinder Utility always returns the highest return code encountered as the job step return code.

Note: For a list of messages, see the *Mainframe Enablers Message Guide.*
CHAPTER 3
Operations

This chapter covers the following topics:

- Updating catalogs ... 18
- Processing flow ... 20
- Minimizing executing time .. 22
Operations

Updating catalogs

The process of updating the catalog includes two basic types of operations:

- Relabeling devices
- Renaming and recataloging datasets, which includes a preliminary phase to select the required datasets and catalogs.

Defining execution settings enables you to govern the process.

To update the catalog, include the statements you want into the TimeFinder Utility job JCL and run the job, as described in “Running TimeFinder Utility” on page 14.

Refer to “Command sequence example” on page 32 for an explained example.

For a detailed description of TimeFinder Utility processing, see “Processing flow” on page 20.

Relabeling devices

Table 1 lists operations for relabeling devices.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign a new volser to the device (relabeling)</td>
<td>RELABEL command</td>
</tr>
<tr>
<td>Define the online/offline status of a relabeled device</td>
<td>RELABEL command, OFFLINE keyword</td>
</tr>
</tbody>
</table>

Renaming and recataloging datasets

Table 2 lists operations for selecting datasets.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select a device/volume on which datasets reside</td>
<td>PROCESS command</td>
</tr>
<tr>
<td>Select the type of datasets: VSAM or non-VSAM</td>
<td>PROCESS command, BOTH</td>
</tr>
</tbody>
</table>
Table 3 lists operations for selecting catalogs.

Table 3 Selecting/creating catalog

<table>
<thead>
<tr>
<th>Operation</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a new catalog</td>
<td>CATALOG command, NEW keyword</td>
</tr>
<tr>
<td>Select an existing catalog</td>
<td>CATALOG command</td>
</tr>
<tr>
<td>Define a default catalog</td>
<td>CATALOG command, DEFAULT keyword</td>
</tr>
<tr>
<td>Select a catalog to add renamed datasets</td>
<td>RENAME command, CATALOG keyword</td>
</tr>
<tr>
<td>Select a catalog to obtain information for multivolume datasets, GDGs, path names</td>
<td>SOURCECATALOG command</td>
</tr>
</tbody>
</table>

a. GDG stands for Generation Data Groups.

Table 4 lists operations for renaming and recataloging datasets.

Table 4 Renaming datasets

<table>
<thead>
<tr>
<th>Operation</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncatalog datasets before recataloging</td>
<td>CATALOG command, CLEANUP keyword</td>
</tr>
<tr>
<td>Mass change the HLQ of datasets (renaming) and recatalog the datasets</td>
<td>RENAME command</td>
</tr>
</tbody>
</table>

Defining execution settings

Table 5 lists operations for defining execution settings.

Table 5 Defining execution settings

<table>
<thead>
<tr>
<th>Operation</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do a simulation run</td>
<td>SIMULATE command</td>
</tr>
<tr>
<td>Set the maximum job step return code to continue processing</td>
<td>MAXRC command</td>
</tr>
<tr>
<td>Enable/disable debugging</td>
<td>DEBUG command</td>
</tr>
<tr>
<td>Select types of messages written to the log</td>
<td>MSG command</td>
</tr>
<tr>
<td>Redirect messages to the operator console</td>
<td>MSG command</td>
</tr>
</tbody>
</table>
Processing flow

The TimeFinder Utility processing flow is as follows:

1. Parse and validate all input statements.
2. Relabel devices as directed by the RELABEL statements.
3. Locate all volumes defined by the PROCESS statements.
4. Perform all CATALOG CLEANUP requests.
5. Allocate all new catalogs, as directed by the CATALOG NEW statements.
6. Ensure that all other referenced catalogs exist.
7. Read in the dataset list from all volumes defined by the PROCESS statements.
8. Determine which datasets are selected for processing.
9. Process each selected dataset/cluster in the alphabetic order:
 a. For non-VSAM datasets:
 i. Determine the number and order of volumes for the dataset.
 ii. For GDG datasets, ensure that the GDG base exists in the target catalog.
 - If the GDG base exists in the target catalog: proceed to step c.
 - If the GDG base does not exist in the target catalog and SOURCECATALOG GDG=YES:
 TimeFinder Utility looks up the GDG base in the source catalog. If the GDG base exists in the source catalog, TimeFinder Utility uses it to execute the GDGBASE model statement and creates the GDG base in the target catalog. If the GDG base does not exist in the source catalog, TimeFinder Utility executes the GDGDFLT model statement to create a default GDG base in the target catalog.
 - If the GDG base does not exist in the target catalog and SOURCECATALOG GDG=NO:
 TimeFinder Utility executes the GDGDFLT model statement to create a default GDG base in the target catalog.
 c. Rename the dataset in the VTOC and VTOC index on each volume.
 d. Catalog the dataset into the target catalog.
 b. For VSAM datasets:
 a. Determine the number and order of volumes for the index component (if present) and for the data component.
 b. Rename the component datasets in the VTOC and VTOC index on each volume.
 c. Recatalog the cluster into the target catalog.
 d. If a source catalog is available and VSAM path processing is enabled (SOURCECATALOG PATH=YES): obtain the path definitions for the cluster and add VSAM paths to the target catalog.
e. For each alternate index that exists for this cluster and is selected for processing:

- Determine the number and order of volumes for the index component.
- Determine the number and order of volumes for the data component.
- Rename the component datasets in the VTOC and VTOC index on each volume.
- Recatalog the alternate index into the target catalog.
- If a source catalog is available and VSAM path processing is enabled (SOURCECATALOG PATH=YES): obtain the path definitions for the cluster and add VSAM paths to the target catalog.

10. Processing completed.

Processing of multivolume datasets

Two modes of processing are available for multivolume datasets. The mode is selected by setting the SOURCECATALOG MVOL parameter to YES or NO.

SOURCECATALOG MVOL=YES

While processing a dataset, TimeFinder Utility performs a catalog lookup. If the dataset is not cataloged, TimeFinder Utility checks the VTOC entries for all of the volumes being processed for all of the segments of the dataset.

If all of the dataset segments are in the list of volumes being processed, TimeFinder Utility catalogs the dataset. If all of the dataset segments are not in the list of volumes being processed, TimeFinder Utility does not catalog the dataset, and processing continues.

If the dataset is cataloged, TimeFinder Utility uses the list of volumes for the dataset currently cataloged to determine whether this is a multivolume dataset.

If the currently cataloged dataset resides on a single volume, TimeFinder Utility assumes that the dataset being processed is also a single volume dataset, and processing continues. However, if the currently cataloged dataset is a multivolume dataset, TimeFinder Utility assumes that the dataset being processed is also a multivolume dataset.

In fact, TimeFinder Utility uses the volume list from the currently cataloged dataset to determine the order and list of volumes for the dataset being processed. If this dataset segment does not map to the first volume in the volume list, TimeFinder Utility stops processing this dataset segment.

If this dataset segment does map to the first volume in the volume list, TimeFinder Utility checks that each of the original volumes maps to a volume currently being processed. If any of the original volumes do not map to a volume currently being processed, TimeFinder Utility stops processing this dataset.

After TimeFinder Utility has determined all of the new volumes, it continues to process the dataset. TimeFinder Utility processes all of the dataset segments.
SOURCECATALOG MVOL=NO

In this case, TimeFinder Utility does not reference the source catalog to determine the number and sequence of dataset extents. TimeFinder Utility searches all volumes to be processed and locates all extents for a dataset.

For non-VSAM datasets, TimeFinder Utility uses the DS1VOLSQ field in the format 1 DSCB to determine the order of the volumes. In addition, TimeFinder Utility uses the flag DS1IND80 in field DS1DSIND to determine that it has found all of the necessary volumes.

Note: If a program creating the non-VSAM multivolume dataset abends, the DS1IND80 flag is not set in the DS1DSIND field in the format 1 DSCB. Because the flag is not set, TimeFinder Utility is unable to determine that all of the necessary volumes have been found.

For VSAM datasets, these fields are not maintained and TimeFinder Utility uses another method. VSAM file information is maintained in the VVDS on each volume. TimeFinder Utility uses VVDS to determine the order of the volumes and whether all volumes are present.

Minimizing executing time

When you use TimeFinder Utility to process and rename large numbers (thousands) of datasets, the execution time can be very long (in the range of hours). You can take the following steps to minimize the execution time:

◆ Specify a temporary or empty user catalog in the CATALOG statement to eliminate the time spent on the CLEANUP phase.

◆ Specify a SOURCECATALOG statement that includes the DEFAULT=NO and DIRECT=YES parameters.

◆ Implement VLF for the user catalog that is specified in the CATALOG statement to be used by TimeFinder Utility processing. (See the IBM document, MVS Initialization and Tuning Reference, for details.) SYS1.PARMLIB member COFVLFx should include CLASS NAME IGGCAS and the specified user catalog as an eligible major name (EMAJ).

◆ Review the GRS environment. Run time can be shorter in a GRS STAR configuration than in a RING configuration when in a SYSPLEX and there are more than two systems. In a RING configuration, check GRSCNFxx parmlib member for RESMIL and ACCELSYS parameter specifications. Reducing these to smaller values speeds up run time. Also, verify that all systems in the GRS RING have the same settings (when the settings do not match, the highest value is used).
CHAPTER 4
Command Reference

This chapter covers the following topics:

- TimeFinder Utility commands ... 24
- Command sequence example .. 32
- IDCAMS model statements .. 33
TimeFinder Utility commands

TimeFinder Utility commands are specified in the TFINPUT DD of the TimeFinder Utility JCL, as shown in “Running TimeFinder Utility” on page 14.

All syntax, keywords and parameters, must be in uppercase.

You can also include comment lines by using the following format:

/* comment */

Syntax conventions

The commands follow these syntax conventions:

- Conventions described in “Conventions used in this document” on page 6.
- Keywords appear in uppercase (for example, ALL). They must be spelled exactly as shown.
- For easy reference, command keywords can be supplemented by lowercase letters to form a meaningful word (for example, CoNTROLier). When typing a command, use only CAPITALIZED characters of any keyword.
- Aside from the characters described in “Conventions used in this document” on page 6, you must type all other characters that are shown in the syntax statements.

CATALOG

Determines the catalog to be processed or creates a new catalog.

Note: No ALIAS is created with the catalog.

Syntax

```plaintext
CATALOG catalog_name[,NEW][,VOLSER=volser][,DEFAULT][,CLEANUP]
```

Parameters

```plaintext
catalog_name
```

A one-to-44 character name of the catalog. This is a required parameter.

If you type one of the following words as the `catalog_name`:

- SYSCTLG
- SYSTEM_CATALOG
- SYSTEMCATALOG
TimeFinder Utility performs a lookup to determine the appropriate catalog, and the dataset is then cataloged into the system catalog structure.

Note: You cannot use the SYSCTLG keyword with the CLEANUP parameter. If you want to specify CLEANUP, add additional CATALOG statements for specific catalogs.

CLEANUP
Uncatalogs all existing catalog references to datasets on a volume selected for processing before recataloging datasets.

The CLEANUP parameter allows you to prepare existing catalogs and make them reusable.

DEFAULT
Sets the catalog identified by `catalog_name` as the default catalog for all RENAME commands that have no catalog specified. This parameter is optional.

NEW
Creates a new catalog on the volume defined by the VOLSER parameter.
This parameter is optional.

VOLSER=volser
Determines the volume on which to create the catalog. This parameter is required when you use the NEW keyword.

IMPORTANT
The volume you specify must be online to the TimeFinder Utility job step creating the catalog.

If `volser` is “SMSVOL,” TimeFinder Utility allocates the catalog without specifying a volser.

Note: Normally, the NEWCATLG model statement is used to allocate a new catalog. However, if you specify “SMSVOL,” the SMSCATLG model statement is used. For information about IDCAMS model statements, see “IDCAMS model statements” on page 33.

Examples

- To define the CATALOG.USER catalog as the default catalog for this run:

  ```
  CATALOG CATALOG.USER,DEFAULT
  ```

- To define the system catalog as the default catalog for this run:

  ```
  CATALOG SYSCTLG,DEFAULT
  ```

- To cleanup volumes of the CATALOG.MVSICF.USER catalog:

  ```
  CATALOG CATALOG.MVSICF.USER,CLEANUP
  ```
To create a catalog named MYCATALOG on the volume OP1234:

```
CATALOG MYCATALOG,NEW,VOLSER=OP1234
```

DEBUG

Enables debug reporting during the processing.

Syntax

```
DEBUG
```

MAXRC

Sets the maximum allowed return code of a job step to continue processing.

You can specify any value from 0 to 8. The default value is 0.

Syntax

```
MAXRC={n}
```

Parameters

- `n`

 The maximum allowed return value.

 - When `n` is 0 (zero), TimeFinder Utility treats any message as an error and returns the highest return code encountered as the job step return code. The returned message is an error.
 - When `n` is from 1 to 8:
 - If you receive a return code that is not higher than `n`, the job step return code is set to 0. TimeFinder Utility treats any message as a warning and continues processing.
 - If the return code is higher than `n`, the job step return code is set to that value, and TimeFinder Utility treats any message as an error and stops processing.

 If you receive a return code of 12, that value is greater than any possible MAXRC value, TimeFinder Utility treats the message as a serious error and stops processing.

MSG

Enables you to select types of messages written to the output log file. You can suppress individual messages or redirect messages to the operator console. You can also suppress warning messages about reserved datasets and datasets that are not selected for processing.

1. A reserved dataset is not eligible for processing. Catalogs, VVDS, and VTOC index datasets are reserved datasets.
IMPORTANT

Place the MSG statement(s) at the beginning of the input stream before any other statements so that the MSG statement(s) can be processed first.

Syntax

```plaintext
MSG [RESERVED=YES|NO] [,UNMATCHED=YES|NO]
[,ID=message_id] [,PRINT=YES|NO] [,CONSOLE=YES|NO]
[,ROUTCDE= routing_code] [,DESC= descriptor]
```

Parameters

CONSOLE=YES|NO

Determines whether to issue the message defined by the ID parameter to the operator console. This parameter is optional.

DESC=descriptor

Specifies a particular descriptor code to be used when sending a message to the operator console. Default is no descriptor code. This parameter is optional.

ID=message_id

Specifies a complete message ID for special processing. The message can be suppressed (PRINT=NO) or redirected to the operator console (CONSOLE=YES). This parameter is optional.

Note: To manipulate multiple message IDs, specify each message ID in a separate MSG statement. If you specify the same message ID multiple times, only the first occurrence is used.

PRINT=YES|NO

Determines whether to write the message defined by the ID parameter to the log. This parameter is optional.

Note: Unless you specify PRINT=NO, a message directed to the operator console is also written to the log.

RESERVED=YES|NO

Determines whether to issue warning messages about reserved datasets. This parameter is optional.

ROUTCDE= routing_code

Specifies a particular routing code to be used when sending a message to the operator console. Default is no routing code. This parameter is optional.

UNMATCHED=YES|NO

Determines whether to issue warning messages about datasets that are not selected for processing. This parameter is optional.

Examples

```plaintext
MESSAGES RESERVED=NO,UNMATCHED=NO
```
MESSAGES ID=BCVU010I, CONSOLE=YES, DESC=3

PROCESS

Defines a unit for processing. For multivolume datasets, specify each volume in a separate PROCESS statement.

IMPORTANT
If PROCESS statements are present, then RENAME statements are required.

Syntax

```
PROCESS CUU=device, VOLSER=volser[, BOTH|VSAM|NON-VSAM]
```

Parameters

- **BOTH|VSAM|NON-VSAM**
 Specifies type of datasets to be processed: only VSAM datasets, only non-VSAM datasets, or both VSAM and non-VSAM datasets. This parameter is optional.

- **CUU=device**
 Specifies a device on the storage system. The device must be online.

- **VOLSER=volser**
 Specifies the volume serial number of the device.

Note: If you supply both volser and CUU, they must point to the same device.

Example

```
PROCESS CUU=F000, VSAM
```

RELABEL

Relabels a device with a new volser and brings it online, unless otherwise instructed by the OFFLINE parameter.

Relabeling updates the following information:

- The VVDS and VTOC index names
- The VVDS name entry
- The DSCBs

If a RELABEL statement is specified for a device that is online and already has the NEW-VOLSER (such as would occur in an accidental rerun), the RELABEL command is ignored, and a message is written to the log.

Syntax

```
RELABEL CUU=device, OLD-VOLSER=old, NEW-VOLSER=new[, OFFLINE]
```
Parameters

CUU=device
 The device to be relabeled.

NEW-VOLSER=new
 The new volser of the device.

OFFLINE
 Leaves the relabeled device offline. This parameter is optional.
 If a PROCESS statement for the new volser is also present in the run, the OFFLINE
 parameter is ignored.

OLD-VOLSER=old
 The current volser of the device.

Example

RELABEL CUU=F000,OLD-VOLSER=TSO001,NEW-VOLSER=BCV001

RENAME

Changes the high-level qualifier (HLQ) of datasets and recatalogs the datasets.
If no catalog is specified, then the default catalog is used. If there is no default catalog,
the program terminates.
If RENAME statements are present, PROCESS statements are required.
To use the renamed datasets, execute the DEFINE ALIAS command first.

Syntax

RENAME old_hlq,new_hlq[,CATALOG=catalog]

Parameters

CATALOG=catalog
 The catalog to which the newly renamed datasets are added. This parameter is
 optional.
 If you type one of the following words as the catalog_name:
 • SYSCTLG
 • SYSTEM_CATALOG
 • SYSTEMCATALOG
 TimeFinder Utility performs a lookup to determine the appropriate catalog, and the
dataset is then cataloged into the system catalog structure.

new_hlq
 The new HLQ to be used for all datasets that match the old_HLQ parameter.
 The new_hlq replaces the matching old_hlq characters. If the old_hlq or new_hlq
ends in an asterisk, then the strings are used as is. Otherwise, a period is added to
the string to make it an index level.
When `new_hlq` is the same as `old_hlq`, the datasets are only recataloged.

`old_hlq`

The current HLQ of all datasets to be renamed.

Note: If you use PROTECT ALL in RACF, the `old_hlq` must be defined in RACF.

Examples

- To rename datasets beginning with the string “SYS1.” by replacing “SYS1.” with “SYS1BCV.”:
  ```
  RENAME SYS1,SYS1BCV
  ```

- To rename datasets beginning with the string “SYS” by replacing “SYS” with “SYSBCV”:
  ```
  RENAME SYS*,SYSBCV*
  ```

- To catalog all BAP datasets on volumes being processed in the system catalog structure:
  ```
  RENAME BAP,CATALOG=SYSTEM_CATALOG
  ```

SIMULATE

Used to perform simulation runs.

SIMULATE does not change catalogs, but creates VVDSs or VTOCs.

If both RELABEL and PROCESS statements are included in a simulation run for the same device, the RELABEL command is simulated and the PROCESS statement is bypassed, because the device is not actually available until the RELABEL completes successfully.

Errors might occur during the actual RELABEL, or PROCESS operations might not be detected when SIMULATE is included in the job. Though no error occurred while processing a job with a SIMULATE statement, errors can be returned when the job is executed with SIMULATE.

Syntax

```
SIMULATE
```
SOURCECATALOG

Determines whether to use the source catalog of datasets to resolve issues regarding multivolume datasets, GDGs, and path names.

Syntax

```
SOURCECATALOG | SRCCAT DEFAULT | DFLT=YES | NO
[ , GENERATIONDATA|GDP | GDG=YES | NO ] [ , MVOL=YES | NO ] [ , PATH=YES | NO ] [ , DIRECT=YES | NO ]
```

Parameters

DEFAULT | DFLT=YES | NO

Sets the default option for whether to use the source catalog or not.

“YES” means that issues regarding multivolume datasets, GDGs, and path names are resolved based on the information from the source catalog.

This setting can be overridden for each specific area by optional parameters.

DIRECT=YES | NO

Determines whether TimeFinder Utility can directly access the source catalog during cleanup and the target catalog when cataloging datasets. This parameter is optional.

GDG=YES | NO

Determines whether to use the source catalog when creating GDG base entries in the target catalog. This parameter is optional.

When set to YES, the GDGBASE model statement is used to create GDG base entries based on the information from the source catalog. When set to NO, the GDGDFLT model statement is used to create a default GDG base.

Note: For information about IDCAMS model statements, see “IDCAMS model statements” on page 33.

MVOL=YES | NO

Determines whether to use the source catalog to obtain a list of volumes for a multivolume dataset. This parameter is optional.

When set to YES, the list of volumes is taken from the source catalog. When set to NO, the list of volumes can be created as follows:

- For VSAM datasets—based on the information found in the VVDS.
- For non-VSAM datasets—based on the DS1VOLSG field in the format 1 DSCB.

PATH=YES | NO

Determines whether to use the source catalog to define VSAM paths for a VSAM dataset in the target catalog. This parameter is optional.

When set to YES, TimeFinder Utility takes existing path definitions from the source catalog. When set to NO, TimeFinder Utility does not process paths.

Examples

```
SOURCECATALOG DEFAULT=NO, GDG=YES
SRCCAT MVOL=NO, GDG=NO, PATH=YES
```
Command sequence example

The following JCL example illustrates the use of the TimeFinder Utility command statements.

```
// JOB
// EMCTFU EXEC PGM=EMCTFU,REGION=4M
// TFINPUT DD SYSOUT=*  
RELABEL CUU=100,OLD-VOLSER=TSO000,NEW-VOLSER=BCV000
RELABEL CUU=101,OLD-VOLSER=TSO001,NEW-VOLSER=BCV001
RELABEL CUU=102,OLD-VOLSER=TSO002,NEW-VOLSER=BCV002
PROCESS VOLSER=BCV000
PROCESS VOLSER=BCV001,VSAM
PROCESS VOLSER=BCV002,NON-VSAM
CATALOG CATALOG.DEFAULT,DEFAULT
CATALOG CATALOG.TEMP,NEW,VOLSER=TSO001
RENAME SYS,SYSCBV,CATALOG=CATALOG.TEMP
RENAME TSO,TSO.ABC,CATALOG=CATALOG.TEMP
RENAME USER,USERBCV
RENAME USER1,USER1
/*
```

In this example, TimeFinder Utility completes the following steps:

1. Change volser for devices identified with CUUs 100, 101, 102 from TSO000, TSO001, TSO002 to BCV000, BCV001, BCV002.

2. Select datasets:
 - All datasets on volume BCV000
 - VSAM datasets on volume BCV001
 - Non-VSAM datasets on volume BCV002

3. Select catalogs:
 - Select the existing catalog named CATALOG.DEFAULT to be used as the default catalog for all RENAME commands that have no command reference.
 - Create a new catalog named CATALOG.TEMP on volume TSO001.

3. Perform the following operations with the selected datasets:
 - For datasets beginning with "SYS": replace "SYS" with "SYSCBV" and add the datasets to the catalog CATALOG.TEMP.
 - For datasets beginning with "TSO": replace "TSO" with "TSO.ABC" and add the datasets to the catalog CATALOG.TEMP.
 - For datasets beginning with "USER": replace "USER" with "USERBCV" and add the datasets to the CATALOG.DEFAULT catalog.
 - For datasets beginning with "USER1": add the datasets to the CATALOG.DEFAULT catalog.
IDCAMS model statements

In special cases, you may need to provide an IDCAMS statement to recatalog datasets. Typically, this is not required unless a password is to be supplied to complete the operation.

IDCAMS statements are specified in the TFMODEL DD statement of the TimeFinder Utility job JCL.

IMPORTANT
Each TimeFinder Utility TFMODEL DD statement may contain only one IDCAMS statement. Multiple IDCAMS statements are not rejected by TimeFinder Utility, but IDCAMS does not successfully process the command.

Syntax and parameters

`=name
 line1 -
 line2 -
 line_n
`=name
 line1 -
 line2 -
 line_n

Where:

=name

A string of up to 8 characters. Current valid names are:

CTLGNV
Catalog a non-VSAM dataset using its old name (non-SMS).

RECATNV
Recatalog a non-VSAM dataset using its old name (SMS).

RECATIX
Recatalog the VSAM indexed cluster using its old name.

RECATAI
Recatalog the VSAM alternate index using its old name.

RECATCL
Recatalog the VSAM cluster using its old name.

RECATPG
Recatalog a VSAM page dataset using its old name.

LISTCTLG
Catalog listing for cleanup.
UNCATLG

Remove entries from the catalog during cleanup.

NEWCATLG

Create a new ICF catalog (non-SMS).

SMSCATLG

Create a new ICF catalog (SMS).

DEFNPATH

Define a path for the cluster or an alternate index.

GDGDFLT

Default model to create a GDG base.

GDGBASE

Define a GDG base using information from the source catalog.

line#-

The lines following the =name card make up the IDCAMS statement.

Repeating blanks are eliminated. Columns 1-72 are parsed. If a dash (-) is encountered, parsing of that line is terminated.

Substitution values

The following embedded substitution values are supported:

%BASENAME% The base cluster name associated with an alternate index.
%CATALOGNAME% The catalog name from the RENAME statement or the default catalog.
%CLUSTERNAME% For a VSAM dataset, its cluster name.
%DATANAME% For a VSAM dataset, the data component name.
%DEVICELIST% For a non-VSAM dataset, the list of devices containing the dataset. The order is the same as the %VOLUMELIST%.
%DSNAME% The old name of the dataset.
%FILEDDNAME% The DDNAME of the first volume in the %VOLUMELIST%. The presence of the DDNAME parameter in IDCAMS statements improves performance.
%GDGATTR% GDG attributes: SCRATCH or NOSCRATCH or EMPTY or NOEMPTY.
%GDGBASE% The GDG base name.
%GDGLIMIT% GDG generation limit number.
%INDEXNAME% For a VSAM indexed dataset, the index component name.
%INDEXTYPE% For a VSAM dataset, its index type.
%INDEXVOLUMELIST% For a VSAM KSDS or AIX dataset, the list of volumes containing the index component.
%NEWNAME% The new name of the dataset.
%PAGEATTR% Page dataset attributes: blank or SWAP.
%VOLUMELIST% For a non-VSAM dataset, the list of volumes containing the dataset.
Default statements

=CTLGNV
DEFINE NONVSAM (NAME ('%DSNAME%') DEVICETYPE (%DEVICELIST%) -
VOLUMES (%VOLUMELIST%)) CATALOG ('%CATALOGNAME%')

=RECATNV
DEFINE NONVSAM (NAME ('%DSNAME%') RECATALOG -
DEVICETYPE (%DEVICELIST%) VOLUMES (%VOLUMELIST%) -
CATALOG ('%CATALOGNAME%')

=RECATIX
DEFINE CLUSTER (NAME ('%DSNAME%') -
%INDEXTYPE% RECATALOG FILE(%FILEDDNAME%)) -
DATA (NAME ('%DATANAME%') VOLUMES (%VOLUMELIST%) -
INDEX (NAME ('%INDEXNAME%') VOLUMES (%INDEXVOLUMELIST%)) -
CATALOG ('%CATALOGNAME%')

=RECATCL
DEFINE CLUSTER (NAME ('%DSNAME%') -
%INDEXTYPE% RECATALOG FILE(%FILEDDNAME%) -
VOLUMES (%VOLUMELIST%)) DATA (NAME ('%DATANAME%')) -
CATALOG ('%CATALOGNAME%')

=RECATAI
DEFINE ALTERNATEINDEX (NAME ('%DSNAME%') -
RELATE('%BASENAME%') RECATALOG FILE(%FILEDDNAME%)) -
DATA (NAME ('%DATANAME%') VOLUMES (%VOLUMELIST%) -
INDEX (NAME ('%INDEXNAME%') VOLUMES (%INDEXVOLUMELIST%)) -
CATALOG ('%CATALOGNAME%')

=RECATPG
DEFINE PAGESPACE (NAME ('%DSNAME%') -
RECATALOG FILE(%FILEDDNAME%) %PAGEATTR% -
VOLUMES (%VOLUMELIST%)) CATALOG ('%CATALOGNAME%')

=LISTCTLG
LISTCAT VOLUME CATALOG ('%CATALOGNAME%')

=UNCATLG
DELETE '%DSNAME%' NOSCRATCH PURGE CATALOG ('%CATALOGNAME%')

=NEWCATLG
DEFINE USERCATALOG -
(NAME('%CATALOGNAME%') CYLINDERS(1,1) VOL(%VOLUMELIST%) -
ICFCATALOG)

=SMSCATLG
DEFINE USERCATALOG -
(NAME('%CATALOGNAME%') CYLINDERS(1,1) VOL(*) -
ICFCATALOG)

=DEFNPATH
DEFINE PATH (NAME ('%DSNAME%') -
PATHENTRY('%BASENAME%')) CATALOG ('%CATALOGNAME%')

=GDGDFLT
DEFINE GENERATIONDATAGROUP (NAME ('%GDGBASE%') -
LIMIT(255) NOEMPTY NOSCRATCH) CATALOG ('%CATALOGNAME%')

=GDGBASE
DEFINE GENERATIONDATAGROUP (NAME ('%GDGBASE%') -
LIMIT(%GDGLIMIT%) %GDGATTR%) CATALOG ('%CATALOGNAME%')