Chapter 5 Configuring STP, RSTP, and MSTP using the CEE CLI

In this chapter 49

STP overview 49
Configuring STP on Brocade FCoE hardware 50

RSTP overview 51

MSTP overview 53
Configuring MSTP on Brocade FCoE hardware 54

STP, RSTP, and MSTP configuration guidelines and restrictions . 55

Default STP, RSTP, and MSTP configuration 55

STP, RSTP, and MSTP configuration and management 57
Enabling STP, RSTP, or MSTP 57
Disabling STP, RSTP, or MSTP 57
Shutting down STP, RSTP, or MSTP globally 57
Specifying the bridge priority 58
Specifying the bridge forward delay 58
Specifying the bridge maximum aging time 59
Enabling the error disable timeout timer 59
Specifying the error disable timeout interval 59
Specifying the port-channel path cost 60
Specifying the bridge hello time (STP and RSTP) . 60
Specifying the transmit hold count (RSTP and MSTP) 60
Enabling Cisco interoperability (MSTP) 61
Disabling Cisco interoperability (MSTP) 61
Mapping a VLAN to an MSTP instance 61
Specifying the maximum number of hops for a BPDU (MSTP) . 62
Chapter 8 Configuring ACLs using the CEE CLI

In this chapter ... 93
ACL overview ... 93
Default ACL configuration ... 94
ACL configuration guidelines and restrictions 94
ACL configuration and management 94
Creating a standard MAC ACL and adding rules 94
Creating an extended MAC ACL and adding rules 95
Modifying MAC ACL rules .. 95
Removing a MAC ACL ... 96
Reordering the sequence numbers in a MAC ACL 96
Applying a MAC ACL to a CEE interface 97
Applying a MAC ACL to a VLAN interface 97

Chapter 9 Configuring QoS using the CEE CLI

In this chapter ... 99
QoS overview ... 99
Rewriting ... 100
Queueing ... 100
User-priority mapping ... 100
Traffic class mapping ... 104
Congestion control ... 106
Tail drop ... 106
Ethernet pause ... 108
Ethernet Priority Flow Control 109
Multicast rate limiting ... 109
Scheduling .. 110
Strict priority scheduling ... 110
Deficit weighted round robin scheduling 111
Traffic class scheduling policy 111
Multicast queue scheduling .. 113
Converged Enhanced Ethernet map configuration 113
Chapter 10
Configuring 802.1x Port Authentication

In this chapter ... 119
802.1x protocol overview .. 119
802.1x configuration guidelines and restrictions 119
802.1x authentication configuration tasks 120
 Configure authentication between the switch and CNA or NIC 120
 Interface-specific administrative tasks for 802.1x 120
 Configuring 802.1x on specific interface ports 120
 Configuring 802.1x timeouts on specific interface ports ... 121
 Configuring 802.1x re-authentication on specific interface ports ... 121
 Disabling 802.1x on specific interface ports 121

Chapter 11
Configuring FCoE using the Fabric OS CLI

In this chapter ... 123
FCoE configuration guidelines and restrictions 123
 Managing and displaying the FCoE configuration 123
 Enabling or disabling an FCoE port 124
 Configuring FCMAP values for a VLAN 124
 Configuring FIP multicast advertisement intervals 124
 Clearing logins ... 125
 Displaying FCoE configuration-related information ... 125
 Managing and displaying the FCoE login configuration 125
 Enabling or disabling FCoE login configuration management 125
 Displaying or aborting the current configuration transaction. . 126
 Cleaning up login groups and VN_port mappings 126
 Displaying the FCoE login configuration 126
 Saving the current FCoE configuration 127
 Creating and managing the FCoE login group configuration . . 127
 Creating an FCoE login group 127
 Modifying the FCoE login group device list 128
 Deleting an FCoE login group 128
 Renaming an FCoE login group 128

Chapter 12
Administering the switch

In this chapter ... 129
CEE configuration management guidelines and restrictions ... 129
CEE configuration management tasks 129
Flash file management commands 130
Debugging and logging commands 131

Chapter 13
Configuring RMON using the CEE CLI

In this chapter ... 133
RMON overview .. 133
Index

RMON configuration and management ... 133
Default RMON configuration .. 133
Configuring RMON settings ... 133
Configuring RMON events ... 134
Configuring RMON Ethernet group statistics collection 134
Figures

Figure 1 FCoE switching and bridging .. 3
Figure 2 Brocade 8000 switch port side with CEE (blue) and FC (red) ports 5
Figure 3 Brocade 8000 switch logical view .. 5
Figure 4 FCOE10-24 FCoE blade ... 7
Figure 5 Multiple switch fabric configuration 8
Figure 6 CEE CLI command mode hierarchy 21
Figure 7 Adding the Brocade 8000 switch to the data center LAN (SAN not shown) . . 29
Figure 8 Configuring CEE attributes ... 31
Figure 9 CNA protocol stack .. 35
Figure 10 Ingress VLAN filtering ... 38
Figure 11 Configuring LAGs for a top-of-the-rack CEE switch—Example 1. 73
Figure 12 Configuring LAGs for a top-of-the-rack CEE switch—Example 2. 74
Figure 13 Queue depth ... 107
Figure 14 Strict priority schedule — two queues 111
Figure 15 WRR schedule — two queues ... 111
Figure 16 Strict priority and Weighted Round Robin scheduler 112
Tables

Table 1	FCoE terminology	1
Table 2	CEE RBAC permissions	20
Table 3	CEE CLI command modes	22
Table 4	CEE CLI keyboard shortcuts	23
Table 5	CEE CLI command output modifiers	25
Table 6	Default VLAN configuration	39
Table 7	STP versus RSTP state comparison	51
Table 8	Default STP, RSTP, and MSTP configuration	55
Table 9	Default MSTP configuration	56
Table 10	Default 10-Gigabit Ethernet CEE interface-specific configuration	56
Table 11	Default LACP configuration	76
Table 12	ETS priority grouping of IPC, LAN, and SAN traffic	84
Table 13	Default LLDP configuration	86
Table 14	Default MAC ACL configuration	94
Table 15	Default priority value of untrusted interfaces	101
Table 16	IEEE 802.1Q default priority mapping	101
Table 17	Default user priority for unicast traffic class mapping	104
Table 18	Default user priority for multicast traffic class mapping	104
Table 19	Supported scheduling configurations	112
Table 20	Multicast traffic class equivalence mapping	113
Table 21	Default CEE Priority Group Table configuration	114
Table 22	Default CEE priority table	114
Table 23	CEE configuration management commands	130
Table 24	CEE Flash memory file management commands	130
Table 25	Debugging and logging commands	131
About This Document

In this chapter

- How this document is organized xv
- Supported hardware and software xvi
- What's new in this document xvii
- Document conventions xvii
- Notice to the reader xviii
- Additional information xix
- Getting technical help xix
- Document feedback xx

How this document is organized

This document is organized to help you find the information that you want as quickly and easily as possible.

The document contains the following components:

- Chapter 1, “Introducing FCoE,” provides an overview of Fibre Channel over Ethernet (FCoE) on the Brocade FCoE hardware.
- Chapter 2, “Using the CEE CLI,” describes the Converged Enhanced Ethernet (CEE) CLI.
- Chapter 4, “Configuring VLANs Using the CEE CLI,” describes how to configure VLANs.
- Chapter 5, “Configuring STP, RSTP, and MSTP using the CEE CLI,” describes how to configure the Spanning Tree Protocol (STP), Rapid STP (RSTP), and Multiple STP (MSTP).
- Chapter 6, “Configuring Link Aggregation using the CEE CLI,” describes how to configure Link Aggregation and Link Aggregation Control Protocol (LACP).
- Chapter 7, “Configuring LLDP using the CEE CLI,” describes how to configure the Link Layer Discovery Protocol (LLDP) and the Data Center Bridging (DCB) Capability Exchange Protocol (DCBX).
- Chapter 8, “Configuring ACLs using the CEE CLI,” describes how to configure Access Control Lists (ACLs).
- Chapter 9, “Configuring QoS using the CEE CLI,” describes how to configure Quality of Service (QoS).
- Chapter 10, “Configuring 802.1x Port Authentication,” describes how to configure the 802.1x Port Authentication protocol.
• Chapter 11, “Configuring FCoE using the Fabric OS CLI,” describes how to configure FCoE using the FOS CLI.
• Chapter 12, “Administering the switch,” describes how to perform the administrative tasks required by the Brocade FCoE hardware.
• Chapter 13, “Configuring RMON using the CEE CLI,” describes how to configure remote monitoring (RMON).

Supported hardware and software

This document includes updated information specific to Fabric OS 6.3.0. The following hardware platforms are supported in this release:

• Brocade 300
• Brocade 4100
• Brocade 4900
• Brocade 5000
• Brocade 5100
• Brocade 5300
• Brocade 5410
• Brocade 5424
• Brocade 5450
• Brocade 5480
• Brocade 5700
• Brocade 7500
• Brocade 7500E
• Brocade 7600
• Brocade 7800
• Brocade 8000
• Brocade Encryption Switch
• Brocade DCX
• Brocade DCX-4S
• Brocade 48000
• Brocade FCOE10-24 port blade

Within this manual, any appearance of the term “Brocade FCoE hardware” is referring to:

• Brocade 8000
• Brocade FCOE10-24 port blade

Although many different software and hardware configurations are tested and supported by Brocade Communications Systems, Inc. for Fabric OS 6.3.0, documenting all possible configurations and scenarios is beyond the scope of this document.

To obtain information about an OS version other than 6.3.0, refer to the documentation specific to that OS version.
What’s new in this document

This document has been updated for 6.3.0.
The following information was added:

- New chapter on common integration and configuration tasks.
- New chapter on configuring the 802.1x port authentication protocol.

For further information about new features and documentation updates for this release, refer to the release notes.

Document conventions

This section describes text formatting conventions and important notice formats used in this document.

Text formatting

The narrative-text formatting conventions that are used are as follows:

<table>
<thead>
<tr>
<th>Text</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bold text</td>
<td>Identifies command names</td>
</tr>
<tr>
<td>bold</td>
<td>Identifies the names of user-manipulated GUI elements</td>
</tr>
<tr>
<td>bold</td>
<td>Identifies keywords and operands</td>
</tr>
<tr>
<td>bold</td>
<td>Identifies text to enter at the GUI or CLI</td>
</tr>
<tr>
<td>italic text</td>
<td>Provides emphasis</td>
</tr>
<tr>
<td>italic</td>
<td>Identifies variables</td>
</tr>
<tr>
<td>italic</td>
<td>Identifies paths and Internet addresses</td>
</tr>
<tr>
<td>italic</td>
<td>Identifies document titles</td>
</tr>
<tr>
<td><code>code</code> text</td>
<td>Identifies CLI output</td>
</tr>
<tr>
<td><code>code</code></td>
<td>Identifies command syntax examples</td>
</tr>
</tbody>
</table>

For readability, command names in the narrative portions of this guide are presented in mixed lettercase: for example, switchShow. In actual examples, command lettercase is often all lowercase. Otherwise, this manual specifically notes those cases in which a command is case sensitive.

Command syntax conventions

Command syntax in this manual follows these conventions:

- **command** Commands are printed in bold.
- **--option, option** Command options are printed in bold.
- **-argument, arg** Arguments.
- **[]** Optional element.
- **variable** Variables are printed in italics. In the help pages, values are underlined or enclosed in angled brackets < >.
Notes, cautions, and warnings

The following notices and statements are used in this manual. They are listed below in order of increasing severity of potential hazards.

NOTE
A note provides a tip, guidance or advice, emphasizes important information, or provides a reference to related information.

ATTENTION
An Attention statement indicates potential damage to hardware or data.

CAUTION
A Caution statement alerts you to situations that can be potentially hazardous to you or cause damage to hardware, firmware, software, or data.

DANGER
A Danger statement indicates conditions or situations that can be potentially lethal or extremely hazardous to you. Safety labels are also attached directly to products to warn of these conditions or situations.

Key terms

For definitions specific to Brocade and Fibre Channel, see the technical glossaries on Brocade Connect. See “Brocade resources” on page xix for instructions on accessing Brocade Connect.

For terminology specific to this document, see “FCoE terminology” on page 1.

For definitions of SAN-specific terms, visit the Storage Networking Industry Association online dictionary at:

http://www.snia.org/education/dictionary

Notice to the reader

This document may contain references to the trademarks of the following corporations. These trademarks are the properties of their respective companies and corporations.
These references are made for informational purposes only.

<table>
<thead>
<tr>
<th>Corporation</th>
<th>Referenced Trademarks and Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Additional information

This section lists additional Brocade and industry-specific documentation that you might find helpful.

Brocade resources

To get up-to-the-minute information, go to http://my.brocade.com and register at no cost for a user ID and password.

For practical discussions about SAN design, implementation, and maintenance, you can obtain *Building SANs with Brocade Fabric Switches* through:

http://www.amazon.com

White papers, online demos, and data sheets are available through the Brocade Web site at:

For additional Brocade documentation, visit the Brocade Web site:

http://www.brocade.com

Release notes are available on the Brocade Connect Web site and are also bundled with the Fabric OS firmware.

Other industry resources

For additional resource information, visit the Technical Committee T11 Web site. This Web site provides interface standards for high-performance and mass storage applications for Fibre Channel, storage management, and other applications:

http://www.t11.org

For information about the Fibre Channel industry, visit the Fibre Channel Industry Association Web site:

http://www.fibrechannel.org

Getting technical help

Contact your switch support supplier for hardware, firmware, and software support, including product repairs and part ordering. To expedite your call, have the following information available:

1. **General Information**
 - Switch model
• Switch operating system version
• Software name and software version, if applicable
• Error numbers and messages received
• supportSave command output
• Detailed description of the problem, including the switch or fabric behavior immediately following the problem, and specific questions
• Description of any troubleshooting steps already performed and the results
• Serial console and Telnet session logs
• syslog message logs

2. Switch Serial Number

The switch serial number and corresponding bar code are provided on the serial number label, as illustrated below:

FT00X0054E9

The serial number label is located as follows:

• Brocade 300, 4100, 4900, 5100, 5300, 7500, 7800, 8000, and Brocade Encryption Switch—On the switch ID pull-out tab located inside the chassis on the port side on the left
• Brocade 5000—On the switch ID pull-out tab located on the bottom of the port side of the switch
• Brocade 7600—On the bottom of the chassis
• Brocade 48000—Inside the chassis next to the power supply bays
• Brocade DCX—On the bottom right on the port side of the chassis
• Brocade DCX-4S—On the bottom right on the port side of the chassis, directly above the cable management comb.

3. World Wide Name (WWN)

Use the licenseIdShow command to display the WWN of the chassis.

If you cannot use the licenseIdShow command because the switch is inoperable, you can get the WWN from the same place as the serial number, except for the Brocade DCX. For the Brocade DCX, access the numbers on the WWN cards by removing the Brocade logo plate at the top of the nonport side of the chassis.

Document feedback

Quality is our first concern at Brocade and we have made every effort to ensure the accuracy and completeness of this document. However, if you find an error or an omission, or you think that a topic needs further development, we want to hear from you. Forward your feedback to:

documentation@brocade.com

Provide the title and version number of the document and as much detail as possible about your comment, including the topic heading and page number and your suggestions for improvement.
Introducing FCoE

In this chapter

- FCoE terminology ... 1
- FCoE overview ... 1
- Layer 2 Ethernet overview .. 8
- FCoE Initialization Protocol .. 13
- FCoE queuing ... 17

FCoE terminology

Table 1 lists and describes the FCoE terminology used in this document.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCoE</td>
<td>Fibre Channel over Ethernet</td>
</tr>
<tr>
<td>CEE</td>
<td>Converged Enhanced Ethernet</td>
</tr>
<tr>
<td>VN_port</td>
<td>FCoE equivalent of an FC N_port</td>
</tr>
<tr>
<td>VF_port</td>
<td>FCoE equivalent of an FC F_port</td>
</tr>
<tr>
<td>ENode</td>
<td>An FCoE device that supports FCoE VN_ports (servers and target devices)</td>
</tr>
<tr>
<td>FCoE Forwarder (FCF)</td>
<td>An FCoE link end point that provides FC fabric services</td>
</tr>
</tbody>
</table>

FCoE overview

Fibre Channel over Ethernet (FCoE) enables you to transport FC protocols and frames over Converged Enhanced Ethernet (CEE) networks. CEE is an enhanced Ethernet that enables the convergence of various applications in data centers (LAN, SAN, and HPC) onto a single interconnect technology.

FCoE provides a method of encapsulating the Fibre Channel (FC) traffic over a physical Ethernet link. FCoE frames use a unique EtherType that enables FCoE traffic and standard Ethernet traffic to be carried on the same link. FC frames are encapsulated in an Ethernet frame and sent from one FCoE-aware device across an Ethernet network to a second FCoE-aware device. The FCoE-aware devices may be FCoE end nodes (ENodes) such as servers, storage arrays, or tape drives on one end and FCoE Forwarders on the other end. FCoE Forwarders (FCFs) are switches providing FC fabric services and FCoE-to-FC bridging.
The motivation behind using CEE networks as a transport mechanism for FC arises from the desire to simplify host protocol stacks and consolidate network interfaces in data center environments. FC standards allow for building highly reliable, high-performance fabrics for shared storage, and these characteristics are what CEE brings to data centers. Therefore, it is logical to consider transporting FC protocols over a reliable CEE network in such a way that it is completely transparent to the applications. The underlying CEE fabric is highly reliable and high performing, the same as the FC SAN.

In FCoE, ENodes discover FCFs and initialize the FCoE connection through the FCoE Initialization Protocol (FIP). The FIP has a separate EtherType from FCoE. The FIP includes a discovery phase in which ENodes solicit FCFs, and FCFs respond to the solicitations with advertisements of their own. At this point, the ENodes know enough about the FCFs to log into them. The fabric login and fabric discovery (FLOGI/FDISC) for VN-to-VF port connections is also part of the FIP.

NOTE
With pre-FIP implementations, as an alternative to FIP, directly connected devices can send an FCoE-encapsulated FLOGI to the connected FCF.

FCoE hardware

At a fundamental level, FCoE is designed to enable the transport of storage and networking traffic over the same physical link. Utilizing this technology, the Brocade 8000 switch and the Brocade FCOE10-24 port blade provide a unique platform that connects servers to both LAN and SAN environments.

Within this manual, any appearance of the term “Brocade FCoE hardware” is referring to the following hardware:

- Brocade 8000 switch
- Brocade FCOE10-24 port blade

FIGURE 1 FCoE switching and bridging

Brocade 8000 switch features

The Brocade 8000 switch has the following features:
- Twenty-four 10-Gigabit Ethernet ports (CEE ports)
- Eight 8-Gigabit FC ports
- Ethernet switching capability
- FC switching capability
- FCoE capability, including:
 - FIP discovery
 - FIP login
 - Pre-standard FCoE login
 - FCoE fabric services
 - FCoE-to-FC bridging capabilities

NOTE

The intermediate switching devices in the CEE network do not have to be FCoE-aware. They simply route the FCoE traffic to the FCoE device based on the Ethernet destination address in the FCoE frame.
FCoE services include:

- FC fabric services for FCoE VN_port devices. FCoE VF_port services provide access to FCoE VN_port devices similar to those provided by FC F_port to FC N_port devices.
- FCoE-to-FC switching and translation services:
 - FCoE servers to/from FC targets.
 - FCoE targets to/from FC servers.

FCoE features include:

- FIP—Solicited FCF advertisements (per June 10, 2008 version of T11-FC-BB5).
- FCoE FLOGI.
- VF_ports.
- N_port ID virtualization (NPIV) on VF_ports, up to 1024 devices per FCF.

NOTE

NPIV is an FC facility allowing multiple N_port IDs to share a single physical N_port. This allows multiple FC initiators to occupy a single physical port.

- For FCoE ENodes, there is support for only directly connected links.
- Flow isolation.

NOTE

The Brocade 8000 switch supports only directly connected FCoE devices and complies with the October 8, 2008 version of the TC T11 specification for the FC-BB-5 standard.

Brocade 8000 switch licensing

The default software licenses are installed on the Brocade 8000 switch at the factory. The default licenses are the:

- POD license that enables all eight FC ports.
- FCoE license that enables FCoE bridging and FCF capabilities.

NOTE

Do not remove these licenses. If there is no FCoE license on the switch, all FCoE bridging, configuration, and FCF is disabled. If there is no POD license, all of the FC ports are disabled.

Brocade 8000 logical connectivity

The Brocade 8000 switch is a Layer 2, 32-port, 1U form factor top-of-rack (ToR) switch with:

- 24 x low-latency 10 GbE CEE ports that support FCoE and provide line-rate, low-latency, lossless, and deterministic interconnect based on the Brocade 10 Gbps FCoE cut-through switching technology
- 8 x 8 Gbps FC, auto-sensing 1, 2, 4 or 8 Gbps ports that deliver the latest Brocade FC technology

In the rack, the Brocade 8000 switch connects to servers with Converged Network Adaptors (CNAs), such as the Brocade 1010/1020 single- and dual-port CNAs. FCoE traffic over CEE links between a CNA and the Brocade 8000 enables storage connectivity, while IP traffic over the same CEE links provides connectivity to the data center LAN.
In addition to FCoE capabilities, the Brocade 8000 switch also implements complete Fibre Channel Protocol (FCP) and Fiber Channel Forwarding (FCF) capabilities and delivers Advanced Fabric Services found in other Brocade FC switches.

FIGURE 2 Brocade 8000 switch port side with CEE (blue) and FC (red) ports

Figure 3 shows a logical view of the Brocade 8000 switch. There are two independent switches, one for CEE and the other for FC. There are six embedded FCoE virtual ports bridging the two switches. Each of these is a 10-Gigabit FCoE port. The Fabric OS has FCoE-specific CLI commands for the configuration and management of these FCoE ports.

FCoE ports differ from the usual concept of a port in a Brocade switch. FCoE ports are embedded and are not directly associated with an external physical port on the switch. Configuration of the FCoE ports through the regular Fabric OS FC CLI is disabled; only the Fabric OS `fcoe` CLI commands can be used to configure and manage these ports.

The FCoE ports are displayed as “ports” in some `show` command displays. The data displayed for a single FCoE port is the sum of the individual ports comprising the FCoE port. CEE statistics are not shown for the FCoE ports.

NOTE
In the Fabric OS CLI the FCoE ports can be enabled or disabled; there is no other configuration required.

Each of the embedded FCoE ports is used explicitly for FCoE VF_port service and provides four MAC addresses and flow isolation for up to four flows per FCoE port.

FIGURE 3 Brocade 8000 switch logical view

The FCoE VF_ports provide FC services to FCoE initiators and targets, as well as an FCoE-to-FC bridging service that allows FCoE initiators to access FC targets and conversely, allows FC targets to access FCoE initiators.

Brocade’s implementation of FCoE for the Brocade 8000 switch provides integral N_port ID virtualization (NPIV) support. Multiple VN_port devices can log in to a single FCoE VF_port interface. Up to 1,000 VN_port devices can log in to a single Brocade 8000 switch.
Each of the embedded FCoE ports supports four logical traffic paths. These four logical traffic paths share the FCoE port bandwidth. Any single traffic path may use the entire 10-Gbps of FCoE port bandwidth if available, but it must share the bandwidth equally with the other logical path traffic flows if more than one is active. The bandwidth available to any single logical traffic path (and therefore any single FCoE-to-FC traffic flow) is between 2.5 Gbps and 10 Gbps.

While they share the FCoE port bandwidth, the logical traffic paths are independent from one another in the event of downstream congestion. If the traffic flowing on one logical path stalls because of congestion, the traffic flowing on the other logical paths on the same FCoE port is not affected. Note however, that a logical traffic path is not limited to a single FCoE-to-FC traffic flow. If multiple traffic flows are sharing the same logical traffic path, congestion independence between the flows cannot be enforced.

FCOE10-24 blade

The FCOE10-24 blade has 24 Fibre Channel over Ethernet (FCoE) ports that enables the transmission of FC frames over an Ethernet network via encapsulation in standard Ethernet packets. This is enabled by adherence to Converged Enhanced Ethernet (CEE) standards, a low latency, lossless Ethernet standard. This does not require dedicated Ethernet lines, but rather can make use of existing Ethernet infrastructure to reduce costs.

The FCOE10-24 blade supports only optical cabling and transceivers (SFP+).

There are no licensing requirements for functionality on this blade.

Refer to the *Fabric OS Administrator’s Guide* for information on configuring these features.

The FCOE10-24 blade provides the following hardware features:

- 24 FCoE ports operating at 10 Gbps
- 32 FC ports operating at 8-Gbps through the backplane
- Hot pluggable
- **I**\(^2\)C Management interface through the backplane
- JTAG support
- Blade power and status LEDs
- Link status LEDs per port

The FCOE10-24 blade also provides the following functionality features:

- FCoE switching
- CEE switching
- L2 Ethernet protocols STP/MSTP/RSTP, 802.1q, and Link Aggregation (802.1ad)
- Standard Ethernet encapsulation
- End of row deployment

FIGURE 4 FCOE10-24 FCoE blade

1. 10 GbE FCoE ports 12-23
2. 10 GbE FCoE ports 0-11
3. Power LED
4. Status LED
Layer 2 Ethernet overview

The Brocade FCoE hardware contain CEE ports that support FCoE forwarding. The CEE ports are also backwards compatible and support classic Layer 2 Ethernet networks (see Figure 5). In Layer 2 Ethernet operation, a host with a Converged Network Adapter (CNA) can be directly attached to a CEE port on the Brocade FCoE hardware. Another host with a classic 10-Gigabit Ethernet NIC can be either directly attached to a CEE port, or attached to a classic Layer 2 Ethernet network which is attached to the Brocade FCoE hardware.

FIGURE 5 Multiple switch fabric configuration

Layer 2 forwarding

Layer 2 Ethernet frames are forwarded on the CEE ports. 802.1Q VLAN support is used to tag incoming frames to specific VLANs, and 802.3ac VLAN tagging support is used to accept VLAN tagged frames from external devices. The 802.1D Spanning Tree Protocol (STP), Rapid Spanning Tree Protocol (RSTP), and Multiple Spanning Tree Protocol (MSTP) are used as the bridging protocols between Layer 2 switches.
The Brocade FCoE hardware handles Ethernet frames as follows:

- When the destination MAC address is not in the lookup table, the frame is flooded on all ports except the ingress port.
- When the destination MAC address is present in the lookup table, the frame is switched only to the correct egress port.
- When the destination MAC address is present in the lookup table, and the egress port is the same as the ingress port, the frame is dropped.
- If the Ethernet Frame Check Sequence (FCS) is incorrect, because the switch is in cut-through mode, a correctly formatted Ethernet frame is sent out with an incorrect FCS.
- If the Ethernet frame is too short, the frame is discarded and the error counter is incremented.
- If the Ethernet frame is too long, the frame is discarded and the error counter is incremented.
- Frames sent to a broadcast destination MAC address are flooded on all ports except the ingress port.
- When MAC address entries in the lookup table time out, they are removed. In this event, frame forwarding changes from unicast to flood.
- An existing MAC address entry in the lookup table is discarded when a device is moved to a new location. When a device is moved, the ingress frame from the new port causes the old lookup table entry to be discarded and the new entry inserted into the lookup table. Frame forwarding remains unicast to the new port.
- When the lookup table is full, new entries replace the oldest MAC addresses after the oldest MAC addresses age and time out. MAC addresses that still have traffic running are not timed out.

NOTE
New entries start replacing older entries when the lookup table reaches 90 percent of its 32k capacity.

VLAN tagging

The Brocade FCoE hardware handles VLAN tagging as follows:

- If the CEE port is configured to tag incoming frames with a single VLAN ID, then incoming frames that are untagged are tagged with the VLAN ID.
- If the CEE port is configured to tag incoming frames with multiple VLAN IDs, then incoming frames that are untagged are tagged with the correct VLAN ID based on the port setting.
- If the CEE port is configured to accept externally tagged frames, then incoming frames that are tagged with a VLAN ID are passed through unchanged.

NOTE
To make a VLAN FCoE-capable, you must enable the forwarding of FCoE traffic on the VLAN interface by entering the `fcf forward` CEE CLI command on the VLAN interface.

NOTE
Only a single switch-wide VLAN is capable of forwarding FCoE traffic.

For detailed information on configuring VLANs, see “Configuring VLANs Using the CEE CLI” on page 37.
Loop-free network environment

The Brocade FCoE hardware uses the following protocols to maintain a loop-free network environment:

- 802.1D Spanning Tree Protocol (STP)—STP is required to create a loop-free topology in the LAN.
- Rapid Spanning Tree Protocol (RSTP)—RSTP evolved from the 802.1D STP standard. RSTP provides for a faster spanning tree convergence after a topology change.
- Multiple Spanning Tree Protocol (MSTP)—MSTP defines an extension to RSTP to further develop the usefulness of VLANs. With per-VLAN MSTP, you can configure a separate spanning tree for each VLAN group. The protocol automatically blocks the links that are redundant in each spanning tree.

Using MSTP, you can create multiple loop-free active topologies on a single physical topology. These loop-free topologies are mapped to a set of configurable VLANs. This enables you to better utilize the physical resources present in the network and achieve better load balancing of VLAN traffic.

For detailed information on configuring these protocols, see “Configuring STP, RSTP, and MSTP using the CEE CLI” on page 49.

Frame classification (incoming)

The Brocade FCoE hardware is capable of classifying incoming Ethernet frames based on the following criteria:

- Port number
- Protocol
- MAC address

The classified frames can be tagged with a VLAN ID or with 802.1p Ethernet priority. The 802.1p Ethernet priority tagging is done using the Layer 2 Class of Service (CoS). The 802.1p Ethernet priority is used to tag frames in a VLAN with a Layer 2 CoS to prioritize traffic in the VLAN. The Brocade FCoE hardware also accepts frames that have been tagged by an external device.

Frame classification options are as follows:

- VLAN ID and Layer 2 CoS by physical port number—With this option, the port is set to classify incoming frames to a preset VLAN ID and the Layer 2 CoS by the physical port number on the Brocade FCoE hardware.
- VLAN ID and Layer 2 CoS by LAG virtual port number—With this option, the port is set to classify incoming frames to a preset VLAN ID and Layer 2 CoS by the Link Aggregation Group (LAG) virtual port number.
- Layer 2 CoS mutation—With this option, the port is set to change the Layer 2 CoS setting by enabling the QoS mutation feature.
- Layer 2 CoS trust—With this option, the port is set to accept the Layer 2 CoS of incoming frames by enabling the QoS trust feature.

For detailed information on configuring QoS, see “Configuring QoS using the CEE CLI” on page 99.
Congestion control and queuing

The Brocade FCoE hardware supports several congestion control and queuing strategies. As an output queue approaches congestion, Random Early Detection (RED) is used to selectively and proactively drop frames to maintain maximum link utilization. Incoming frames are classified into priority queues based on the Layer 2 CoS setting of the incoming frame, or the possible rewriting of the Layer 2 CoS field based on the settings of the CEE port or VLAN.

The Brocade FCoE hardware supports a combination of two scheduling strategies to queue frames to the egress ports; Priority queuing, which is also referred to as strict priority, and Deficit Weighted Round Robin (DWRR) queuing.

The scheduling algorithms work on the eight traffic classes as specified in 802.1Qaz Enhanced Transmission Selection (ETS).

Queuing features are described as follows:

- **RED**—RED increases link utilization. When multiple inbound TCP traffic streams are switched to the same outbound port, and some traffic streams send small frames while other traffic streams send large frames, link utilization will not be able to reach 100 percent. When RED is enabled, link utilization approaches 100 percent.

- **Classification**—Setting user priority.
 - Inbound frames are tagged with the user priority set for the inbound port. The tag is visible when examining the frames on the outbound port. By default, all frames are tagged to priority zero.
 - Externally tagged Layer 2 frames—When the port is set to accept externally tagged Layer 2 frames, the user priority is set to the Layer 2 CoS of the inbound frames.

- **Queuing**
 - Input queuing—Input queuing optimizes the traffic flow in the following way. Suppose a CEE port has inbound traffic that is tagged with several priority values, and traffic from different priority settings is switched to different outbound ports. Some outbound ports are already congested with background traffic while others are uncongested. With input queuing, the traffic rate of the traffic streams switched to uncongested ports should remain high.

 - Output queuing—Output queuing optimizes the traffic flow in the following way. Suppose that several ports carry inbound traffic with different priority settings. Traffic from all ports is switched to the same outbound port. If the inbound ports have different traffic rates, some outbound priority groups will be congested while others can remain uncongested. With output queuing, the traffic rate of the traffic streams that are uncongested should remain high.

 - Multicast rate limit—A typical multicast rate limiting example is where several ports carry multicast inbound traffic that is tagged with several priority values. Traffic with different priority settings is switched to different outbound ports. The multicast rate limit is set so that the total multicast traffic rate on output ports is less than the specified set rate limit.

 - Multicast input queuing—A typical multicast input queuing example is where several ports carry multicast inbound traffic that is tagged with several priority values. Traffic with different priority settings is switched to different outbound ports. Some outbound ports are already congested with background traffic while others are uncongested. The traffic rate of the traffic streams switched to the uncongested ports should remain high. All outbound ports should carry some multicast frames from all inbound ports. This enables multicast traffic distribution relative to the set threshold values.
Layer 2 Ethernet overview

- Multicast output queuing—A typical multicast output queuing example is where several ports carry multicast inbound traffic. Each port has a different priority setting. Traffic from all ports is switched to the same outbound port. If the inbound ports have varying traffic rates, some outbound priority groups will be congested while others remain uncongested. The traffic rate of the traffic streams that are uncongested remains high. The outbound ports should carry some multicast frames from all the inbound ports.

- Scheduling—A typical example of scheduling policy (using SP0 and SP1 modes) is where ports 0 through 7 carry inbound traffic, each port has a unique priority level, port 0 has priority 0, port 1 has priority 1, and so on. All traffic is switched to the same outbound port. In SP0 mode, all ports have DWRR scheduling; therefore, the frames-per-second (FPS) on all ports should correspond to the DWRR settings. In SP1 mode, priority 7 traffic uses SP; therefore, priority 7 can achieve a higher FPS. Frames from input ports with the same priority level should be scheduled in a round robin manner to the output port.

When setting the scheduling policy, each priority group that is using DWRR scheduling can be set to use a percentage of the total bandwidth by setting the PG_Percentage parameter.

For detailed information on configuring QoS, see “Configuring QoS using the CEE CLI” on page 99.

Access control

Access Control Lists (ACLs) are used for Layer 2 switching security. Standard ACLs inspect the source address for the inbound ports. Extended ACLs provide filtering by source and destination addresses and protocol. ACLs can be applied to the CEE ports or to VLANs.

ACLs function as follows:

- A standard Ethernet ACL configured on a physical port is used to permit or deny frames based on the source MAC address. The default is to permit all frames.
- An extended Ethernet ACL configured on a physical port is used to permit or deny frames based on the source MAC address, destination MAC address, and EtherType. The default is to permit all frames.
- A standard Ethernet ACL configured on a LAG virtual port is used to permit or deny frames based on the source MAC address. The default is to permit all frames. LAG ACLs apply to all ports in the LAG.
- An extended Ethernet ACL configured on a LAG virtual port is used to permit or deny frames based on the source MAC address, destination MAC address, and EtherType. The default is to permit all frames. LAG ACLs apply to all ports in the LAG.
- A standard Ethernet ACL configured on a VLAN is used to permit or deny frames based on the source MAC address. The default is to permit all frames. VLAN ACLs apply to the Switch Vertical Interface (SVI) for the VLAN.
- An extended Ethernet ACL configured on a VLAN is used to permit or deny frames based on the source MAC address, destination MAC address, and EtherType. The default is to permit all frames. VLAN ACLs apply to the Switch Vertical Interface (SVI) for the VLAN.

For detailed information on configuring ACLs, see “Configuring ACLs using the CEE CLI” on page 93.
Trunking

NOTE
The term “trunking” in an Ethernet network refers to the use of multiple network links (ports) in parallel to increase the link speed beyond the limits of any one single link or port, and to increase the redundancy for higher availability.

802.1ab Link Layer Discovery Protocol (LLDP) is used to detect links to connected switches or hosts. Trunks can then be configured between an adjacent switch or host and the Brocade FCoE hardware using the VLAN classifier commands. See “Configuring an interface port as a trunk interface” on page 42.

The Data Center Bridging (DCB) Capability Exchange Protocol (DCBX) extension is used to identify a CEE-capable port on an adjacent switch or host. For detailed information on configuring LLDP and DCBX, see “Configuring LLDP using the CEE CLI” on page 81.

The 802.3ad Link Aggregation Control Protocol (LACP) is used to combine multiple links to create a trunk with the combined bandwidth of all the individual links. For detailed information on configuring LACP, see “Configuring Link Aggregation using the CEE CLI” on page 71.

NOTE
The Brocade software supports a maximum 24 LAG interfaces.

Flow Control

802.3x Ethernet pause and Ethernet Priority-based Flow Control (PFC) are used to prevent dropped frames by slowing traffic at the source end of a link. When a port on a switch or host is not ready to receive more traffic from the source, perhaps due to congestion, it sends pause frames to the source to pause the traffic flow. When the congestion has been cleared, it stops requesting the source to pause traffic flow, and traffic resumes without any frame drop.

When Ethernet pause is enabled, pause frames are sent to the traffic source. Similarly, when PFC is enabled, there is no frame drop; pause frames are sent to the source switch.

For detailed information on configuring Ethernet pause and PFC, see “Configuring QoS using the CEE CLI” on page 99.

FCoE Initialization Protocol

The FCoE Initialization Protocol (FIP) discovers and initializes FCoE capable entities connected to an Ethernet cloud through a dedicated Ethertype, 0x8914, in the Ethernet frame.

FIP discovery

NOTE
This software version supports the October 8, 2008 (REV 1.03) of the ANSI FC Backbone Specification with priority-tagged FIP VLAN discovery protocol and FIP version 0. This release does not support FIP Keep Alive.

The Brocade FCoE hardware FIP discovery phase operates as follows:
The Brocade FCoE hardware uses the FCoE Initialization Protocol (FIP). Enodes discover FCFs and initialize the FCoE connection through the FIP.

VF_port configuration—An FCoE port accepts Enode requests when it is configured as a VF_port and enabled. An FCoE port does not accept ENode requests when disabled.

Solicited advertisements—A typical scenario is where a Brocade FCoE hardware receives a FIP solicitation from an Enode. Replies to the original FIP solicitation are sent to the MAC address embedded in the original FIP solicitation. After being accepted, the Enode is added to the VN_port table.

Login group—When enabled, replies to solicitations are sent only by Brocade FCoE hardware that have the Enode in the login group.

FCF forwarding—The Brocade FCoE hardware forwards FIP frames only when the VLAN is set to FCF forwarding mode.

VLAN 1—The Brocade FCoE hardware should not forward FIP frames on VLAN 1 because it is reserved for management traffic only.

A fabric-provided MAC address is supported. A server-provided MAC-address is not supported in the Fabric OS v6.3.0 release.

NOTE
In the fabric-provided MAC address format, VN_port MAC addresses are based on a 24-bit fabric-supplied value. The first three bytes of this value is referred to as the FCMAP. The next three bytes are the FC ID, which is assigned by the switch when the Enode logs in to the switch.

FIP login

FIP login operates as follows:

- ENodes can log in to the Brocade FCoE hardware using FIP. Fabric login (FLOGI) and fabric discovery (FDISC) are accepted. Brocade FCoE hardware in the fabric maintain the MAC address, World Wide Name (WWN), and PID mappings per login. Each Enode port should have a unique MAC address and WWN.

- FIP FLOGI—The Brocade FCoE hardware accepts the FIP FLOGI from the Enode. The FIP FLOGI acceptance (ACC) is sent to the Enode if the Enode MAC address or WWN matches the VN_port table on the Brocade FCoE hardware. The FIP FLOGI request is rejected if the Enode MAC address or WWN does not match. The Enode login is added to the VN_port table. Fabric Provided MAC addressing (FPMA) is supported.

- FIP FDISC—The Brocade FCoE hardware accepts FIP FDISC from the Enode. FIP FDISC acceptance (ACC) is sent to the Enode if the Enode MAC address or WWN matches the VN_port table on the Brocade FCoE hardware. The FIP FDISC request is rejected if the Enode MAC address or WWN does not match. The Enode login is added to the VN_port table. FPMA is supported.

- Maximum logins per VF_port—The Brocade FCoE hardware supports a maximum of 255 logins per VF_port. The VF_port rejects further logins after the maximum is reached.

- Maximum logins per switch—The Brocade FCoE hardware accepts a maximum of 1024 logins per switch. Note that the Brocade FCoE hardware does not reject further logins after the maximum is reached.
FIP logout

FIP logout operates as follows:

- ENodes can log out from the Brocade FCoE hardware using FIP. The Brocade FCoE hardware in the fabric updates the MAC address, WWN, and PID mappings upon logout. The Brocade FCoE hardware also handles scenarios of implicit logout where the ENode has left the fabric without explicitly logging out.
- FIP logout (LOGO)—The Brocade FCoE hardware accepts a FIP LOGO from the ENode. The FIP LOGO ACC should be sent to the ENode if the ENode MAC address matches the VN_port table on the Brocade FCoE hardware. The LOGO is ignored (not rejected) if the ENode MAC address does not match. The ENode logout is updated in the VN_port table. FPMA is supported.
- Implicit logout—With the ENode directly connected to a CEE port, if the port that the ENode is attached to goes offline, the Brocade FCoE hardware implicitly logs out that ENode. ENode logout is updated in the VN_port table. The Brocade FCoE hardware sends FCoE LOGO on behalf of the ENode.

FCoE login

The Brocade FCoE hardware FCoE login operates as follows:

- ENodes can log in to the Brocade FCoE hardware using FCoE encapsulated, FC Extended Link Service (ELS) frames. FLOGI and FDISC are accepted. Brocade FCoE hardware in the fabric maintains the MAC address to WWN/PID mappings per login. Class 2 FLOGI is not supported.
- FCoE FLOGI—The Brocade FCoE hardware accepts FCoE FLOGI from the ENode. FCoE FLOGI ACC is sent to the ENode if the FCMAP matches the VN_port table on the Brocade FCoE hardware. Requests are ignored if the FCMAP does not match. The ENode login is added to the VN_port table.
- FCoE FDISC—The Brocade FCoE hardware accepts FCoE FDISC from the ENode. FCoE FDISC ACC is sent to the ENode if the FCMAP matches the VN_port table on the Brocade FCoE hardware. The FCoE FDISC request is ignored if the FCMAP does not match. The ENode login is added to the VN_port table.
- FCMAP—The Brocade FCoE hardware accepts FCoE FLOGI from the ENode. The FCMAP determines which FCoE VLAN is accepted for the FCoE session.

NOTE
Only one FCoE VLAN is supported in the Fabric OS v6.3.0 release.

FCoE logout

The Brocade FCoE hardware FCoE logout operates as follows:

- ENodes can log out from the Brocade FCoE hardware using the FCoE encapsulated, FC ELS frame. Brocade FCoE hardware in the fabric updates the MAC address to WWN/PID mappings upon logout. The Brocade FCoE hardware also handles scenarios of implicit logout where the ENode has left the fabric without explicitly logging out.
- FCoE LOGO—The Brocade FCoE hardware accepts the FCoE LOGO from the ENode. The FCoE LOGO ACC is sent to the ENode if the ENode MAC address matches the VN_port table on the Brocade FCoE hardware. The LOGO is ignored (not rejected) if the ENode MAC address does not match. The ENode logout is updated in the VN_port table.
Logincfg

The Brocade FCoE hardware logincfg mechanism operates as follows:

- The logincfg is the mechanism for controlling ENode logins per Brocade FCoE hardware. Each unit of Brocade FCoE hardware maintains its own logincfg.
- Login configuration management is optional—when login management is disabled, the default behavior is to accept logins from any ENode.
- Logingroup creation and deletion—The Brocade FCoE hardware accepts valid logingroup names and member WWNs. The Brocade FCoE hardware rejects invalid entries. The Brocade FCoE hardware allows the deletion of logingroups that are defined and committed. You can display defined and committed logingroups. The logingroup capability is disabled by default.
- Member add and remove—You can add valid member WWNs. Invalid WWNs are rejected. Duplicate WWNs are uniquely resolved. You can display the current view of defined logingroups when changes are made to the configuration.
- Commit and abort—Defined logingroup changes can be aborted with no effect on existing sessions. The Brocade FCoE hardware does not apply the configurations to new sessions until the changes are committed. Once defined, logingroups are committed. The Brocade FCoE hardware immediately uses the new configuration.
- No traffic disruption—Changing the logingroup without committing the changes does not affect existing sessions. After committing the changes, Enodes that were already logged in continue to function even when that member is removed from the logingroup. New logins from the former member are rejected.

Name server

The Brocade FCoE hardware name server function operates as follows:

- ENode login and logout to and from the Brocade FCoE hardware updates the name server in the FC fabric. The Brocade FCoE hardware maintains the MAC address to WWN/PID mappings.
- ENode login and logout—When an ENode login occurs through any means (FIP FLOGI, FIP FDISC, FCoE FLOGI, or FCoE FDISC), an entry is added to the name server. When an ENode logout occurs through any means (FIP LOGO, FCoE LOGO, or implicit logout), the entry is removed from the name server.
- ENode data—The Brocade FCoE hardware maintains a VN_port table. The table tracks the ENode MAC address, FIP login parameters for each login from the same ENode, and WWN/PID mappings on the FC side. You can display the VN_port table with the `fcoe -loginshow port` command.

FC zoning

The Brocade FCoE hardware FC zoning operates as follows:

- The virtual devices created by the Brocade FCoE hardware on behalf of the ENodes are subject to FC zoning. An ENode is only allowed to access devices in the same zones. Administrative Domains (ADs) are not supported in the Fabric OS v6.3.0 release.
- ENodes can access FC devices in the same zones—FC devices that are not in the same zones cannot be accessed. Zone members can overlap in multiple zones (that is, overlapping zones). Zoning changes are immediately enabled by hardware enforced zoning.
- ENodes can access all FC devices with no zoning—ENodes can access all FC devices in the fabric when cfgdisable is issued and Default Zone is set to All Access Mode.
- Field replacement—When a Brocade FCoE hardware is replaced in the field, you can perform a configdownload on a previously saved configuration. No zoning change is required.

Registered state change notification (RSCN)

The Brocade FCoE hardware RSCN function operates as follows:

- RSCN events generated in the FC fabric are forwarded to the ENodes. RSCN events generated on the FCoE side are forwarded to the FC devices.
- Device RSCN—An RSCN is generated to all registered and affected members when an ENode either logs in or logs out of an FCF through any means. An RSCN is generated when an FC N_port device either logs in or logs out of the FC fabric.

NOTE

When transmitting an RSCN, zoning rules still apply for FCoE devices as the devices are treated as regular FC N_ports.

- VF_port RSCN—An RSCN is generated to all registered members when a VF_port goes online or offline, causing ENode or FC devices to be added or removed.
- Domain RSCN—An RSCN is generated to all registered and affected members when an FC switch port goes online or offline, causing ENode or FC devices to be added or removed. An RSCN is generated when two FC switches merge or segment, causing ENode or FC devices to be added or removed. When FC switches merge or segment, an RSCN is propagated to ENodes.
- Zoning RSCN—An RSCN is generated to all registered and affected members when a zoning exchange occurs in the FC fabric.

FCoE queuing

The QOS configuration controls the FCoE traffic distribution. Note that changing these settings requires changes on both the Brocade FCoE hardware and the CNA; therefore, the link must be taken offline and back online after a change is made. Traffic scheduler configuration changes affect FCoE traffic distribution as follows:

- Changing the priority group for a port causes the FCoE traffic distribution to update. The priority group and bandwidth are updated.
- Changing the priority table for a port causes the FCoE traffic distribution to be updated. The COS-to-priority group mapping is updated.
- Changing the class map for a port causes the FCoE traffic distribution to be updated.
- Changing the policy map for a port causes FCoE traffic distribution to be updated.
- Changing the CEE map for a port causes the FCoE traffic distribution to be updated.
- The FCMAP to VLAN mapping determines the FCoE VLAN allowed for the FCoE session. Modifying this mapping causes the existing sessions to terminate.

NOTE

Only one FCoE VLAN is supported in the Fabric OS v6.3.0 release.
1. FCoE queuing
In this chapter

- Management Tools .. 19
- CEE Command Line Interface ... 19

Management Tools

The Brocade 8000 runs traditional Fabric OS (FOS) software and can be managed using the same tools traditionally used for SAN management. Using the FOS Command Line Interface (CLI), administrators have access to all commands and utilities common to other Brocade switches. In addition, FOS software on the Brocade 8000 enables Brocade Web Tools to support the following features for configuring and managing a Converged Ethernet Network:

- CEE interface display and configuration
- FCoE trunk display and configuration
- CEE configuration including link aggregation (LACP), Virtual LANs (VLANs), Quality of Service (QoS), and LLDP (Link Layer Discovery Protocol)/ DCBX protocol (Data Center Bridging eXchange)
- FCoE login groups

CEE Command Line Interface

The Brocade 8000 introduces a new CLI designed to support the management of CEE and L2 Ethernet switching functionality. The CEE CLI uses an industry-standard hierarchical shell familiar to Ethernet/IP networking administrators.

All conventional port-related Fabric OS CLI commands are only applicable to Fibre Channel. These commands have no knowledge of the Ethernet ports. The CEE features and CEE ports can only be configured through the CEE CLI interface which is accessed by entering the cmsh command from the Fabric OS shell.

The system starts up with the default Fabric OS configuration and the CEE startup configuration. After logging in you are in the Fabric OS shell. For information on accessing the CEE commands from the Fabric OS shell, see “Accessing the CEE CLI from the Fabric OS shell” on page 21.

Some Fabric OS commands are available in the CEE shell. Enter the fos ? command at the CEE CLI Privileged EXEC mode command prompt to view the available Fabric OS commands. The traditional Fabric OS command help found in the Fabric OS shell is not available through the CEE shell.
NOTE
The CEE configuration is not affected by configUpload and configDownload commands entered in the Fabric OS shell.

Saving your configuration changes

Any configuration changes made to the switch are written into the running-config file. This is a dynamic file that is lost when the switch reboots. During the boot sequence, the switch resets all configuration settings to the values in the startup-config file.

To make your changes permanent, you must use either the write memory command or the copy command to commit the running-config file to the startup-config file.

Saving configuration changes with the copy command
Perform this task from Privileged EXEC mode.

1. Enter the copy command to save the running-config file to the startup-config file.

```
switch# copy running-config startup-config
```

Saving configuration changes with the write command
Perform this task from Privileged EXEC mode.

1. Enter the write memory command to save the running-config file to the startup-config file.

```
switch# write memory
```

```
Overwrite the startup config file (y/n): y
Building configuration...
```

CEE CLI RBAC permissions

Role-Based Action Control (RBAC) defines the capabilities that a user account has based on the role the account has been assigned. Table 2 shows the permissions matrix for CEE. Permissions are specifically defined as follows:

- OM—When you enter the cmsh command, you are put directly into Privileged EXEC mode.
- O—When you enter the cmsh command, you are limited to EXEC mode.
- N—You are not allowed access to the CEE CLI.

<table>
<thead>
<tr>
<th>Role</th>
<th>Factory</th>
<th>Admin</th>
<th>User</th>
<th>Operator</th>
<th>SwitchAdmin</th>
<th>FabricAdmin</th>
<th>ZoneAdmin</th>
<th>BasicSwitchAdmin</th>
<th>SecurityAdmin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root</td>
<td>OM</td>
<td>OM</td>
<td>OM</td>
<td>O</td>
<td>N</td>
<td>O</td>
<td>OM</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

O = observe, OM = observe and modify, N = access not allowed
Accessing the CEE CLI through the console or Telnet

NOTE
While this example uses the **admin** role to log in to the switch, any role listed in the “CEE CLI RBAC permissions” section can be used.

The procedure to access the CEE CLI is the same through either the console interface or through a Telnet session; both access methods bring you to the login prompt.

```
switch login: admin
Password:
switch:admin> cmsh
switch#
```

To return to the Fabric OS CLI, enter the following command.

```
switch# exit
switch:admin>
```

NOTE
Multiple users can Telnet and issue commands using the Exec mode and the Privileged Exec mode.

Accessing the CEE CLI from the Fabric OS shell

To enter the CEE CLI from the Fabric OS shell, enter the following command.

```
switch:admin> cmsh
switch#
```

To return to the Fabric OS shell, enter the following command.

```
switch# exit
switch:admin>
```

CEE CLI command modes

FIGURE 6 shows the CEE CLI command mode hierarchy.

<table>
<thead>
<tr>
<th>EXEC</th>
<th>Privileged EXEC</th>
<th>Global configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface configuration</td>
<td>Protocol configuration</td>
<td>CEE CLI features</td>
</tr>
<tr>
<td>Port-channel</td>
<td>10-Gigabit Ethernet</td>
<td>LLDP</td>
</tr>
<tr>
<td>VLAN</td>
<td>Spanning-tree</td>
<td>CEE map ACLs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Console and VTY (line) config</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Console Virtual terminal</td>
</tr>
</tbody>
</table>

Table 3 lists the CEE CLI command modes and describes how to access them.
NOTE
At system startup, if you try to enter Privileged EXEC mode before the system has fully booted, the following message is displayed:

$Info: Please wait. System configuration is being loaded.

After the system has fully booted, a RASLOG message indicates that the CEE CLI is ready to accept configuration commands.

TABLE 3 CEE CLI command modes

<table>
<thead>
<tr>
<th>Command mode</th>
<th>Prompt</th>
<th>How to access the command mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXEC</td>
<td>switch></td>
<td>Enter the <code>cmsh</code> command at the Fabric OS prompt after you have logged in as an appropriate user.</td>
<td>Display running system information and set terminal line parameters.</td>
</tr>
<tr>
<td>Privileged EXEC</td>
<td>switch#</td>
<td>From the EXEC mode, enter the <code>enable</code> command.</td>
<td>Display and change system parameters. Note that this is the administrative mode and also includes EXEC mode commands.</td>
</tr>
<tr>
<td>Global configuration</td>
<td>switch(config)#</td>
<td>From the EXEC mode, enter the <code>configure terminal</code> EXEC command.</td>
<td>Configure features that affect the entire switch.</td>
</tr>
<tr>
<td>Interface configuration</td>
<td>Port-channel: switch(config-if-po-63)#</td>
<td>From the global configuration mode, specify an interface by entering one of the following interface types:</td>
<td>Access and configure individual interfaces.</td>
</tr>
<tr>
<td></td>
<td>10-Gigabit Ethernet (CEE port): switch(config-if-te-0/1)#</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VLAN:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch(config-if-vl-1)#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol configuration</td>
<td>LLDP: switch(conf-lldp)#</td>
<td>From the global configuration mode, specify a protocol by entering one of the following protocol types:</td>
<td>Access and configure protocols.</td>
</tr>
<tr>
<td></td>
<td>Spanning-tree: switch(conf-mstp)#</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch(conf-rstp)#</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch(conf-stp)#</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3 CEE CLI command modes

<table>
<thead>
<tr>
<th>Command mode</th>
<th>Prompt</th>
<th>How to access the command mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature configuration</td>
<td>CEE map: switch(config-ceemap)#</td>
<td>From the global configuration mode, specify a CEE feature by entering one of the following feature names:</td>
<td>Access and configure CEE features.</td>
</tr>
<tr>
<td></td>
<td>Standard ACL: switch(conf-macl-std)#</td>
<td>- cee-map</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extended ACL: switch(conf-macl-ext)#</td>
<td>- mac access-list</td>
<td></td>
</tr>
<tr>
<td>Console and VTY (line)</td>
<td>switch(config-line)#</td>
<td>From the global configuration mode, configure a terminal connected through the console port by entering the line console command. Configure a terminal connected through a Telnet session.</td>
<td></td>
</tr>
<tr>
<td>configuration</td>
<td></td>
<td>Configure a terminal connected through a Telnet session by entering the line vty command.</td>
<td></td>
</tr>
</tbody>
</table>

NOTE
Pressing Ctrl+Z or entering the end command in any mode returns you to Privileged EXEC mode. Entering exit in any mode returns you to the previous mode.

CEE CLI keyboard shortcuts

Table 4 lists CEE CLI keyboard shortcuts.

TABLE 4 CEE CLI keyboard shortcuts

<table>
<thead>
<tr>
<th>Keystroke</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl+B or the left arrow key.</td>
<td>Moves the cursor back one character.</td>
</tr>
<tr>
<td>Ctrl+F or the right arrow key.</td>
<td>Moves the cursor forward one character.</td>
</tr>
<tr>
<td>Ctrl+A</td>
<td>Moves the cursor to the beginning of the command line.</td>
</tr>
<tr>
<td>Ctrl+E</td>
<td>Moves the cursor to the end of the command line.</td>
</tr>
<tr>
<td>Esc B</td>
<td>Moves the cursor back one word.</td>
</tr>
<tr>
<td>Esc F</td>
<td>Moves the cursor forward one word.</td>
</tr>
<tr>
<td>Ctrl+Z</td>
<td>Returns to Privileged EXEC mode.</td>
</tr>
<tr>
<td>Ctrl+P or the up arrow key.</td>
<td>Displays commands in the history buffer with the most recent command displayed first.</td>
</tr>
<tr>
<td>Ctrl+N or the down arrow key.</td>
<td>Displays commands in the history buffer with the most recent command displayed last.</td>
</tr>
</tbody>
</table>

NOTE
In EXEC and Privileged EXEC modes, use the show history command to list the commands most recently entered. The switch retains the history of the last 1000 commands entered from all terminals.
Using the do command as a shortcut

You can use the `do` command to save time when you are working in any configuration mode and you want to run a command in the EXEC or Privileged EXEC mode.

For example, if you are configuring an LLDP and you want to execute a Privileged EXEC mode command, such as the `dir` command, you would first have to exit the LLDP configuration mode. However, by using the `do` command with the `dir` command you can ignore the need to change configuration modes, as shown in the example below.

```
switch(conf-lldp)# do dir
Contents of flash://
    -rw-r-----  1276 Wed Feb  4 07:08:49 2009    startup_rmon_config
    -rw-r-----  1276 Wed Feb  4 07:10:30 2009    rmon_config
    -rw-r-----  1276 Wed Feb  4 07:12:33 2009    rmon_configuration
    -rw-r-----  1276 Wed Feb  4 10:48:59 2009    startup-config
switch(conf-lldp)#
```

Displaying CEE CLI commands and command syntax

Enter a question mark (?) in any command mode to display the list of commands available in that mode.

```
switch>? 
Exec commands:
  enable   Turn on privileged mode command
  exit     End current mode and down to previous mode
  help     Description of the interactive help system
  logout   Exit from the EXEC
  quit     Exit current mode and down to previous mode
  show     Show running system information
  terminal Set terminal line parameters
```

To display a list of commands that start with the same characters, type the characters followed by the question mark (?)

```
switch>e?  
  enable   Turn on privileged mode command
  exit     End current mode and down to previous mode
```

To display the keywords and arguments associated with a command, enter the keyword followed by the question mark (?)

```
switch#terminal ?  
  length Set number of lines on a screen
  no     Negate a command or set its defaults
```

If the question mark (?) is typed within an incomplete keyword, and the keyword is the only keyword starting with those characters, the CLI displays help for that keyword only.

```
switch#show d?  
  dot1x IEEE 802.1X Port-Based Access Control
<cr>
```

If the question mark (?) is typed within an incomplete keyword but the keyword matches several keywords, the CLI displays help for all the matching keywords.

```
switch#show i?  
  interface Interface status and configuration
  ip         Internet Protocol (IP)
```
The CEE CLI accepts abbreviations for commands. This example is the abbreviation for the `show qos interface all` command.

```
switch#sh q i a
```

If the switch does not recognize a command after `Enter` is pressed, an error message displays.

```
switch#hookup
^%
% Invalid input detected at '^' marker.
```

If an incomplete command is entered, an error message displays.

```
switch#show
% Incomplete command.
```

CEE CLI command completion

To automatically complete the spelling of commands or keywords, begin typing the command or keyword and then press `Tab`. For example, at the CLI command prompt type `te` and press `Tab`:

```
switch#te
```

The CLI displays:

```
switch#terminal
```

If there is more than one command or keyword associated with the characters typed, the CEE CLI displays all choices. For example, at the CLI command prompt type `show l` and press `Tab`:

```
switch#show l
```

The CLI displays:

```
switch#show l
  lacp line lldp
```

CEE CLI command output modifiers

You can filter the output of the CEE CLI `show` commands using the output modifiers described in Table 5.

<table>
<thead>
<tr>
<th>Output modifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>redirect</td>
<td>Redirects the command output to the specified file.</td>
</tr>
<tr>
<td>include</td>
<td>Displays the command output that includes the specified expression.</td>
</tr>
<tr>
<td>exclude</td>
<td>Displays the command output that excludes the specified expression.</td>
</tr>
<tr>
<td>append</td>
<td>Appends the command output to the specified file.</td>
</tr>
<tr>
<td>begin</td>
<td>Displays the command output that begins with the specified expression.</td>
</tr>
<tr>
<td>last</td>
<td>Displays only the last few lines of the command output.</td>
</tr>
<tr>
<td>tee</td>
<td>Redirects the command output to the specified file. Note that this modifier also displays the command output.</td>
</tr>
</tbody>
</table>
2 CEE Command Line Interface
In this chapter

- Overview of standard CEE integrations ... 27
- SAN Integration ... 27
- CEE and LAN integration .. 28
- Server connections to the Brocade 8000 switch 35
- Minimum CEE configuration to allow FCoE traffic flow 35

Overview of standard CEE integrations

This chapter describes standard configurations that are commonly required for the Brocade FCoE hardware. Brocade believes these configurations cover approximately 90 percent of customer needs.

The following scenarios for the newly installed converged network are described:

- SAN integration with the Brocade 8000 switch
- LAN configuration for the Brocade FCoE hardware
- Connecting Servers to the Brocade FCoE hardware
- Minimum CEE configuration to allow FCoE

All of the CLI commands are entered using the Telnet or console interface on the Brocade FCoE hardware. See “CEE CLI command modes” on page 21 for complete instructions on logging into the Brocade FCoE hardware.

SAN Integration

FC SANs are typically deployed in a core-edge topology with servers connecting to edge switches in the fabric. Since the Brocade 8000 FC switching module operates with the same features and functionality of a regular FC switch, this topology is preserved when the Brocade 8000 switch is introduced into the fabric. The Brocade 8000 switch can be treated as just another edge switch connecting to the core FC infrastructure. The only difference is that servers are directly attached using a CNA supporting the FCoE protocol instead of an HBA supporting the FC protocol.

Connecting the Brocade 8000 switch to an existing FC SAN follows the same process as adding a new FC edge switch into a SAN. Most SAN environments include redundant fabrics (A and B). A typical installation involves connecting a Brocade 8000 switch to Fabric A, verifying stability, and then installing a second Brocade 8000 switch into Fabric B.
FCoE devices log in to one of the six FCoE ports on the Brocade 8000 switch. The FCoE ports provide FC services to FCoE initiators and enable bridging between FCoE initiators and FC targets. FCoE ports differ from regular FC ports in that they are not directly associated with an external physical port on the switch. Instead, each FCoE port supports up to four logical traffic paths. Brocade's implementation of FCoE on the Brocade 8000 switch provides integral NPIV support so that multiple FCoE initiators can log in to a single FCoE interface.

When a CNA logs into the fabric, it is assigned a new MAC address using a function called Fabric Provided MAC Address (FPMA). This address is used for all FCoE communication. The first three bytes of the MAC address are provided by the FC-MAP and the last three bytes are determined by the FCID. The VF_Port or FC entity that the CNA logs in to determines the FCID.

NOTE
The Brocade 8000 switch also supports the FIP or Fabric Initialization Protocol standard for CNAs to discover FCFs and initialize an FCoE connection.

Integrating a Brocade 8000 switch on a SAN

Perform the following process to install a new Brocade 8000 switch.

1. On the Brocade 8000 switch, verify that the Zone database is empty and change the domain ID to a unique number. If there are any non-default fabric configuration changes in the existing fabric, ensure that these are also configured on the new switch. For details, see the “Administering Advanced Zoning” and “Performing Basic Configuration Tasks-Domain IDs” sections of the *Fabric OS Administrator's Guide*.

2. Power off the Brocade 8000 switch and connect the Inter-Switch Link (ISL) cables to the core FC switch or director. For details, see the *Brocade 8000 Hardware Reference Guide*.

NOTE
Connecting a new Brocade 8000 switch to the fabric while it is powered off ensures that reconfiguration will not occur.

3. Power on the Brocade 8000 switch and verify that the ISLs are online and the fabric is merged.

4. Check to make sure the existing Zone database files for the fabric were copied over to the Brocade 8000 switch. For details, see the same sections of the *Fabric OS Administrator’s Guide*.

5. Use the FOS CLI command `nsShow` to display any FCoE or FC devices connected to the switch. Any CNAs should be able to log in to the fabric and can be zoned using standard management tools, including the FOS CLI or Web Tools.

6. Enter the `copy` command to save the `running-config` file to the `startup-config` file.

7. Repeat this procedure for the second Brocade 8000 switch attached to Fabric B.

CEE and LAN integration

Because Brocade FCoE hardware is IEEE 802.1Q compliant, it easily integrates into the existing LAN infrastructure in a variety of data center network topologies. In a typical installation, the Brocade 8000 switch acts as an access layer switch connecting to a distribution or core layer switch in the LAN.
Figure 7 illustrates a representative data center LAN with Brocade FCoE hardware. The information and procedures that follow outline the configuration process for introducing the Brocade FCoE hardware into the network and for feature sets unique to CEE. Unless otherwise noted, all commands are entered through the CEE CLI. See the Brocade FCoE Administrator’s Guide for configuration details and supported L2 functionality.

FIGURE 7 Adding the Brocade 8000 switch to the data center LAN (SAN not shown)

The following steps are the basic process for integrating the Brocade FCoE hardware on a LAN.

1. Create a CEE map for the Brocade FCoE hardware to define the traffic types on your LAN. For details, see “Creating the CEE map” on page 30.
2. Define your present DCBX setup for TLV. For details, see “Configuring DCBX” on page 31.
3. Configure the Brocade FCoE hardware for your present type of STP. For details, see “Configuring Spanning Tree Protocol” on page 32.
4. Assign the Brocade FCoE hardware to the correct VLAN membership and VLAN group. For details, see “Configuring VLAN Membership” on page 32.
5. Assign the CEE interfaces on the Brocade FCoE hardware to the correct VLAN groups. For details, see “Configuring the CEE Interfaces” on page 33.
6. Enter the `copy` command to save the `running-config` file to the `startup-config` file.

About CEE map attributes

The following information is needed for CEE configuration:

- The types of traffic flowing through an interface, FCoE, TCP/IP, and so on.
- The minimum bandwidth required for each traffic type.
- Which traffic type needs lossless behavior.

Brocade uses CEE Maps to simplify the configuration of QoS and flow control. Users assign different priorities to different traffic types and enable lossless connectivity. A CEE map configures two features: Enhanced Transmission Selection (ETS) and Priority Flow Control (PFC).

ETS is used to allocate bandwidth based on the different priority settings of the converged traffic. For example, users may want Inter-Process Communications (IPC) traffic to use as much bandwidth as needed, while LAN and SAN traffic share a designated percentage of the remaining bandwidth. ETS is used to manage the traffic priorities between traffic types by regulating flow and by assigning preset amounts of link bandwidth and relative priority to each application.

802.1q-tagged Ethernet frames contain a Priority Code Point (PCP) field, which describes the 802.1p class of service priority. This field indicates that a priority level that can be applied to different classes of traffic on a CEE link, using values ranging from 0 to 7. For example, a server administrator may assign FCoE traffic priority 3. Priorities are then grouped into Priority Group IDs (PGID), which are used by the switch to schedule frame forwarding.

The Brocade FCoE hardware supports two types of scheduling: Strict Priority (SP) and Deficit Weighted Round Robin (DWRR). An SP scheduler drains all packets queued in the highest-priority queue before servicing lower-priority traffic classes. Use PGID 15 for strict priority scheduling. Use DWRR scheduling to facilitate controlled sharing of the network bandwidth. DWRR assigns each queue a weight, which is used to determine the frequency of frame forwarded for the queue. The round robin aspect of the scheduling allows each queue to be serviced in a set ordering, sending a limited amount of data before moving onto the next queue and cycling back to the highest priority queue after the lowest priority is serviced. PGIDs 0 to 7 can be used for DWRR scheduling.

PFC is an enhancement to the current link-level flow control mechanism defined in IEEE 802.3X (PAUSE) so that it can operate individually on each priority. PFC is what enables lossless connectivity and is required for FCoE traffic.

Creating the CEE map

The first step is to define the types of traffic carried over the CEE network. As an example, servers in Figure 8 use the CEE network for both FCoE and IP. The administrator associates FCoE traffic with priorities 2 and 3 and IP traffic with priorities 0, 1, and 4-7. All the priorities used for IP traffic are grouped into a single Priority Group ID titled “PGID 1”, and the priorities used for FCoE are grouped into “PGID 2”.
Bandwidth requirements for each PGID are then chosen. The administrator decides to give IP traffic 60 percent of the schedule and FCoE traffic 40 percent. Finally, since FCoE traffic requires lossless communication, PFC is also enabled for PGID 1.

FIGURE 8 Configuring CEE attributes

<table>
<thead>
<tr>
<th>Priority</th>
<th>PGID</th>
<th>Desc</th>
<th>Priority</th>
<th>BW%</th>
<th>Desc</th>
<th>PFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2</td>
<td>IP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>IP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>IP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>IP</td>
<td>1</td>
<td>40</td>
<td>FCoE</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>FCoE</td>
<td>2</td>
<td>60</td>
<td>IP</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>FCoE</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>IP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>IP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

For the given example, a CEE Map named “srvgroup” is created using the following syntax. Perform the following steps in global configuration mode.

1. Define the name of the CEE map

 Example of setting the CEE map name as “srvgroup”.

   ```
   switch(config)#cee-map srvgroup
   ```

2. Specify the traffic requirements for each PGID using priority-group-table

 Example of setting two traffic requirements.

   ```
   switch(config)#priority-group-table 1 weight 40 pfc
   switch(config)#priority-group-table 2 weight 60
   ```

3. The priority-table is then used to specify which priorities are mapped to which PGID. The priorities are defined from lowest to highest.

 Example of setting the priority mappings.

   ```
   switch(config)#priority-table 2 2 1 1 2 2 2
   ```

4. Enter the `copy` command to save the running-config file to the startup-config file.

   ```
   switch(config)#end
   switch#copy running-config startup-config
   ```

Configuring DCBX

DCBX (Data Center Bridging eXchange Protocol) runs on CEE links and is an extension of the Link Layer Discovery Protocol (LLDP). The primary goal of DCBX is to allow the discovery of CEE-capable hosts and switches and allow CEE-specific parameters—such as those for ETS and PFC—to be sent before the link is shared. DCBX parameters use a type-length-value (TLV) format. By default, DCBX is turned on, but there are two TLVs that must be enabled to support FCoE on a CEE link:

- `dcbx-fcoe-app-tlv` - IEEE Data Center Bridging eXchange FCoE Application TLV.
- `dcbx-fcoe-logical-link-tlv` - IEEE Data Center Bridging eXchange FCoE Logical Link TLV. The presence of this TLV declares that the FCoE part of the converged link is UP.
To configure the TLVs for DCBX, perform the following steps in global configuration mode.

1. Set the protocol type to LLDP.

   ```
   switch(config)#protocol lldp
   ```

2. Activate the protocol.

   ```
   switch(config-lldp)#no disable
   ```

3. Activate the TLV formats using the `advertise` command in Protocol LLDP Configuration Mode.

   ```
   switch(config-lldp)#advertise dcbx-fcoe-app-tlv
   switch(config-lldp)#advertise dcbx-fcoe-logical-link-tlv
   ```

4. Enter the `copy` command to save the `running-config` file to the `startup-config` file.

   ```
   switch(config-lldp)#exit
   switch(config)#end
   switch#copy running-config startup-config
   ```

Configuring Spanning Tree Protocol

Spanning Tree Protocol is a mechanism to detect and avoid loops in Ethernet networks by establishing a fixed path between all the switches in a LAN. The Brocade FCoE hardware supports three spanning tree variations: Standard Spanning Tree (STP), Rapid Spanning Tree (RSTP), and Multiple Instance Spanning Tree (MSTP).

It is best practice that an access layer switch, such as the Brocade 8000 switch, does not become the root switch. Changing the bridge or STP priority helps to ensure that this does not occur. The example below performed from the CEE CLI configures the Brocade 8000 switch for RSTP and sets the bridge priority to the highest value ensuring it will not become the root switch in an existing LAN.

To configure RSTP, perform the following steps in global configuration mode.

1. Configure the Brocade 8000 switch for RSTP.

   ```
   switch(config)#protocol spanning-tree rstp
   ```

2. Set the bridge priority to the highest value so it does not become the root switch in an existing LAN.

   ```
   switch(conf-rstp)#bridge-priority 61440
   ```

3. Enter the `copy` command to save the `running-config` file to the `startup-config` file.

   ```
   switch(conf-rstp)#exit
   ```
   ```
   switch(config)#end
   switch#copy running-config startup-config
   ```

Configuring VLAN Membership

IEEE 802.1q Virtual LANs (VLANs) provide the capability to overlay the physical network with multiple virtual networks. VLANs allow network traffic isolation into separate virtual networks reducing the size of administrative and broadcast domains.

A VLAN contains end stations that have a common set of requirements which can be in independent physical locations. You can group end stations in a VLAN even if they are not physically located in the same LAN segment. VLANs are typically associated with IP subnets and all the end stations in a particular IP subnet belong to the same VLAN.
In the sample network shown in Figure 5, there are three VLANs: VLAN 100, VLAN 10, and VLAN 20. VLAN 10 and 20 are used to isolate the L2 traffic from the two server groups. These VLANs carry IP traffic from the servers to the data center LAN. Any routing between these VLANs is performed at the distribution layer of the network. VLAN 100 is a special VLAN used for FCoE traffic between the servers and storage connected to the Fibre Channel fabric and must be configured as an FCoE Forwarder (FCF). Only FCF-capable VLANs can carry FCoE traffic.

In addition to creating a special VLAN for FCoE traffic, VLAN classifiers are applied to incoming EtherTypes for FCoE Initiation Protocol (FIP) and FCoE. VLAN classifiers are rules used to dynamically classify Ethernet frames on an untagged interface to VLANs.

To configure VLAN membership, perform the following steps in global configuration mode.

1. Create the VLAN interfaces on the Brocade FCoE hardware using the CEE CLI. For details, see “Creating a VLAN interface” on page 40.

 Example of creating two VLAN interfaces and assigning each one to a server group.

   ```
   switch(config)#interface vlan 10
   switch-cmsh(conf-if-vl-10)#description server group 1
   switch(config)#interface vlan 20
   switch-cmsh(conf-if-vl-20)#description server group 2
   switch(config)#interface vlan 100
   switch-cmsh(conf-if-vl-100)#description FCoE VLAN
   switch-cmsh(conf-if-vl-100)#fcf forward
   ```

2. Create VLAN rules and a VLAN classifier group for these two EtherTypes. For details, see “Creating a VLAN classifier group and adding rules” on page 45.

 Example of creating VLAN rules and classifier groups.

   ```
   switch(config)#vlan classifier rule 1 proto fip encap ethv2
   switch(config)#vlan classifier rule 2 proto fcoe encap ethv2
   switch(config)#vlan classifier group 1 add rule 1
   switch(config)#vlan classifier group 1 add rule 2
   ```

3. Apply the VLAN classifier group to any CEE interface. This step is optional. For details, see “Activating a VLAN classifier group with an interface port” on page 46.

4. Enter the copy command to save the running-config file to the startup-config file.

   ```
   switch(config)#end
   switch#copy running-config startup-config
   ```

Configuring the CEE Interfaces

Traffic from downstream CEE interfaces can be assigned to a VLAN using several methods:

- The VLAN tag contained in the incoming frame
- The VLAN classifiers
- The Port-VLAN ID (PVID)

Because the Ethernet uplink ports from the Brocade FCoE hardware to the distribution layer switches will carry traffic for multiple VLANs, they are configured as 802.1q trunk ports.

The downstream CEE ports connected to the server CNAs are configured as access ports with a PVID of either 10 or 20. The VLAN classifier group created for the FIP and FCoE EtherTypes must be applied to the interfaces in order to place FCoE traffic on the correct VLAN. The CEE map is also applied to the interface.
To configure the CEE interfaces, perform the following steps in global configuration mode.

1. **Assign VLANs to the uplink Ethernet port.**

 NOTE
 You must repeat this step for all uplink interfaces. For details, see “Configuring an interface port as a trunk interface” on page 42.

 Example of assigning VLAN 10 and VLAN 20 to the uplink Ethernet port.

 switch(config)#interface TenGigabitEthernet 0/1
 switch(conf-if-te-0/1)#switchport
 switch(conf-if-te-0/1)#switchport mode trunk
 switch(conf-if-te-0/1)#switchport trunk allowed vlan add 10
 switch(conf-if-te-0/1)#switchport trunk allowed vlan add 20
 switch(conf-if-te-0/1)#no shutdown

2. **Apply the VLAN classifier group to the interfaces. For details, see “Activating a VLAN classifier group with an interface port” on page 46.**

 Example of applying a VLAN classifier group 1 to the interfaces.

 switch(config)#interface TenGigabitEthernet 0/10
 switch(conf-if-te-0/10)#switchport
 switch(conf-if-te-0/10)#switchport mode access
 switch(conf-if-te-0/10)#switchport access vlan 10
 switch(conf-if-te-0/10)#vlan classifier activate group 1 vlan 100
 switch(conf-if-te-0/10)#no shutdown

3. **Apply the CEE map to the interfaces. For details, see “Applying a CEE provisioning map to an interface” on page 117.**

 Example of setting the map name to srvgroup.

 switch(conf-if-te-0/1)#cee srvgroup

4. **Enter the copy command to save the running-config file to the startup-config file.**

 switch(conf-if-te-0/1)#exit
 switch(config)#end
 switch#copy running-config startup-config
Server connections to the Brocade 8000 switch

Converged Network Adapters (CNAs) support FCoE and Ethernet LAN communication over the same cable from the server to a CEE switch, such as the Brocade 8000 switch as shown in Figure 9. The CNA is presented to the host operating system as both an Ethernet NIC and a Fibre Channel HBA so that network configuration and server management practices do not change.

FIGURE 9 CNA protocol stack

The CNA supports CEE features required to support lossless connectivity and QoS of different traffic types. Although modification of parameters is possible with some CNAs, most adapters are set up in a “Willing” mode, meaning that they automatically accept CEE configurations for QoS and PFC from the connected switch using the DCBX protocol.

Fibre Channel configuration for the CNA

The CNA discovers storage on the FC SAN and presents LUNs to the operating system in the same manner as an HBA. The same multipathing software needed for high availability in a traditional SAN can be used in a converged network.

Ethernet configuration for the CNA

Most CNAs support some type of Network Teaming or Link Aggregation protocol to allow the use of multiple ports in parallel, to improve performance or create redundancy for higher availability. For highest availability it is always recommended that you install two CNAs into a server and connect each to a different Brocade 8000 switch.

Minimum CEE configuration to allow FCoE traffic flow

The following process shows the minimum configuration steps required to run FCoE on the Brocade 8000 switch. Treat the sample code for each step as a single CLI batch file.
Minimum CEE configuration to allow FCoE traffic flow

To set the minimum CEE configuration, perform the following steps in global configuration mode.

1. Configure the CEE interface as a Layer 2 switch port. For details, see “Configuring an interface port as a Layer 2 switch port” on page 42.

 Example of configuring the switch port as a 10-Gigabit Ethernet interface.
   ```
   switch(config)#interface tengigabitethernet 0/0
   switch(config-if)#switchport
   switch(config-if)#no shutdown
   switch(config-if)#exit
   switch(config)#end
   ```

2. Create an FCoE VLAN and add an interface to it. For details, see “Configuring an interface port as an access interface” on page 42.

 Example of creating a FCoE VLAN and adding a single interface.
   ```
   switch(config)#vlan classifier rule 1 proto fcoe encap ethv2
   switch(config)#vlan classifier rule 2 proto fip encap ethv2
   switch(config)#vlan classifier group 1 add rule 1
   switch(config)#vlan classifier group 1 add rule 2
   switch(config)#interface vlan 1002
   switch(config-if-vl-1002)#fcoe forward
   switch(config-if-vl-1002)#interface tengigabitethernet 0/0
   switch(config-if-te-0/0)#switchport
   switch(config-if-te-0/0)#switchport mode converged
   switch(config-if-te-0/0)#switchport mode converged allowed vlan add 1002
   switch(config-if-te-0/0)#vlan classifier activate group 1 vlan 1002
   switch(config-if-te-0/0)#cee default
   switch(config-if-te-0/0)#no shutdown
   switch(config-if-te-0/0)#exit
   ```

3. Create a CEE Map to carry LAN and SAN traffic and apply it to an interface. For details, see “Converged Enhanced Ethernet map configuration” on page 113.

 Example of creating a CEE map for 10-Gigabit Ethernet interface.
   ```
   switch(config)#cee-map default
   switch(config-cee-map)#priority-group-table 1 weight 40 pfc
   switch(config-cee-map)#priority-group-table 2 weight 60
   switch(config-cee-map)#priority-table 2 2 2 1 2 2 2
   switch(config-cee-map)#interface tengigabitethernet 0/2
   switch(config-if-te-0/2)#cee default
   switch(config-if-te-0/2)#exit
   ```

4. Configure LLDP for FCoE. For details, see “Configuring LLDP interface-level command options” on page 91.

 Example of configuring LLDP for 10-Gigabit Ethernet interface.
   ```
   switch(config)#protocol lldp
   switch(config-lldp)#advertise dcbx-fcoe-app-tlv
   switch(config-lldp)#advertise dcbx-fcoe-logical-link-tlv
   ```

5. Enter the **copy** command to save the **running-config** file to the **startup-config** file.

   ```
   switch(config-lldp)#exit
   switch(config)#end
   switch#copy running-config startup-config
   ```
In this chapter

- VLAN overview ... 37
- Ingress VLAN filtering .. 37
- VLAN configuration guidelines and restrictions 39
- Default VLAN configuration .. 39
- VLAN configuration and management 39
- Configuring protocol-based VLAN classifier rules 44
- Configuring the MAC address table 46

VLAN overview

IEEE 802.1Q Virtual LANs (VLANs) provide the capability to overlay the physical network with multiple virtual networks. VLANs allow you to isolate network traffic between virtual networks and reduce the size of administrative and broadcast domains.

A VLAN contains end stations that have a common set of requirements that are independent of physical location. You can group end stations in a VLAN even if they are not physically located in the same LAN segment. VLANs are typically associated with IP subnetworks and all the end stations in a particular IP subnet belong to the same VLAN. Traffic between VLANs must be routed. VLAN membership is configurable on a per interface basis.

The VLAN used for carrying FCoE traffic needs to be explicitly designated as the FCoE VLAN. FCoE VLANs are configured through the CEE CLI (see “Configuring a VLAN interface to forward FCoE traffic” on page 41).

NOTE
Currently only one VLAN can be configured as the FCoE VLAN.

Ingress VLAN filtering

A frame arriving at Brocade FCoE hardware is either associated with a specific port or with a VLAN, based on whether the frame is tagged or untagged:

- Admit tagged frames only—The port the frame came in on is assigned to a single VLAN or to multiple VLANs depending on the VLAN ID in the frame’s VLAN tag. This is called trunk mode.
- Admit untagged frames only—These frames are assigned the port VLAN ID (PVID) assigned to the port the frame came in on. This is called access mode.
Ingress VLAN filtering

- Admit VLAN tagged and untagged frames—The untagged frames are classified into native VLANs. Any tagged frames coming with a VLAN tag equal to the configured native VLAN are dropped. This is called converged mode.

NOTE
Ingress VLAN filtering is enabled by default on all Layer 2 interfaces. This ensures that VLANs are filtered on the incoming port (depending on the user configuration).

Figure 10 shows the frame processing logic for an incoming frame.

FIGURE 10 Ingress VLAN filtering

There are important facts you should know about Ingress VLAN filtering:

- Ingress VLAN filtering is based on port VLAN membership.
- Port VLAN membership is configured through the CEE CLI.
- Dynamic VLAN registration is not supported.
- The Brocade FCoE hardware does VLAN filtering at both the ingress and egress ports.
- The VLAN filtering behavior on logical Layer 2 interfaces such as LAG interfaces is the same as on port interfaces.
- The VLAN filtering database (FDB) determines the forwarding of an incoming frame.

Additionally, there are important facts you should know about the VLAN FDB:

- The VLAN FDB contains information that helps determine the forwarding of an arriving frame based on MAC address and VLAN ID data. The FDB contains both statically configured data and dynamic data that is learned by the switch.
- The dynamic updating of FDB entries using learning is supported (if the port state permits).
VLAN configuration guidelines and restrictions

Follow these VLAN configuration guidelines and restrictions when configuring VLANs.

- In an active topology, MAC addresses can be learned, per VLAN, using Independent VLAN Learning (IVL) only.
- A MAC address ACL always overrides a static MAC address entry. In this case, the MAC address is the forwarding address and the forwarding entry can be overwritten by the ACL.
- The Brocade CEE switch supports Ethernet DIX frames and 802.2 LLC SNAP encapsulated frames only.

Default VLAN configuration

Table 6 lists the default VLAN configuration.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default VLAN</td>
<td>VLAN 1</td>
</tr>
<tr>
<td>Interface VLAN assignment</td>
<td>All interfaces assigned to VLAN 1</td>
</tr>
<tr>
<td>VLAN state</td>
<td>Active</td>
</tr>
<tr>
<td>MTU size</td>
<td>2500 bytes</td>
</tr>
</tbody>
</table>

VLAN configuration and management

NOTE
To see the minimum configuration required to enable FCoE on Brocade FCoE hardware, refer to “Minimum CEE configuration to allow FCoE traffic flow” on page 35.

NOTE
You need to enter either the `copy running-config startup-config` command or the `write memory` command to save your configuration changes to Flash so that they are not lost if there is a system reload or power outage.
Enabling and disabling an interface port

NOTE
CEE interfaces are disabled by default.

NOTE
CEE interfaces do not support auto-negotiation of Ethernet link speeds. The CEE interfaces only support 10-Gigabit Ethernet.

To enable and disable an interface port, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `interface` command to specify the CEE interface type and slot/port number.

 Example of selecting the Ten Gigabit Ethernet port number 0/1.
   ```
   switch(config)# interface tengigabitethernet 0/1
   ```
3. Enter the `shutdown` command to toggle the availability of the interface.
 - To enable the CEE interface:
     ```
     switch(conf-if-te-0/1)# no shutdown
     ```
 - To disable the CEE interface:
     ```
     switch(conf-if-te-0/1)# shutdown
     ```

Configuring the MTU on an interface port

To configure the maximum transmission unit (MTU) on an interface port, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `interface` command to specify the interface port type and slot/port number.

 Example of selecting the Ten Gigabit Ethernet port number 0/1.
   ```
   switch(config)# interface tengigabitethernet 0/1
   ```
3. Enter the `no shutdown` command to enable the interface port.
4. Enter the `mtu` command to specify the MTU value on the interface port.

 Example of setting the MTU value to 4200.
   ```
   switch(conf-if-te-0/1)# mtu 4200
   ```

Creating a VLAN interface

On Brocade FCoE hardware, VLANs are treated as interfaces from a configuration point of view.

By default all the CEE ports are assigned to VLAN 1 (VLAN ID equals 1). The `vlan_id` value can be 1 through 3583. VLAN IDs 3584 through 4094 are internally-reserved VLAN IDs.

To create a VLAN interface, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `interface vlan` command to assign the VLAN interface number.
Enabling STP on a VLAN

Once all of the interface ports have been configured for a VLAN, you can enable spanning tree protocol (STP) for all members of the VLAN with a single command. Whichever protocol is currently selected is used by the VLAN. Only one type of STP can be active at a time.

A physical interface port can be a member of multiple VLANs. For example, a physical port can be a member of VLAN 1002 and VLAN 55 simultaneously. In addition, VLAN 1002 can have STP enabled and VLAN 55 can have STP disabled simultaneously.

To enable STP for a VLAN, perform the following steps from Privileged EXEC mode.

1. Enter the configure terminal command to enter global configuration mode.
2. Enter the protocol spanning tree command to select the type of STP for the VLAN.

 Example of selecting the MSTP protocol.
   ```
   switch(config)#protocol spanning tree mstp
   ```
3. Enter the interface command to select the VLAN interface number.

 Example of selecting the VLAN interface number “1002”.
   ```
   switch(config)#interface vlan 1002
   ```
4. Enter the spanning-tree shutdown command to enable spanning tree on VLAN 1002.
   ```
   switch(conf-if-vl-1002)#no spanning-tree shutdown
   ```

Disabling STP on a VLAN

Once all of the interface ports have been configured for a VLAN, you can disable STP for all members of the VLAN with a single command.

To disable STP for a VLAN, perform the following steps from Privileged EXEC mode.

1. Enter the configure terminal command to enter global configuration mode.
2. Enter the interface command to select the VLAN interface number.

 Example of selecting the VLAN interface number “55”.
   ```
   switch(config)#interface vlan 55
   ```
3. Enter the spanning-tree shutdown command to disable spanning tree on VLAN 1002.
   ```
   switch(conf-if-vl-55)#spanning-tree shutdown
   ```

Configuring a VLAN interface to forward FCoE traffic

An FCoE Forwarder (FCF) is an FCoE device that supports FCoE VF_ports. It is the equivalent of an FC switch. A VLAN can be made FCF-capable. Only FCF-capable VLANs can carry FCoE traffic.

To configure a VLAN interface to forward FCoE traffic, perform the following steps from Privileged EXEC mode.
1. Enter the `configure terminal` command to enter global configuration mode.

2. Enter the `interface` command to select the VLAN interface number.

 Example of selecting the VLAN interface number "1002".
   ```
   switch(config)#interface vlan 1002
   ```

3. Enter the `fcf forward` command to enable the forwarding of FCoE traffic on the VLAN interface.
   ```
   switch(conf-if-vl-1002)#fcf forward
   ```

Configuring an interface port as a Layer 2 switch port

To configure the interface as a Layer 2 switch port, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.

2. Enter the `interface` command to specify the CEE interface type and slot/port number.

 Example of selecting the Ten Gigabit Ethernet port number 0/1.
   ```
   switch(config)#interface tengigabitethernet 0/1
   ```

3. Enter the `no shutdown` command to enable the CEE interface.

4. Enter the `switchport` command to configure the interface as a Layer 2 switch port.

5. Enter the `do show` command to confirm the status of the CEE interface. For example
   ```
   switch(conf-if-te-0/1)#do show interface tengigabitethernet 0/1
   ```

6. Enter the `do show` command to confirm the status of the CEE interface running configuration.
   ```
   switch(conf-if-te-0/1)#do show running-config interface tengigabitethernet 0/1
   ```

Configuring an interface port as an access interface

Each CEE interface port supports admission policies based on whether the frames are untagged or tagged. Access mode admits only untagged and priority-tagged frames.

To configure the interface as an access interface, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.

2. Enter the `interface` command to specify the CEE interface type and slot/port number.

 Example of selecting the Ten Gigabit Ethernet port number 0/1.
   ```
   switch(config)#interface tengigabitethernet 0/1
   ```

3. Enter the `no shutdown` command to enable the CEE interface.

4. Enter the `switchport` command to configure the CEE interface as a Layer 2 switch port.
   ```
   switch(conf-if-te-0/1)#switchport access vlan 20
   ```

Configuring an interface port as a trunk interface

Each CEE interface port supports admission policies based on whether the frames are untagged or tagged. Trunk mode admits only VLAN-tagged frames.
To configure the interface as a trunk interface, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `interface` command to specify the CEE interface type and slot/port number.

 Example of selecting the Ten Gigabit Ethernet port number 0/19.
   ```
   switch(config)#interface tengigabitethernet 0/19
   ```
3. Enter the `no shutdown` command to enable the CEE interface.
4. Enter the `switchport` command to place the CEE interface into trunk mode.
   ```
   switch(conf-if-te-0/19)#switchport mode trunk
   ```
5. Specify whether all, one, or none of the VLAN interfaces are allowed to transmit and receive through the CEE interface. Enter the following command that is appropriate for your needs.

 - This example allows the VLAN numbered as 30 to transmit/receive through the CEE interface:
     ```
     switch(conf-if-te-0/19)#switchport trunk allowed vlan add 30
     ```
 - To allow all VLANs to transmit/receive through the CEE interface:
     ```
     switch(conf-if-te-0/19)#switchport trunk allowed vlan all
     ```
 - This example allows all except VLAN 11 to transmit/receive through the CEE interface:
     ```
     switch(conf-if-te-0/19)#switchport trunk allowed vlan except 11
     ```
 - To allow none of the VLANs to transmit/receive through the CEE interface:
     ```
     switch(conf-if-te-0/19)#switchport trunk allowed vlan none
     ```

Disabling a VLAN on a trunk interface

To disable a VLAN on a trunk interface, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `interface` command to specify the CEE interface type and slot/port number.

 Example of selecting the Ten Gigabit Ethernet port number 0/10.
   ```
   switch(config)#interface tengigabitethernet 0/10
   ```
3. Enter the `no shutdown` command to enable the CEE interface.
4. Enter the `switchport` command to place the CEE interface into trunk mode.
   ```
   switch(conf-if-te-0/10)#switchport mode trunk none
   ```

Configuring an interface port as a converged interface

Each CEE interface port supports admission policies based on whether the frames are untagged or tagged. Converged mode admits both tagged and untagged frames. Any tagged frames coming with a VLAN tag equal to the configured native VLAN are dropped.

To configure the interface as converged interface, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `interface` command to specify the CEE interface type and slot/port number.
Configuring protocol-based VLAN classifier rules

Example of selecting the Ten Gigabit Ethernet port number 0/1.
```
switch(config)#interface tengigabitethernet 0/1
```
3. Enter the `no shutdown` command to enable the CEE interface.
4. Enter the `switchport` command to set the tagged VLAN on the interface to 100.
```
switch(conf-if-te-0/1)#switchport converged allowed vlan add 100
```

Disabling a VLAN on a converged interface

To disable a VLAN on a converged interface, perform the following steps from Privileged EXEC mode.
1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `interface` command to specify the CEE interface type and slot/port number.
```
switch(config)#interface tengigabitethernet 0/10
```
3. Enter the `no shutdown` command to enable the CEE interface.
4. Enter the `switchport` command to place the CEE interface into converged mode.
```
switch(conf-if-te-0/10)#switchport mode converged none
```

Configuring protocol-based VLAN classifier rules

You can configure VLAN classifier rules to define specific rules for classifying frames to selected VLANs based on protocol and MAC addresses. Sets of rules can be grouped into VLAN classifier groups (see “Creating a VLAN classifier group and adding rules” on page 45).

VLAN classifier rules (1 through 256) are a set of configurable rules that reside in one of these categories:
- 802.1Q protocol-based classifier rules
- Source MAC address-based classifier rules
- Encapsulated Ethernet classifier rules

NOTE
Multiple VLAN classifier rules can be applied per interface provided the resulting VLAN IDs are unique for the different rules.

802.1Q protocol-based VLANs apply only to untagged frames, or frames with priority tagging.

With both Ethernet-II and 802.2 SNAP encapsulated frames, the following protocol types are supported:
- Ethernet hexadecimal (0x0000 through 0xffff)
- Address Resolution Protocol (ARP)
- Fibre Channel over Ethernet (FCoE)
- FCoE Initialization Protocol (FIP)
- IP
• IP version 6 (IPv6)

NOTE
For complete information on all available VLAN classifier rule options, see the *Converged Enhanced Ethernet Command Reference*.

Configuring a VLAN classifier rule

To configure a protocol-based VLAN classifier rule, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `vlan classifier rule` command to configure a protocol-based VLAN classifier rule.

   ```
   switch(config)#vlan classifier rule 1 proto fcoe encap ethv2
   ```

Configuring MAC address-based VLAN classifier rules

To configure a MAC address-based VLAN classifier rule, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `vlan classifier rule` command to configure a MAC address-based VLAN classifier rule.

   ```
   switch(config)#vlan classifier rule 5 mac 0008.744c.7fid
   ```

Deleting a VLAN classifier rule

VLAN classifier groups (1 through 16) can contain any number of VLAN classifier rules.

To configure a VLAN classifier group and remove a VLAN classifier rule, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Specify a VLAN classifier group and delete a rule.

   ```
   switch(config)#vlan classifier group 1 delete rule 1
   ```

Creating a VLAN classifier group and adding rules

VLAN classifier groups (1 through 16) can contain any number of VLAN classifier rules.

To configure a VLAN classifier group and add a VLAN classifier rule, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Create a VLAN classifier group and add a rule.

   ```
   switch(config)#vlan classifier group 1 add rule 1
   ```
Activating a VLAN classifier group with an interface port

To associate a VLAN classifier group with an interface port, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `interface` command to specify the CEE interface type and slot/port number.

Example of selecting the Ten Gigabit Ethernet port number 0/10.

```plaintext
switch(config)#interface tengigabitethernet 0/10
```

3. Enter the `no shutdown` command to enable the CEE interface.
4. Enter the `vlan classifier` command to activate and associate it with a VLAN interface (group 1 and VLAN 2 are used in this example).

```plaintext
switch(conf-if-te-0/10)#vlan classifier activate group 1 vlan 2
```

NOTE

This example assumes that VLAN 2 was already created.

Clearing VLAN counter statistics

To clear VLAN counter statistics, perform the following steps from Privileged EXEC mode.

1. Enter the `clear` command to clear the VLAN counter statistics for the specified VLAN. The `vlan_ID` value can be 1 through 3583. For example, to clear the counter for VLAN 20:

```plaintext
switch#clear counter interface vlan 20
```

Displaying VLAN information

To display VLAN information, perform the following steps from Privileged EXEC mode.

1. Enter the `show interface` command to display the configuration and status of the specified interface.

Example

```plaintext
switch#show interface tengigabitethernet 0/10 port-channel 10 switchport
```

2. Enter the `show vlan` command to display the specified VLAN information. For example, this syntax displays the status of VLAN 20 for all interfaces, including static and dynamic:

```plaintext
switch#show vlan 20 brief
```

Configuring the MAC address table

Each CEE port has a MAC address table. The MAC address table stores a number of unicast and multicast address entries without flooding any frames. Brocade FCoE hardware has a configurable aging timer. If a MAC address remains inactive for a specified number of seconds, it is removed from the address table. For detailed information on how the switch handles MAC addresses in a Layer 2 Ethernet environment, see “Layer 2 Ethernet overview” on page 8.
Specifying or disabling the aging time for MAC addresses

You can set the length of time that a dynamic entry remains in the MAC address table after the entry is used or updated. Static address entries are never aged or removed from the table. You can also disable the aging time. The default is 300 seconds.

NOTE
To disable the aging time for MAC addresses, enter an aging time value of 0.

To specify an aging time or disable the aging time for MAC addresses, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the appropriate command based on whether you want to specify an aging time or disable the aging time for MAC addresses:

   ```
   switch(config)#mac-address-table aging-time 600
   ```

Adding static addresses to the MAC address table

To add a static address to the MAC address table, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Add the static address 0011.2222.3333 to the MAC address table with a packet received on VLAN 100:

   ```
   switch(config)#mac-address-table static 0011.2222.3333 forward
tengigabitethernet 0/1 vlan 100
   ```
Configuring the MAC address table
In this chapter

- STP overview ... 49
- RSTP overview ... 51
- MSTP overview .. 53
- STP, RSTP, and MSTP configuration guidelines and restrictions 55
- Default STP, RSTP, and MSTP configuration 55
- STP, RSTP, and MSTP configuration and management 57
- Configuring STP, RSTP, or MSTP on CEE interface ports 64

STP overview

The IEEE 802.1D Spanning Tree Protocol (STP) runs on bridges and switches that are 802.1D-compliant. STP prevents loops in the network by providing redundant links. If a primary link fails, the backup link is activated and network traffic is not affected. Without STP running on the switch or bridge, a link failure can result in a loop.

When the spanning tree algorithm is run, the network switches transform the real network topology into a spanning tree topology in which any LAN in the network can be reached from any other LAN through a unique path. The network switches recalculate a new spanning tree topology whenever there is a change to the network topology.

For each LAN, the switches that attach to the LAN choose a designated switch that is the closest switch to the root switch. This designated switch is responsible for forwarding all traffic to and from the LAN. The port on the designated switch that connects to the LAN is called the designated port.

The switches decide which of their ports will be part of the spanning tree. A port is included in the spanning tree if it is a root port or a designated port.

With STP, data traffic is allowed only on those ports that are part of the spanning tree topology. Ports that are not part of the spanning tree topology are automatically changed to a blocking (inactive) state. They are kept in the blocking state until there is a break in the spanning tree topology, at which time they are automatically activated to provide a new path.

The STP interface states for every Layer 2 interface running STP are as follows:

- Blocking—The interface does not forward frames.
- Listening—The interface is identified by the spanning tree as one that should participate in frame forwarding. This is a transitional state after the blocking state.
- Learning—The interface prepares to participate in frame forwarding.
- Forwarding—The interface forwards frames.
STP overview

- Disabled—The interface is not participating in spanning tree because of a shutdown port, no link on the port, or no spanning tree instance running on the port.

A port participating in spanning tree moves through these states:
- From initialization to blocking.
- From blocking to listening or to disabled.
- From listening to learning or to disabled.
- From learning to forwarding, blocking, or disabled.
- From forwarding to disabled.

The following STP features are considered optional features although you might use them in your STP configuration:
- Root guard—For detailed information, see “Enabling the guard root” on page 65.
- PortFast BPDU guard and BPDU filter—For detailed information, see “Enabling port fast (STP)” on page 67.

Configuring STP on Brocade FCoE hardware

The process for configuring STP on your Brocade FCoE hardware is as follows.

1. Enter Global Configuration mode.

2. Enable RSTP using the global protocol spanning-tree command. For details, see “Enabling STP, RSTP, or MSTP” on page 57.

 switch(config)#protocol spanning-tree rstp

3. Designate the root switch using the bridge-priority command. For details, see “Specifying the bridge priority” on page 58. The range is 0 through 61440 and the priority values can be set only in increments of 4096.

 switch(conf-stp)#bridge-priority 28582

4. Enable PortFast on switch ports using the spanning-tree portfast command. For details, see “Enabling port fast (STP)” on page 67. Note that this step is optional.

 NOTE
 PortFast only needs to be enabled on ports that connect to workstations or PCs. Repeat these commands for every port connected to workstations or PCs. Do not enable PortFast on ports that connect to other switches.

 switch(config)#interface tengigabitethernet 0/10
 switch(conf-if-te-0/10)#spanning-tree portfast
 switch(conf-if-te-0/10)#exit
 switch(config)#interface tengigabitethernet 0/11
 switch(conf-if-te-0/11)#spanning-tree portfast
 switch(conf-if-te-0/11)#exit

 Repeat these commands for every port connected to workstations or PCs.

5. Set the following ports to forwarding mode:
 - All ports of the root switch
 - The root port
 - The designated port
6. Enable the guard root feature with the `spanning-tree guard root` command. The guard root feature provides a way to enforce the root bridge placement in the network. For detailed information, refer to “Enabling the guard root” on page 65. Note that this step is optional.

 All other switch ports connect to other switches and bridges are automatically placed in blocking mode.

 This does not apply to ports connected to workstations or PCs; these ports remain in the forwarding state.

7. Enter the `copy` command to save the `running-config` file to the `startup-config` file.

When the spanning tree topology is completed, the network switches send and receive data only on the ports that are part of the spanning tree. Data received on ports that are not part of the spanning tree is blocked.

NOTE

Brocade recommends leaving other STP variables at their default values.

For more information on STP, see “STP, RSTP, and MSTP configuration and management” on page 57.

RSTP overview

NOTE

RSTP is designed to be compatible and interoperate with STP. However, the advantages of the RSTP fast reconvergence are lost when it interoperate with switches running STP.

The IEEE 802.1w Rapid Spanning Tree Protocol (RSTP) standard is an evolution of the 802.1D STP standard. It provides rapid reconvergence following the failure of a switch, a switch port, or a LAN. It provides rapid reconvergence of edge ports, new root ports, and ports connected through point-to-point links.

The RSTP interface states for every Layer 2 interface running RSTP are as follows:

- **Learning**—The interface prepares to participate in frame forwarding.
- **Forwarding**—The interface forwards frames.
- **Discarding**—The interface discards frames. Note that the 802.1D disabled, blocking, and listening states are merged into the RSTP discarding state. Ports in the discarding state do not take part in the active topology and do not learn MAC addresses.

Table 7 lists the interface state changes between STP and RSTP.

TABLE 7 STP versus RSTP state comparison

<table>
<thead>
<tr>
<th>STP interface state</th>
<th>RSTP interface state</th>
<th>Is the interface included in the active topology?</th>
<th>Is the interface learning MAC addresses?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disabled</td>
<td>Discarding</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Blocking</td>
<td>Discarding</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Listening</td>
<td>Discarding</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Learning</td>
<td>Learning</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Forwarding</td>
<td>Forwarding</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
With RSTP, the port roles for the new interface states are also different. RSTP differentiates explicitly between the state of the port and the role it plays in the topology. RSTP uses the root port and designated port roles defined by STP, but splits the blocked port role into backup port and alternate port roles:

- **Backup port**—Provides a backup for the designated port and can only exist where two or more ports of the switch are connected to the same LAN; the LAN where the bridge serves as a designated switch.
- **Alternate port**—Serves as an alternate port for the root port providing a redundant path towards the root bridge.

Only the root port and the designated ports are part of the active topology; the alternate and backup ports do not participate in it.

When the network is stable, the root and the designated ports are in the forwarding state, while the alternate and backup ports are in the discarding state. When there is a topology change, the new RSTP port roles allow a faster transition of an alternate port into the forwarding state.

For more information on RSTP, see “STP, RSTP, and MSTP configuration and management” on page 57.

Configuring RSTP on Brocade FCoE hardware

The basic process for configuring RSTP on your Brocade FCoE hardware is as follows.

1. Enter Global Configuration mode.
2. Enable RSTP using the global `protocol spanning-tree` command. For details, see “Enabling STP, RSTP, or MSTP” on page 57.
   ```
   switch(config)#protocol spanning-tree rstp
   ```

3. Designate the root switch using the `bridge-priority` command. For details, see “Specifying the bridge priority” on page 58. The range is 0 through 61440 and the priority values can be set only in increments of 4096.
   ```
   switch(conf-stp)#bridge-priority 28582
   ```

4. Configure the `bridge forward delay` value. For details, see “Specifying the bridge forward delay” on page 58.
   ```
   switch(conf-stp)#forward-delay 20
   ```

5. Configure the `bridge maximum aging time` value. For details, see “Specifying the bridge maximum aging time” on page 59.
   ```
   switch(conf-stp)#max-age 25
   ```

6. Enable the `error disable timeout timer` value. For details, see “Enabling the error disable timeout timer” on page 59.
   ```
   switch(conf-stp)#error-disable-timeout enable
   ```

7. Configure the `error-disable-timeout interval` value. For details, see “Specifying the error disable timeout interval” on page 59.
   ```
   switch(conf-stp)#error-disable-timeout interval 60
   ```

8. Configure the port-channel path cost. For details, see “Specifying the port-channel path cost” on page 60.
   ```
   switch(conf-stp)#port-channel path-cost custom
   ```
10. Configure the bridge hello time value. For details, see “Specifying the bridge hello time (STP and RSTP)” on page 60.

```
switch(conf-stp)#hello-time 5
```

11. Flush the MAC addresses from the VLAN FDB. For details, see “Flushing MAC addresses (RSTP and MSTP)” on page 63.

```
switch(config)#spanning-tree tc-flush-standard
```

12. Enable PortFast on switch ports using the `spanning-tree portfast` command. For details, see “Enabling port fast (STP)” on page 67. Note that this step is optional.

```
NOTE
PortFast only needs to be enabled on ports that connect to workstations or PCs. Repeat these commands for every port connected to workstations or PCs. Do not enable PortFast on ports that connect to other switches.
```

```
switch(config)#interface tengigabitethernet 0/10
switch(config-if-te-0/10)#spanning-tree portfast
switch(config-if-te-0/10)#exit
switch(config)#interface tengigabitethernet 0/11
switch(config-if-te-0/11)#spanning-tree portfast
switch(config-if-te-0/11)#exit
```

Repeat these commands for every port connected to workstations or PCs.

13. Set the following ports to forwarding mode:
- All ports of the root switch
- The root port
- The designated port

For details, see “Specifying the port priority” on page 67.

14. Enable the guard root feature with the `spanning-tree guard root` command. The guard root feature provides a way to enforce the root bridge placement in the network. For detailed information, refer to “Enabling the guard root” on page 65. Note that this step is optional.

```
All other switch ports connect to other switches and bridges are automatically placed in blocking mode.
This does not apply to ports connected to workstations or PCs; these ports remain in the forwarding state.
```

15. Enter the `copy` command to save the `running-config` file to the `startup-config` file.

```
switch(config-if-te-0/1)##exit
switch(config)##end
switch##copy running-config startup-config
```

MSTP overview

The IEEE 802.1s Multiple STP (MSTP) helps create multiple loop-free active topologies on a single physical topology. MSTP enables multiple VLANs to be mapped to the same spanning tree instance (forwarding path), which reduces the number of spanning tree instances needed to support a large number of VLANs. Each MSTP instance has a spanning tree topology independent of other
spanning tree instances. With MSTP you can have multiple forwarding paths for data traffic. A failure in one instance does not affect other instances. With MSTP, you are able to more effectively utilize the physical resources present in the network and achieve better load balancing of VLAN traffic.

NOTE

In MSTP mode, RSTP is automatically enabled to provide rapid convergence.

Multiple switches must be configured consistently with the same MSTP configuration to participate in multiple spanning tree instances. A group of interconnected switches that have the same MSTP configuration is called an MSTP region.

NOTE

Brocade supports 16 MSTP instances and one MSTP region.

MSTP introduces a hierarchical way of managing switch domains using regions. Switches that share common MSTP configuration attributes belong to a region. The MSTP configuration determines the MSTP region where each switch resides. The common MSTP configuration attributes are as follows:

- Alphanumeric configuration name (32 bytes)
- Configuration revision number (2 bytes)
- 4096-element table that maps each of the VLANs to an MSTP instance

Region boundaries are determined based on the above attributes. A multiple spanning tree instance is an RSTP instance that operates inside an MSTP region and determines the active topology for the set of VLANs mapping to that instance. Every region has a common internal spanning tree (CIST) that forms a single spanning tree instance that includes all the switches in the region. The difference between the CIST instance and the MSTP instance is that the CIST instance operates across the MSTP region and forms a loop-free topology across regions, while the MSTP instance operates only within a region. The CIST instance can operate using RSTP if all the switches across the regions support RSTP. However, if any of the switches operate using 802.1D STP, the CIST instance reverts to 802.1D. Each region is viewed logically as a single STP/RSTP bridge to other regions.

Configuring MSTP on Brocade FCoE hardware

The basic process for configuring MSTP on your Brocade FCoE hardware is as follows.

1. Enter Global Configuration mode.
2. Enable MSTP using the global `protocol spanning-tree mstp` command. For more details see “Enabling STP, RSTP, or MSTP” on page 57.
   ```
   switch(config)#protocol spanning-tree mstp
   ```
3. Specify the region name using the `region` command. For more details see “Specifying a name for an MSTP region” on page 62.
   ```
   switch(conf-mstp)#region brocade1
   ```
4. Specify the revision number using the `revision` command. For more details see “Specifying a revision number for an MSTP configuration” on page 62.
   ```
   switch(conf-mstp)#revision 1
   ```
5. Map a VLAN to an MSTP instance using the `instance` command. For more details see “Mapping a VLAN to an MSTP instance” on page 61.

```bash
switch(conf-mstp)#instance 1 vlan 2, 3
switch(conf-mstp)#instance 2 vlan 4-6
switch(conf-mstp)#instance 1 priority 4096
```

6. Specify the maximum hops for a BPDU to prevent the messages from looping indefinitely on the interface using the `max-hops` command. For more details see “Specifying the maximum number of hops for a BPDU (MSTP)” on page 62.

```bash
switch(conf-mstp)#max-hops 25
```

7. Enter the `copy` command to save the `running-config` file to the `startup-config` file.

```bash
switch(conf-mstp)#exit
switch(config)#end
```

For more information on MSTP, see “STP, RSTP, and MSTP configuration and management” on page 57.

STP, RSTP, and MSTP configuration guidelines and restrictions

Follow these configuration guidelines and restrictions when configuring STP, RSTP, and MSTP:

- You have to disable one form of xSTP before enabling another.
- LAGs are treated as normal links and by default are enabled for STP.
- You can have 16 MSTP instances and one MSTP region.
- Create VLANs before mapping them to MSTP instances.
- The MSTP force-version option is not supported.
- For load balancing across redundant paths in the network to work, all VLAN-to-instance mapping assignments must match; otherwise, all traffic flows on a single link.
- When you enable MSTP by using the global `protocol spanning-tree mstp` command, RSTP is automatically enabled.
- For two or more switches to be in the same MSTP region, they must have the same VLAN-to-instance map, the same configuration revision number, and the same name.
- Spanning Tree topologies must not be enabled on any direct server connections to the front-end Ten Gigabit Ethernet ports that may run FCoE traffic. This may result in lost or dropped FCoE logins.

Default STP, RSTP, and MSTP configuration

Table 8 lists the default STP, RSTP, and MSTP configuration.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning-tree mode</td>
<td>By default, STP, RSTP, and MSTP are disabled</td>
</tr>
<tr>
<td>Bridge priority</td>
<td>32768</td>
</tr>
</tbody>
</table>
Default STP, RSTP, and MSTP configuration

TABLE 8 Default STP, RSTP, and MSTP configuration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge forward delay</td>
<td>15 seconds</td>
</tr>
<tr>
<td>Bridge maximum aging time</td>
<td>20 seconds</td>
</tr>
<tr>
<td>Error disable timeout timer</td>
<td>Disabled</td>
</tr>
<tr>
<td>Error disable timeout interval</td>
<td>300 seconds</td>
</tr>
<tr>
<td>Port-channel path cost</td>
<td>Standard</td>
</tr>
<tr>
<td>Bridge hello time</td>
<td>2 seconds</td>
</tr>
<tr>
<td>Flush MAC addresses from the VLAN FDB</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Table 9 lists the switch defaults that apply only to MSTP configurations.

TABLE 9 Default MSTP configuration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco interoperability</td>
<td>Disabled</td>
</tr>
<tr>
<td>Switch priority (when mapping a VLAN to an MSTP instance)</td>
<td>32768</td>
</tr>
<tr>
<td>Maximum hops</td>
<td>20 hops</td>
</tr>
<tr>
<td>Revision number</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 10 lists the switch defaults for the 10-Gigabit Ethernet CEE interface-specific configuration.

TABLE 10 Default 10-Gigabit Ethernet CEE interface-specific configuration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning tree</td>
<td>Disabled on the interface</td>
</tr>
<tr>
<td>Automatic edge detection</td>
<td>Disabled</td>
</tr>
<tr>
<td>Path cost</td>
<td>2000</td>
</tr>
<tr>
<td>Edge port</td>
<td>Disabled</td>
</tr>
<tr>
<td>Guard root</td>
<td>Disabled</td>
</tr>
<tr>
<td>Hello time</td>
<td>2 seconds</td>
</tr>
<tr>
<td>Link type</td>
<td>Point-to-point</td>
</tr>
<tr>
<td>Port fast</td>
<td>Disabled</td>
</tr>
<tr>
<td>Port priority</td>
<td>128</td>
</tr>
<tr>
<td>CEE interface root port</td>
<td>Allow the CEE interface to become a root port.</td>
</tr>
<tr>
<td>CEE interface BPDU restriction</td>
<td>Restriction is disabled</td>
</tr>
</tbody>
</table>
Enabling STP, RSTP, or MSTP

You enable STP to detect or avoid loops. STP is not required in a loop-free topology. You must turn off one form of STP before turning on another form. By default, STP, RSTP, and MSTP are not enabled.

Perform the following steps from Privileged EXEC mode.
1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `protocol` command to enable STP, RSTP, or MSTP.

Example

```
switch(config)#protocol spanning-tree rstp
```

Disabling STP, RSTP, or MSTP

To disable STP, RSTP, or MSTP, perform the following steps from Privileged EXEC mode. By default, STP, RSTP, and MSTP are not enabled.
1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `protocol` command to disable STP, RSTP, or MSTP.

```
switch(config)#no protocol spanning-tree
```

Shutting down STP, RSTP, or MSTP globally

To shut down STP, RSTP, or MSTP globally, perform the following steps from Privileged EXEC mode.
1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `shutdown` command to globally shutdown STP, RSTP, or MSTP. The `shutdown` command below works in all three modes.

```
switch(conf-mstp)#shutdown
```
Specifying the bridge priority

In any mode (STP, RSTP, or MSTP), use this command to specify the priority of the switch. After you decide on the root switch, set the appropriate values to designate the switch as the root switch. If a switch has a bridge priority that is lower than all the other switches, the other switches automatically select the switch as the root switch.

The root switch should be centrally located and not in a “disruptive” location. Backbone switches typically serve as the root switch because they often do not connect to end stations. All other decisions in the network, such as which port to block and which port to put in forwarding mode, are made from the perspective of the root switch.

Bridge protocol data units (BPDUs) carry the information exchanged between switches. When all the switches in the network are powered up, they start the process of selecting the root switch. Each switch transmits a BPDU to directly connected switches on a per-VLAN basis. Each switch compares the received BPDU to the BPDU that the switch sent. In the root switch selection process, if switch 1 advertises a root ID that is a lower number than the root ID that switch 2 advertises, switch 2 stops the advertisement of its root ID, and accepts the root ID of switch 1. The switch with the lowest bridge priority becomes the root switch.

NOTE
Because each VLAN is in a separate broadcast domain, each VLAN must have its own root switch.

To specify the bridge priority, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `protocol` command to enable STP, RSTP, or MSTP.
   ```
   switch(config)#protocol spanning-tree rstp
   ```
3. Specify the bridge priority. The range is 0 through 61440 and the priority values can be set only in increments of 4096. The default priority is 32678.
   ```
   switch(conf-stp)#bridge-priority 20480
   ```

Specifying the bridge forward delay

In any mode (STP, RSTP, or MSTP), use this command to specify how long an interface remains in the listening and learning states before the interface begins forwarding all spanning tree instances.

The range is 4 through 30 seconds. The default is 15 seconds. The following relationship should be kept:

\[2^*(forward_delay - 1) >= max_age >= 2^*(hello_time + 1)\]

To specify the bridge forward delay, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `protocol` command to enable STP, RSTP, or MSTP.
   ```
   switch(config)#protocol spanning-tree stp
   ```
3. Specify the bridge forward delay.
   ```
   switch(conf-stp)#forward-delay 20
   ```
Specifying the bridge maximum aging time

In any mode (STP, RSTP, or MSTP), use this command to control the maximum length of time that passes before an interface saves its Bridge Protocol Data Unit (BPDU) configuration information.

When configuring the maximum aging time, the max-age setting must be greater than the hello-time setting. The range is 6 through 40 seconds. The default is 20 seconds. The following relationship should be kept:

\[
2*(\text{forward_delay\ -\ 1})\geq \text{max_age}\geq 2*(\text{hello_time\ +\ 1})
\]

To specify the bridge maximum aging time, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `protocol` command to enable STP, RSTP, or MSTP.
   ```
   switch(config)#protocol spanning-tree stp
   ```
3. Specify the bridge maximum aging time.
   ```
   switch(conf-stp)#max-age 25
   ```

Enabling the error disable timeout timer

In any mode (STP, RSTP, or MSTP), use this command to enable the timer to bring a port out of the disabled state. When the STP BPDU guard disables a port, the port remains in the disabled state unless the port is enabled manually. This command allows you to enable the port from the disabled state. For details on configuring the error disable timeout interval, see “Specifying the error disable timeout interval” on page 59.

To enable the error disable timeout timer, perform the following steps from Privileged EXEC mode. By default, the timeout feature is disabled.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `protocol` command to enable STP, RSTP, or MSTP.
   ```
   switch(config)#protocol spanning-tree stp
   ```
3. Enable the error disable timeout timer.
   ```
   switch(conf-stp)#error-disable-timeout enable
   ```

Specifying the error disable timeout interval

In any mode (STP, RSTP, or MSTP), use this command to specify the time in seconds it takes for an interface to time out. The range is 10 through 1000000 seconds. The default is 300 seconds. By default, the timeout feature is disabled.

To specify the time in seconds it takes for an interface to time out, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `protocol` command to enable STP, RSTP, or MSTP.
   ```
   switch(config)#protocol spanning-tree stp
   ```
3. Specify the time in seconds it takes for an interface to time out.
   ```
   switch(conf-stp)#error-disable-timeout interval 60
   ```
Specifying the port-channel path cost

In any mode (STP, RSTP, or MSTP), use this command to specify the port-channel path cost. The default port cost is standard. The path cost options are:

- **custom**—Specifies that the path cost changes according to the port-channel’s bandwidth.
- **standard**—Specifies that the path cost does not change according to the port-channel’s bandwidth.

To specify the port-channel path cost, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `protocol` command to enable STP, RSTP, or MSTP.

   ```bash
   switch(config)#protocol spanning-tree stp
   ```
3. Specify the port-channel path cost.

   ```bash
   switch(conf-stp)#port-channel path-cost custom
   ```

Specifying the bridge hello time (STP and RSTP)

In STP or RSTP mode, use this command to configure the bridge hello time. The hello time determines how often the switch interface broadcasts hello Bridge Protocol Data Units (BPDUs) to other devices. The range is 1 through 10 seconds. The default is 2 seconds.

When configuring the hello-time, the max-age setting must be greater than the hello-time setting. The following relationship should be kept:

$$2 \times (\text{forward_delay} - 1) \geq \text{max_age} \geq 2 \times (\text{hello_time} + 1)$$

To specify the bridge hello time, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `protocol` command to enable STP, RSTP, or MSTP.

   ```bash
   switch(config)#protocol spanning-tree stp
   ```
3. Specify the time range in seconds for the interval between the hello BPDUs sent on an interface.

   ```bash
   switch(conf-stp)#hello-time 5
   ```

Specifying the transmit hold count (RSTP and MSTP)

In RSTP and MSTP mode, use this command to configure the BPDU burst size by specifying the transmit hold count value. The command configures the maximum number of BPDUs transmitted per second for RSTP and MSTP before pausing for 1 second. The range is 1 through 10. The default is 6 seconds.

To specify the transmit hold count, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Specify the transmit hold count.

   ```bash
   switch(config)#transmit-holdcount 5
   ```
Enabling Cisco interoperability (MSTP)

In MSTP mode, use this command to enable or disable the ability of the Brocade FCoE hardware to interoperate with certain legacy Cisco switches. If Cisco interoperability is required on any switch in the network, then all switches in the network must be compatible, and therefore enabled using this command. The default is Cisco interoperability is disabled.

NOTE
This command is necessary because the “version 3 length” field in the MSTP BPDU on some legacy Cisco switches does not conform to current standards.

To enable Brocade FCoE hardware to interoperate with certain legacy Cisco switches, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `protocol` command to enable MSTP.
   ```
   switch(config)#protocol spanning-tree mstp
   ```
3. Enable the ability of Brocade FCoE hardware to interoperate with certain legacy Cisco switches.
   ```
   switch(conf-mstp)#cisco-interoperability enable
   ```

Disabling Cisco interoperability (MSTP)

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `protocol` command to enable MSTP.
   ```
   switch(config)#protocol spanning-tree mstp
   ```
3. Disable the ability of Brocade FCoE hardware to interoperate with certain legacy Cisco switches.
   ```
   switch(conf-mstp)#cisco-interoperability disable
   ```

Mapping a VLAN to an MSTP instance

In MSTP mode, use this command to map a VLAN to an MSTP instance. You can group a set of VLANs to an instance. This command can be used only after the VLAN is created. VLAN instance mapping is removed from the configuration if the underlying VLANs are deleted.

To map a VLAN to an MSTP instance, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `protocol` command to enable MSTP.
   ```
   switch(config)#protocol spanning-tree mstp
   ```
3. Map a VLAN to an MSTP instance.
   ```
   switch(conf-mstp)#instance 5 vlan 4096
   ```
Specifying the maximum number of hops for a BPDU (MSTP)

In MSTP mode, use this command to configure the maximum number of hops for a BPDU in an MSTP region. Specifying the maximum hops for a BPDU prevents the messages from looping indefinitely on the interface. When you change the number of hops, it affects all spanning tree instances. The range is 1 through 40. The default is 20 hops.

To configure the maximum number of hops for a BPDU in an MSTP region, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `protocol` command to enable MSTP.

   ```
   switch(config)#protocol spanning-tree mstp
   ```
3. Enter the `max-hops` command to configure the maximum number of hops for a BPDU in an MSTP region.

   ```
   switch(conf-mstp)#max-hops hop_count
   ```

Specifying a name for an MSTP region

In MSTP mode, use this command to assign a name to an MSTP region. The region name has a maximum length of 32 characters and is case-sensitive.

To assign a name to an MSTP region, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `protocol` command to enable MSTP.

   ```
   switch(config)#protocol spanning-tree mstp
   ```
3. Enter the `region` command to assign a name to an MSTP region.

   ```
   switch(conf-mstp)#region sydney
   ```

Specifying a revision number for an MSTP configuration

In MSTP mode, use this command to specify a revision number for an MSTP configuration. The range is 0 through 255. The default is 0.

To specify a revision number for an MSTP configuration, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `protocol` command to enable MSTP.

   ```
   switch(config)#protocol spanning-tree mstp
   ```
3. Enter the `revision` command to specify a revision number for an MSTP configuration.

   ```
   switch(conf-mstp)#revision 17
   ```
Flushing MAC addresses (RSTP and MSTP)

For RSTP and MSTP, use this command to flush the MAC addresses from the VLAN filtering database (FDB). The VLAN FDB determines the forwarding of an incoming frame. The VLAN FDB contains information that helps determine the forwarding of an arriving frame based on MAC address and VLAN ID data (see “VLAN configuration guidelines and restrictions” on page 39).

There are two ways to flush the MAC addresses:

- **Standard method**—When one port receives a BPDU frame with a topology change flag, it flushes the FDB for the other ports in the switch. If a BPDU frame with the topology change flag is received continuously, the switch continues to flush the FDB. This behavior is the default behavior.
- **Brocade method**—With this method, the FDB is only flushed for the first and last BPDU with a topology change flag.

Both methods flush the FDB when the switch receives BPDUs with a topology change flag, but the Brocade method causes less flushing.

To flush the MAC addresses from the VLAN FDB, perform the following steps.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the appropriate form of the `spanning-tree` command based on how you want to flush the address:
 - To flush the MAC address using the standard method:
     ```
     switch(config)#spanning-tree tc-flush-standard
     ```
 - To flush the MAC addresses from the VLAN FDB using the Brocade method:
     ```
     switch(config)#no spanning-tree tc-flush-standard
     ```

Clearing spanning tree counters

In Privileged EXEC mode, use this command to clear spanning tree counters on all interfaces or on the specified interface.

To clear spanning tree counters, perform the following steps from Privileged EXEC mode.

1. Enter the appropriate form of the `clear` command based on what you want to clear:
 - To clear all spanning tree counters on all interfaces:
     ```
     switch#clear spanning-tree counter
     ```
 - To clear the spanning tree counters associated with a specific port-channel or CEE port interface:
     ```
     switch#clear spanning-tree counter interface tengigabitethernet 0/1
     ```

Clearing spanning tree-detected protocols

In Privileged EXEC mode, restart the protocol migration process (force the renegotiation with neighboring switches) on all interfaces or on the specified interface.
To restart the protocol migration process, perform the following tasks from Privileged EXEC mode.

1. Enter the appropriate form of the `clear` command based on what you want to clear:
 - To clear all spanning tree counters on all interfaces:
     ```
     switch# clear spanning-tree detected-protocols
     ```
 - To clear the spanning tree counters associated with a specific port-channel or CEE port interface:
     ```
     switch# clear spanning-tree detected-protocols interface tengigabitethernet 0/1
     ```

Displaying STP, RSTP, and MSTP-related information

To display STP, RSTP, and MSTP-related information, perform the following tasks from Privileged EXEC mode.

1. Enter the `show spanning tree` command to display all STP, RSTP, and MSTP-related information.
   ```
   switch# show spanning-tree brief
   ```

Configuring STP, RSTP, or MSTP on CEE interface ports

This section details the commands for enabling and configuring STP, RSTP, or MSTP on individual 10-Gigabit Ethernet CEE interface ports on Brocade FCoE hardware.

Enabling automatic edge detection

From the CEE interface, use this command to automatically identify the edge port. The port can become an edge port if no BPDU is received. By default, automatic edge detection is disabled.

To enable automatic edge detection on the CEE interface, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `interface` command to specify the CEE interface type and slot/port number.
   ```
   switch(config)# interface tengigabitethernet 0/1
   ```
3. Enter the `no shutdown` command to enable the CEE interface.
4. Enter the `spanning-tree` command to enable automatic edge detection on the CEE interface.
   ```
   switch(conf-if-te-0/1)# spanning-tree autoedge
   ```

Configuring the path cost

From the CEE interface, use this command to configure the path cost for spanning tree calculations. The lower the path cost means there is a greater chance of the interface becoming the root. The range is 1 through 200000000. The default path cost is 2000.
To configure the path cost for spanning tree calculations on the CEE interface, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `interface` command to specify the CEE interface type and slot/port number.
   ```
   switch(config)#interface tengigabitethernet 0/1
   ```
3. Enter the `no shutdown` command to enable the CEE interface.
4. Enter the `spanning-tree` command to configure the path cost for spanning tree calculations on the CEE interface.
   ```
   switch(conf-if-te-0/1)#spanning-tree cost cost
   ```

Enabling a port (interface) as an edge port

From the CEE interface, use this command to enable the port as an edge port to allow the port to quickly transition to the forwarding state. To configure a port as an edge port, follow these guidelines:

- A port can become an edge port if no BPDU is received.
- When an edge port receives a BPDU, it becomes a normal spanning tree port and is no longer an edge port.
- Because ports that are directly connected to end stations cannot create bridging loops in the network, edge ports transition directly to the forwarding state and skip the listening and learning states.
- This command is only for RSTP and MSTP. Use the `spanning-tree portfast` command for STP (see “Enabling port fast (STP)” on page 67).

To enable the CEE interface as an edge port, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `interface` command to specify the CEE interface type and slot/port number.
   ```
   switch(config)#interface tengigabitethernet 0/1
   ```
3. Enter the `no shutdown` command to enable the CEE interface.
4. Enter the `spanning-tree` command to enable the CEE interface as an edge port.
   ```
   switch(conf-if-te-0/1)#spanning-tree edgeport bpdu-filter
   ```

Enabling the guard root

From the CEE interface, use this command to enable the guard root on the switch. The guard root feature provides a way to enforce the root bridge placement in the network. With the guard root enabled on an interface, the switch is able to restrict which interface is allowed to be the spanning tree root port or the path to the root for the switch. The root port provides the best path from the switch to the root switch. By default, guard root is disabled.
Guard root protects the root bridge from malicious attacks and unintentional misconfigurations where a bridge device that is not intended to be the root bridge becomes the root bridge. This causes severe bottlenecks in the data path. Guard root ensures that the port on which it is enabled is a designated port. If the guard root-enabled port receives a superior BPDU, it goes to a discarding state.

To enable the guard root on a CEE interface, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `interface` command to specify the CEE interface type and slot/port number.

   ```
   switch(config)#interface tengigabitethernet 0/1
   ```
3. Enter the `no shutdown` command to enable the CEE interface.
4. Enter the `spanning-tree guard root` command to enable the guard root on a CEE interface.

   ```
   switch(config-if-te-0/1)#spanning-tree guard root
   ```

Specifying the MSTP hello time

From the CEE interface, use this command to set the time interval between BPDUs sent by the root switch. Changing the `hello-time` affects all spanning tree instances.

The `max-age` setting must be greater than the `hello-time` setting (see “Specifying the bridge maximum aging time” on page 59). The range is 1 through 10 seconds. The default is 2 seconds.

To specify the MSTP hello time on a CEE interface, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `interface` command to specify the CEE interface type and slot/port number.

   ```
   switch(config)#interface tengigabitethernet 0/1
   ```
3. Enter the `no shutdown` command to enable the CEE interface.
4. Enter the `spanning-tree hello-time` command to specify the hello time on a CEE interface.

   ```
   switch(config-if-te-0/1)#spanning-tree hello-time 5
   ```

Specifying restrictions for an MSTP instance

From the CEE interface, use this command to specify restrictions on the interface for an MSTP instance.

To specify restrictions for an MSTP instance on a CEE interface, perform the following steps.

1. Enter the `configure terminal` command to enter global configuration mode from Privileged EXEC mode.
2. Enter the `interface` command to specify the CEE interface type and slot/port number.

   ```
   switch(config)#interface tengigabitethernet 0/1
   ```
3. Enter the `no shutdown` command to enable the CEE interface.
4. Enter the `spanning-tree` command to specify the restrictions for an MSTP instance on a CEE interface.
   ```
   switch(conf-if-te-0/1)#spanning-tree instance 5 cost 3550 restricted-tcn
   ```

Specifying a link type

From the CEE interface, use this command to specify a link type. Specifying the `point-to-point` keyword enables rapid spanning tree transitions to the forwarding state. Specifying the `shared` keyword disables spanning tree rapid transitions. The default setting is point-to-point.

To specify a link type on a CEE interface, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `interface` command to specify the CEE interface type and slot/port number.
   ```
   switch(config)#interface tengigabitethernet 0/1
   ```
3. Enter the `no shutdown` command to enable the CEE interface.
4. Enter the `spanning-tree` command to specify the link type on the CEE interface.
   ```
   switch(conf-if-te-0/1)#spanning-tree link-type shared
   ```

Enabling port fast (STP)

From the CEE interface, use this command to enable port fast on an interface to allow the interface to quickly transition to the forwarding state. Port fast immediately puts the interface into the forwarding state without having to wait for the standard forward time.

NOTE

If you enable the `portfast bpdu-guard` option on an interface and the interface receives a BPDU, the software disables the interface and puts the interface in the ERR_DISABLE state.

Use the `spanning-tree edgeport` command for MSTP and RSTP (see “Enabling a port (interface) as an edge port” on page 65).

To enable port fast on the CEE interface for STP, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `interface` command to specify the CEE interface type and slot/port number.
   ```
   switch(config)#interface tengigabitethernet 0/1
   ```
3. Enter the `no shutdown` command to enable the CEE interface.
4. Enter the `spanning-tree` command to enable port fast on the CEE interface.
   ```
   switch(conf-if-te-0/1)#spanning-tree portfast
   ```

Specifying the port priority

From the CEE interface, use this command to specify the port priority. The range is 0 through 240 in increments of 16. The default is 128.
To specify the port priority on the CEE interface, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `interface` command to specify the CEE interface type and slot/port number.
   ```
   switch(config)#interface tengigabitethernet 0/1
   ```
3. Enter the `no shutdown` command to enable the CEE interface.
4. Enter the `spanning-tree` command to specify the port priority on the CEE interface.
   ```
   switch(conf-if-te-0/1)#spanning-tree priority 32
   ```

Restricting the port from becoming a root port

From the CEE interface, use this command to restrict a port from becoming a root port. The default is to allow the CEE interface to become a root port.

To restrict the CEE interface from becoming a root port, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `interface` command to specify the CEE interface type and slot/port number.
   ```
   switch(config)#interface tengigabitethernet 0/1
   ```
3. Enter the `no shutdown` command to enable the CEE interface.
4. Enter the `spanning-tree` command to restrict the CEE interface from becoming a root port.
   ```
   switch(conf-if-te-0/1)#spanning-tree restricted-role
   ```

Restricting the topology change notification

From the CEE interface, use this command to restrict the topology change notification BPDUs sent on the interface. By default, the restriction is disabled.

To restrict the topology change notification BPDUs sent on the CEE interface, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `interface` command to specify the CEE interface type and slot/port number.
   ```
   switch(config)#interface tengigabitethernet 0/1
   ```
3. Enter the `no shutdown` command to enable the CEE interface.
4. Enter the `spanning-tree` command to restrict the topology change notification BPDUs sent on the CEE interface.
   ```
   switch(conf-if-te-0/1)#spanning-tree restricted-tcn
   ```

Enabling spanning tree

From the CEE interface, use this command to enable spanning tree on the CEE interface. By default, spanning tree is disabled.
To enable spanning tree on the CEE interface, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `interface` command to specify the CEE interface type and slot/port number.
   ```
   switch(config)#interface tengigabitethernet 0/1
   ```
3. Enter the `no shutdown` command to enable the CEE interface.
4. Enter the `spanning-tree` command to enable spanning tree on the CEE interface.
   ```
   switch(conf-if-te-0/1)#no spanning-tree shutdown
   ```

Disabling spanning tree

From the CEE interface, use this command to disable spanning tree on the CEE interface. By default, spanning tree is disabled.

To enable spanning tree on the CEE interface, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `interface` command to specify the CEE interface type and slot/port number.
   ```
   switch(config)#interface tengigabitethernet 0/1
   ```
3. Enter the `no shutdown` command to enable the CEE interface.
4. Enter the `spanning-tree` command to enable spanning tree on the CEE interface.
   ```
   switch(conf-if-te-0/1)#spanning-tree shutdown
   ```
Configuring STP, RSTP, or MSTP on CEE interface ports
Configuring Link Aggregation using the CEE CLI

In this chapter

- Link aggregation overview ... 71
- LACP configuration guidelines and restrictions 76
- Default LACP configuration ... 76
- LACP configuration and management 76
- LACP troubleshooting tips ... 78

Link aggregation overview

Link aggregation allows you to bundle multiple physical Ethernet links to form a single logical trunk providing enhanced performance and redundancy. The aggregated trunk is referred to as a Link Aggregation Group (LAG). The LAG is viewed as a single link by connected devices, the spanning tree protocol, IEEE 802.1Q VLANs, and so on. When one physical link in the LAG fails, the other links stay up and there is no disruption to traffic.

To configure links to form a LAG, the physical links must be the same speed and all links must go to the same neighboring device. Link aggregation can be done by manually configuring the LAG or by dynamically configuring the LAG using the IEEE 802.3ad Link Aggregation Control Protocol (LACP).

NOTE
The LAG or LAG interface is also referred to as a port-channel.

The benefits of link aggregation are summarized as follows:
- Increased bandwidth. The logical bandwidth can be dynamically changed as the demand changes.
- Increased availability.
- Load sharing.
- Rapid configuration and reconfiguration.

The Brocade FCoE hardware supports the following trunk types:
- Static, standards-based LAG.
- Dynamic, standards-based LAG using LACP.
- Static, Brocade-proprietary LAG.
- Dynamic, Brocade-proprietary LAG using proprietary enhancements to LACP.

Link Aggregation Group configuration

You can configure a maximum of 24 Link Aggregation Groups (LAG) with up to 16 links per standard LAG and four links per Brocade-proprietary LAG. Each LAG is associated with an aggregator. The aggregator manages the Ethernet frame collection and distribution functions.
On each port, link aggregation control:
- Maintains configuration information to control port aggregation.
- Exchanges configuration information with other devices to form LAGs.
- Attaches ports to and detaches ports from the aggregator when they join or leave a LAG.
- Enables or disables an aggregator’s frame collection and distribution functions.

Each link in the Brocade FCoE hardware can be associated with a LAG; a link cannot be associated with more than one LAG. The process of adding and removing links to and from a LAG is controlled either statically, dynamically, or through LACP.

Each LAG consists of the following components:
- A MAC address that is different from the MAC addresses of the LAG’s individual member links.
- An interface index for each link to identify the link to neighboring devices.
- An administrative key for each link. Only links having the same administrative key value can be aggregated into a LAG. On each link configured to use LACP, LACP automatically configures an administrative key value equal to the port-channel identification number.

Figure 11 and Figure 12 show typical IP SAN configurations using LAGs. In a data center the Brocade 8000 switch fits into the top-of-the-rack use case where all the servers in a rack are connected to the Brocade 8000 switch through Twinax copper or optical fiber cable. The database server layer connects to the top-of-the-rack Brocade 8000 switch which is located in the network access layer.

The Brocade 8000 switch connects to Layer 2/Layer 3 aggregation routers which provide access into the existing LAN. This connectivity is formed in a standard V-design or square-design. Both designs use the LAG as the uplink to provide redundancy and improved bandwidth.
The Brocade 8000 switch interoperates with all of the major Layer 2/Layer 3 aggregation routers including Foundry Networks, Cisco Systems, and Force10 Networks.

FIGURE 11 Configuring LAGs for a top-of-the-rack CEE switch—Example 1
Link aggregation overview

FIGURE 12 Configuring LAGs for a top-of-the-rack CEE switch—Example 2
Link Aggregation Control Protocol

Link Aggregation Control Protocol (LACP) is an IEEE 802.3ad standards-based protocol that allows two partner systems to dynamically negotiate attributes of physical links between them to form logical trunks. LACP determines whether a link can be aggregated into a LAG. If a link can be aggregated into a LAG, LACP puts the link into the LAG. All links in a LAG inherit the same administrative characteristics. LACP operates in two modes:

- Passive mode—LACP responds to Link Aggregation Control Protocol Data Units (LACPDUs) initiated by its partner system but does not initiate the LACPDU exchange.
- Active mode—LACP initiates the LACPDU exchange regardless of whether the partner system sends LACPDUs.

Dynamic link aggregation

Dynamic link aggregation uses LACP to negotiate which links can be added and removed from a LAG. Typically, two partner systems sharing multiple physical Ethernet links can aggregate a number of those physical links using LACP. LACP creates a LAG on both partner systems and identifies the LAG by the LAG ID. All links with the same administrative key and all links that are connected to the same partner switch become members of the LAG. LACP continuously exchanges LACPDUs to monitor the health of each member link.

Static link aggregation

In static link aggregation, links are added into a LAG without exchanging LACPDUs between the partner systems. The distribution and collection of frames on static links is determined by the operational status and administrative state of the link.

Brocade-proprietary aggregation

Brocade-proprietary aggregation is similar to standards-based link aggregation but differs in how the traffic is distributed. It also has additional rules that member links must meet before they are aggregated:

- The most important rule requires that there is not a significant difference in the length of the fiber between the member links, and that all member links are part of the same port-group. The ports that belong to port-group 1, port-group 2, and port-group 3 are te0/0 to te0/7, te0/8 to te0/15, and te0/16 to te0/23, respectively.
- A maximum of four Brocade LAGs can be created per port-group.

LAG distribution process

The LAG aggregator is associated with the collection and distribution of Ethernet frames. The collection and distribution process is required to guarantee the following:

- Inserting and capturing control PDUs.
- Restricting the traffic of a given conversation to a specific link.
- Load balancing between individual links.
- Handling dynamic changes in LAG membership.
LACP configuration guidelines and restrictions

This section applies to standards-based and Brocade-proprietary LAG configurations except where specifically noted otherwise.

Follow these LACP configuration guidelines and restrictions when configuring LACP:

- All ports on the Brocade FCoE hardware can operate only in full-duplex mode.
- QoS—In the Fabric OS version 6.3.0 release, QoS commands for a LAG need to be specified on each LAG member link, instead of on the logical LAG interface (port-group). Additionally, the QoS commands specified on each LAG member link need to be the same on each link.
- Brocade-proprietary LAGs only—All LAG member links need to be part of the same port-group.
- Switchport interfaces—Interfaces configured as “switchport” interfaces cannot be aggregated into a LAG. However, a LAG can be configured as a switchport.

Default LACP configuration

Table 11 lists the default LACP configuration.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>System priority</td>
<td>32768</td>
</tr>
<tr>
<td>Port priority</td>
<td>32768</td>
</tr>
<tr>
<td>Timeout</td>
<td>Long (standard LAG) and short (Brocade LAG)</td>
</tr>
</tbody>
</table>

LACP configuration and management

You need to enter either the `copy running-config startup-config` command or the `write memory` command to save your configuration changes to Flash memory so that they are not lost if there is a system reload or power outage.

NOTE
To see the minimum configuration required to enable FCoE on the Brocade 8000 switch, refer to “Minimum CEE configuration to allow FCoE traffic flow” on page 35.
Enabling LACP on a CEE interface

To add additional interfaces to an existing LAG, repeat this procedure using the same LAG group number for the new interfaces.

To enable LACP on a CEE interface, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `interface` command to specify the CEE interface type and slot/port number.

Example

```
switch(config)#interface tengigabitethernet 0/1
```

3. Enter the `no shutdown` command to enable the CEE interface.
4. Enter the `channel-group` command to configure the LACP for the CEE interface.

Example

```
switch(conf-if)#channel-group 4 mode active type brocade
```

Configuring the LACP system priority

You configure an LACP system priority on each switch running LACP. LACP uses the system priority with the switch MAC address to form the system ID and also during negotiation with other switches.

The system priority value must be a number in the range of 1 through 65535. The higher the number, the lower the priority. The default priority is 32768.

To configure the global LACP system priority, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Specify the LACP system priority.

Example

```
switch(config)#lacp system-priority 25000
```

Configuring the LACP timeout period on a CEE interface

The LACP timeout period indicates how long LACP waits before timing out the neighboring device. The short timeout period is 3 seconds and the long timeout period is 90 seconds. The default is long.

To configure the LACP timeout period on a CEE interface, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `interface` command to specify the CEE interface type and slot/port number.

Example of selecting the Ten Gigabit Ethernet port number 0/1.

```
switch(config)#interface tengigabitethernet 0/1
```

3. Enter the `no shutdown` command to enable the CEE interface.
4. Specify the LACP timeout period for the CEE interface.
Clearing LACP counter statistics on a LAG

To clear LACP counter statistics, perform the following task from Privileged EXEC mode.

1. Enter the `clear` command to clear the LACP counter statistics for the specified LAG group number.

Example of clearing counter statistics on LAG group 42

```
switch#clear lacp 42 counters
```

Clearing LACP counter statistics on all LAG groups

To clear LACP counter statistics, perform the following task from Privileged EXEC mode.

1. Enter the `clear` command to clear the LACP counter statistics for all LAG groups.

```
switch#clear lacp counters
```

Displaying LACP information

Use the `show` command to display LACP statistics and configuration information. See the Converged Enhanced Ethernet Command Reference for information.

LACP troubleshooting tips

To troubleshoot problems with your LACP configuration, use the following troubleshooting tips.

If a standard IEEE 802.3ad-based dynamic trunk is configured on a link and the link is not able to join the LAG:

- Make sure that both ends of the link are configured as `standard` for the trunk type.
- Make sure that both ends of the link are `not` configured for `passive` mode. They must be configured as either `active/active`, `active/passive`, or `passive/active`.
- Make sure that the port-channel interface is in the administrative “up” state by ensuring that the `no shutdown` command was entered on the interface on both ends of the link.
- Make sure that the links that are part of the LAG are connected to the same neighboring switch.
- Make sure that the system ID of the switches connected by the link is unique. This can be verified by entering the `show lacp sys-id` command on both switches.
- Make sure that LACPDUs are being received and transmitted on both ends of the link and that there are no error PDUs. This can be verified by entering the `show lacp counters port-channel-num` command and looking at the receive mode (rx) and transmit mode (tx) statistics. The statistics should be incrementing and should not be at zero or a fixed value. If the PDU rx count is not incrementing, check the interface for possible CRC errors by entering the `show interface link-name` command on the neighboring switch. If the PDU tx count is not incrementing, check the operational status of the link by entering the `show interface link-name` command and verifying that the interface status is “up.”
If a Brocade-based dynamic trunk is configured on a link and the link is not able to join the LAG:

- Make sure that both ends of the link are configured as **Brocade** for trunk type.
- Make sure that both ends of the link are **not** configured for passive mode. They must be configured as either **active/active**, **active/passive**, or **passive/active**.
- Make sure that the port-channel interface is in the administrative “up” state by ensuring that the `no shutdown` command was entered on the interface on both ends of the link.
- Make sure that the links that are part of the LAG are connected to the same neighboring switch.
- Make sure that the system ID of the switches connected by the link is unique. This can be verified by entering the `show lacp sys-id` command on both switches.
- Make sure that LACPDUs are being received and transmitted on both ends of the link and there are no error PDUs. This can be verified by entering the `show lacp port-channel-num counters` command and looking at the rx and tx statistics. The statistics should be incrementing and should not be at zero or a fixed value. If the PDU rx count is not incrementing, check the interface for possible CRC errors by entering the `show interface link-name` command on the neighboring switch.
- Make sure that the fiber length of the link has a deskew value of 7 microseconds. If it does not, the link will not be able to join the LAG and the following RASLOG message is generated:

 Deskew calculation failed for link <link-name>.

When a link has this problem, the `show port-channel` command displays the following:

 Mux machine state : Deskew not OK.

If a Brocade-based static trunk is configured on a link and the link is not able to join the LAG:

- Make sure that both ends of the link are configured as **Brocade** for trunk type and verify that the mode is “on.”
- Make sure that the port-channel interface is in the administrative “up” state by ensuring that the `no shutdown` command was entered on the interface on both ends of the link.

If a standards-based static trunk is configured on a link and the link is not able to join the LAG:

- Make sure that both ends of the link are configured as **standard** for trunk type and verify that the mode is “on.”
- Make sure that the port-channel interface is in the administrative “up” state by ensuring that the `no shutdown` command was entered on the interface on both ends of the link.
LACP troubleshooting tips
Chapter 7

Configuring LLDP using the CEE CLI

In this chapter

- LLDP overview ... 81
- Layer 2 topology mapping ... 82
- DCBX overview ... 84
- DCBX interaction with other vendor devices 85
- LLDP configuration guidelines and restrictions 85
- Default LLDP configuration ... 86
- LLDP configuration and management 86

LLDP overview

The IEEE 802.1AB Link Layer Discovery Protocol (LLDP) enhances the ability of network management tools to discover and maintain accurate network topologies and simplify LAN troubleshooting in multi-vendor environments. To efficiently and effectively operate the various devices in a LAN you must ensure the correct and valid configuration of the protocols and applications that are enabled on these devices. With Layer 2 networks expanding dramatically, it is difficult for a network administrator to statically monitor and configure each device in the network.

Using LLDP, network devices such as routers and switches advertise information about themselves to other network devices and store the information they discover. Details such as device configuration, device capabilities, and device identification are advertised. LLDP defines the following:

- A common set of advertisement messages.
- A protocol for transmitting the advertisements.
- A method for storing the information contained in received advertisements.

NOTE

LLDP runs over the data-link layer which allows two devices running different network layer protocols to learn about each other.

LLDP information is transmitted periodically and stored for a finite period. Every time a device receives an LLDP advertisement frame, it stores the information and initializes a timer. If the timer reaches the time to live (TTL) value, the LLDP device deletes the stored information ensuring that only valid and current LLDP information is stored in network devices and is available to network management systems.
Layer 2 topology mapping

The LLDP protocol lets network management systems accurately discover and model Layer 2 network topologies. As LLDP devices transmit and receive advertisements, the devices store information they discover about their neighbors. Advertisement data such as a neighbor’s management address, device type, and port identification is useful in determining what neighboring devices are in the network.

NOTE
Brocade’s LLDP implementation supports a one-to-one connection. Each interface has one and only one neighbor.

The higher level management tools, such as Brocade’s DCFM, can query the LLDP information to draw Layer 2 physical topologies. The management tools can continue to query a neighboring device through the device’s management address provided in the LLDP information exchange. As this process is repeated, the complete Layer 2 topology is mapped.

In LLDP the link discovery is achieved through the exchange of link-level information between two link partners. The link-level information is refreshed periodically to reflect any dynamic changes in link-level parameters. The basic format for exchanging information in LLDP is in the form of a type, length, value (TLV) field.

LLDP keeps a database for both local and remote configurations. The LLDP standard currently supports three categories of TLVs. Brocade’s LLDP implementation adds a proprietary Brocade extension TLV set. The four TLV sets are described as follows:

- **Basic management TLV set.** This set provides information to map the Layer 2 topology and includes the following TLVs:
 - **Chassis ID TLV**—Provides the ID for the switch or router where the port resides. This is a mandatory TLV.
 - **Port description TLV**—Provides a description of the port in an alphanumeric format. If the LAN device supports RFC-2863, the port description TLV value equals the “ifDescr” object. This is a mandatory TLV.
 - **System name TLV**—Provides the system-assigned name in an alphanumeric format. If the LAN device supports RFC-3418, the system name TLV value equals the “sysName” object. This is an optional TLV.
 - **System description TLV**—Provides a description of the network entity in an alphanumeric format. This includes system name, hardware version, operating system, and supported networking software. If the LAN device supports RFC-3418, the value equals the “sysDescr” object. This is an optional TLV.
 - **System capabilities TLV**—Indicates the primary functions of the device and whether these functions are enabled in the device. The capabilities are indicated by two octets. The first octet indicates Other, Repeater, Bridge, WLAN AP, Router, Telephone, DOCSIS cable device, and Station, respectively. The second octet is reserved. This is an optional TLV.
 - **Management address TLV**—Indicates the addresses of the local switch. Remote switches can use this address to obtain information related to the local switch. This is an optional TLV.

- **IEEE 802.1 organizational TLV set.** This set provides information to detect mismatched settings between local and remote devices. A trap or event can be reported once a mismatch is detected. This is an optional TLV. This set includes the following TLVs:
Layer 2 topology mapping

- Port VLANID TLV—Indicates the port VLAN ID (PVID) that is associated with an untagged or priority tagged data frame received on the VLAN port.
- PPVLAN ID TLV—Indicates the port- and protocol-based VLAN ID (PPVID) that is associated with an untagged or priority tagged data frame received on the VLAN port. The TLV supports a “flags” field that indicates whether the port is capable of supporting port- and protocol-based VLANs (PPVLANs) and whether one or more PPVLANs are enabled. The number of PPVLAN ID TLVs in a Link Layer Discovery Protocol Data Unit (LLDPDU) corresponds to the number of the PPVLANs enabled on the port.
- VLAN name TLV—Indicates the assigned name of any VLAN on the device. If the LAN device supports RFC-2674, the value equals the “dot1QVLANStaticName” object. The number of VLAN name TLVs in an LLDPDU corresponds to the number of VLANs enabled on the port.
- Protocol identity TLV—Indicates the set of protocols that are accessible at the device's port. The protocol identity field in the TLV contains a number of octets after the Layer 2 address that can enable the receiving device to recognize the protocol. For example, a device that wishes to advertise the spanning tree protocol includes at least eight octets: 802.3 length (two octets), LLC addresses (two octets), 802.3 control (one octet), protocol ID (two octets), and the protocol version (one octet).
- IEEE 802.3 organizational TLV set. This is an optional TLV set. This set includes the following TLVs:
 - MAC/PHY configuration/status TLV—Indicates duplex and bit rate capabilities and the current duplex and bit rate settings of the local interface. It also indicates whether the current settings were configured through auto-negotiation or through manual configuration.
 - Power through media dependent interface (MDI) TLV—Indicates the power capabilities of the LAN device.
 - Link aggregation TLV—Indicates whether the link (associated with the port on which the LLDPDU is transmitted) can be aggregated. It also indicates whether the link is currently aggregated and provides the aggregated port identifier if the link is aggregated.
 - Maximum Ethernet frame size TLV—Indicates the maximum frame size capability of the device’s MAC and PHY implementation.
- Brocade extension TLV set. This set is used to identify vendor-specific information. This set includes the following TLVs:
 - Link Vendor/Version TLV—Indicates the vendor for the switch, host, or router where the port resides.
 - Primitive supported/version TLV—Indicates where the link-level primitives are supported (if supported) and the link-level primitive version.
DCBX overview

Storage traffic requires a lossless communication which is provided by CEE. The Data Center Bridging (DCB) Capability Exchange Protocol (DCBX) is used to exchange CEE-related parameters with neighbors to achieve more efficient scheduling and a priority-based flow control for link traffic.

DCBX uses LLDP to exchange parameters between two link peers; DCBX is built on the LLDP infrastructure for the exchange of information. DCBX-exchanged parameters are packaged into organizationally specific TLVs. The DCBX protocol requires an acknowledgement from the other side of the link, therefore LLDP is turned on in both transmit and receive directions. DCBX requires version number checking for both control TLVs and feature TLVs.

DCBX interacts with other protocols and features as follows:

- **LLDP**—LLDP is run in parallel with other Layer 2 protocols such as RSTP and LACP. DCBX is built on the LLDP infrastructure to communicate capabilities supported between link partners. The DCBX protocol and feature TLVs are treated as a superset of the LLDP standard.
- **QoS management**—DCBX capabilities exchanged with a link partner are passed down to the QoS management entity to set up the Brocade FCoE hardware to control the scheduling and priority-based flow control in the hardware.

The DCBX standard is subdivided into two features sets:

- "Enhanced Transmission Selection (ETS)"
- "Priority Flow Control (PFC)"

Enhanced Transmission Selection (ETS)

In a converged network, different traffic types affect the network bandwidth differently. The purpose of ETS is to allocate bandwidth based on the different priority settings of the converged traffic. For example, Inter-process communications (IPC) traffic can use as much bandwidth as needed and there is no bandwidth check; LAN and SAN traffic share the remaining bandwidth. Table 12 shows three traffic groups: IPC, LAN, and SAN. ETS allocates the bandwidth based on traffic type and also assigns a priority to the three traffic types as follows: Priority 7 traffic is mapped to priority group 0 which does not get a bandwidth check, priority 2 and priority 3 are mapped to priority group 1, priorities 6, 5, 4, 1 and 0 are mapped to priority group 2.

The priority settings shown in Table 12 are translated to priority groups in the Brocade FCoE hardware.

Table 12

<table>
<thead>
<tr>
<th>Priority</th>
<th>Priority group</th>
<th>Bandwidth check</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Priority Flow Control (PFC)

With PFC, it is important to provide lossless frame delivery for certain traffic classes while maintaining existing LAN behavior for other traffic classes on the converged link. This differs from the traditional 802.3 PAUSE type of flow control where the pause affects all traffic on an interface.

PFC is defined by a one-byte bitmap. Each bit position stands for a user priority. If a bit is set, the flow control is enabled in both directions (Rx and Tx).

DCBX interaction with other vendor devices

When the Brocade FCoE hardware interacts with other vendor devices, the other vendor devices might not have support for the same DCBX version as the Brocade FCoE hardware.

The Brocade FCoE hardware supports two DCBX versions:
- CEE version (1.0.1)—Based on the CEE standard.
- Pre-CEE version.

To accommodate the different DCBX versions, the Brocade FCoE hardware provides the following options.
- Auto-sense (plug and play)
 This is the default. The Brocade FCoE hardware detects the version used by the link neighbor and automatically switches between the CEE version and the pre-CEE version.
- CEE version
 Forces the use of the CEE version for the link (auto-sense is off).
- Pre-CEE version
 Forces the use of the pre-CEE version for the link (auto-sense is off).

LLDP configuration guidelines and restrictions

Follow these LLDP configuration guidelines and restrictions when configuring LLDP:
- Brocade’s implementation of LLDP supports Brocade-specific TLV exchange in addition to the standard LLDP information.
- Mandatory TLVs are always advertised.
- The exchange of LLDP link-level parameters is transparent to the other Layer 2 protocols. The LLDP link-level parameters are reported by LLDP to other interested protocols.

NOTE
DCBX configuration simply involves configuring DCBX-related TLVs to be advertised. Detailed information is provided in the “LLDP configuration and management” on page 86.
Table 13 lists the default LLDP configuration.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLDP global state</td>
<td>Enabled</td>
</tr>
<tr>
<td>LLDP receive</td>
<td>Enabled</td>
</tr>
<tr>
<td>LLDP transmit</td>
<td>Enabled</td>
</tr>
<tr>
<td>Transmission frequency of LLDP updates</td>
<td>30 seconds</td>
</tr>
<tr>
<td>Hold time for receiving devices before discarding</td>
<td>120 seconds</td>
</tr>
<tr>
<td>DCBX-related TLVs to be advertised</td>
<td>dcbx-tlv</td>
</tr>
</tbody>
</table>

LLDP configuration and management

NOTE
You need to enter either the `copy running-config startup-config` command or the `write memory` command to save your configuration changes to Flash so that they are not lost if there is a system reload or power outage.

Enabling LLDP globally

The `protocol lldp` command enables LLDP globally on all interfaces unless it has been specifically disabled on an interface. LLDP is globally enabled by default.

To enable LLDP globally, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter LLDP configuration mode.

```
switch(config)#protocol lldp
```

Disabling and resetting LLDP globally

The `protocol lldp` command returns all configuration settings made using the `protocol lldp` commands to their default settings. LLDP is globally enabled by default.

To disable and reset LLDP globally, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Disable LLDP globally.

```
switch(config)#no protocol lldp
```
Configuring LLDP global command options

After entering the protocol lldp command from global configuration mode, you are in LLDP configuration mode which is designated with the switch(conf-lldp)# prompt. Using the keywords in this mode, you can set non-default parameter values that apply globally to all interfaces.

Specifying a system name for the Brocade FCoE hardware

The global system name for LLDP is useful for differentiating between switches. By default, the “host-name” from the chassis/entity MIB is used. By specifying a descriptive system name, you will find it easier to configure the switch for LLDP.

To specify a global system name for the Brocade FCoE hardware, perform the following steps from Privileged EXEC mode.

1. Enter the configure terminal command to enter global configuration mode.
2. Enter LLDP configuration mode.

 `switch(config)#protocol lldp`
3. Specify an LLDP system name for the CEE switch.

 Example

   ```
   switch(conf-lldp)#system-name Brocade_Alpha
   Brocade_Alpha(conf-lldp)#
   ```

Specifying an LLDP system description for the Brocade FCoE hardware

NOTE

Brocade recommends you use the operating system version for the description or use the description from the chassis/entity MIB.

To specify an LLDP system description for the Brocade FCoE hardware, perform the following steps from Privileged EXEC mode. The system description is seen by neighboring switches.

1. Enter the configure terminal command to enter global configuration mode.
2. Enter LLDP configuration mode.

 `switch(config)#protocol lldp`
3. Specify a system description for the Brocade FCoE hardware.

 Example

   ```
   switch(conf-lldp)#system-description IT_1.6.2_LLDP_01
   ```

Specifying a user description for LLDP

To specify a user description for LLDP, perform the following steps from Privileged EXEC mode. This description is for network administrative purposes and is not seen by neighboring switches.

1. Enter the configure terminal command to enter global configuration mode.
2. Enter LLDP configuration mode.

 `switch(config)#protocol lldp`
3. Specify a user description for LLDP.
Example

switch(conf-lldp)#description Brocade-LLDP-installed-july-25

Enabling and disabling the receiving and transmitting of LLDP frames

By default both transmit and receive for LLDP frames is enabled. To enable or disable the receiving (rx) and transmitting (tx) of LLDP frames, perform the following steps from Privileged EXEC mode.

1. Enter the **configure terminal** command to enter global configuration mode.
2. Enter the **mode** command to:
 - Enable only receiving of LLDP frames:
 switch(conf-lldp)#mode rx
 - Enable only transmitting of LLDP frames:
 switch(conf-lldp)#mode tx
 - Disable all LLDP frame transmissions
 switch(conf-lldp)#mode no mode

Configuring the transmit frequency of LLDP frames

To configure the transmit frequency of LLDP frames, perform the following steps from Privileged EXEC mode. The default is 30 seconds.

1. Enter the **configure terminal** command to enter global configuration mode.
2. Enter LLDP configuration mode.
 switch(config)#protocol lldp
3. Configure the transmit frequency of LLDP frames.
 switch(conf-lldp)#hello 45

Configuring the hold time for receiving devices

To configure the hold time for receiving devices, perform the following steps from Privileged EXEC mode. This configures the number of consecutive LLDP hello packets that can be missed before declaring the neighbor information as invalid. The default is 4.

1. Enter the **configure terminal** command to enter global configuration mode.
2. Enter LLDP configuration mode.
 switch(config)#protocol lldp
3. Configure the hold time for receiving devices.
 switch(conf-lldp)#multiplier 6

Advertising the optional LLDP TLVs

NOTE
If the **advertise optional-tlv** command is entered without keywords, all optional LLDP TLVs are advertised.

To advertise the optional LLDP TLVs, perform the following steps from Privileged EXEC mode.
1. Enter the `configure terminal` command to enter global configuration mode.

2. Enter LLDP configuration mode.
   ```
   switch(config)#protocol lldp
   ```

3. Advertise the optional LLDP TLVs.
   ```
   switch(conf-lldp)#advertise optional-tlv [port-description | system-name |
   system-capabilities | system-description | management-address]
   ```

Configuring the advertisement of LLDP DCBX-related TLVs

NOTE

By default, the dcbx-tlv is advertised; the dot1-tlv, dot3-tlv, dcbx-fcoe-app-tlv, and dcbx-fcoe-logical-link-tlv are not advertised.

To configure the LLDP DCBX-related TLVs to be advertised, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.

2. Enter LLDP configuration mode.
   ```
   switch(config)#protocol lldp
   ```

3. Advertise the LLDP DCBX-related TLVs using these commands:
   ```
   • switch(conf-lldp)#advertise dcbx-fcoe-app-tlv
   • switch(conf-lldp)#advertise dcbx-fcoe-logical-link-tlv
   • switch(conf-lldp)#advertise dcbx-tlv
   • switch(conf-lldp)#advertise dot1-tlv
   • switch(conf-lldp)#advertise dot3-tlv
   ```

Configuring FCoE priority bits

The FCoE priority bit setting is a bitmap setting where each bit position stands for a priority. When you set a bit for a particular priority, that priority setting is applied to the FCoE traffic (that is, the incoming FCoE traffic will have that priority). The default value is 0x08.

NOTE

FCoE traffic is only supported on the priority level that also has flow control enabled. This means that the final advertised FCoE priority consists of the configured FCoE priority setting and the per-priority flow control setting.

To configure the FCoE priority bits, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.

2. Enter LLDP configuration mode.
   ```
   switch(config)#protocol lldp
   ```

3. Configure the FCoE priority bits.
   ```
   Example
   switch(conf-lldp)#lldp fcoe-priority-bits 0xff
   ```
Configuring LLDP profiles

You can configure up to 64 profiles on a switch. Using the `no profile NAME` command deletes the entire profile.

To configure LLDP profiles, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.

2. Enter LLDP configuration mode.
   ```
   switch(config)#protocol lldp
   ```

3. Configure the profile name.
   ```
   Example of creating the unique profile name of “UK_LLDP_IT”.
   switch(conf-lldp)#profile UK_LLDP_IT
   ```

4. Specify a description for the profile.
   ```
   Example description for the LLDP profile.
   switch(conf-lldp-profile-UK_LLDP_IT)#description standard_profile_by_Jane
   ```

5. Enable the transmitting and receiving of LLDP frames.
   ```
   switch(conf-lldp-profile-UK_LLDP_IT)#mode tx rx
   ```

6. Configure the transmission frequency of LLDP updates.
   ```
   switch(conf-lldp-profile-UK_LLDP_IT)#hello 10
   ```

7. Configure the hold time for receiving devices.
   ```
   switch(conf-lldp-profile-UK_LLDP_IT)#multiplier 2
   ```

8. Advertise the optional LLDP TLVs.
   ```
   Example of advertising all of the LLDP TLVs.
   switch(conf-lldp-profile-UK_LLDP_IT)#advertise optional-tlv
   [management-address | port-description | system-capabilities | system-description | system-name]
   ```

9. Advertise the LLDP DCBX-related TLVs.
   ```
   switch(conf-lldp-profile-UK_LLDP_IT)#advertise dot1-tlv
   switch(conf-lldp-profile-UK_LLDP_IT)#advertise dot3-tlv
   switch(conf-lldp-profile-UK_LLDP_IT)#advertise advertise dcbx-tlv
   switch(conf-lldp-profile-UK_LLDP_IT)#advertise dcbx-fcoe-logical-link-tlv
   switch(conf-lldp-profile-UK_LLDP_IT)#advertise dcbx-fcoe-app-tlv
   ```

 NOTE
 Brocade recommends against advertising dot1.tlv and dot3.tlv LLDPs if your network contains CNAs from non-Brocade vendors. This configuration may cause functionality problems.

10. Enter the `copy` command to save the `running-config` file to the `startup-config` file.
    ```
    switch(conf-lldp-profile-UK_LLDP_IT)#exit
    switch(conf-lldp)#exit
    switch#copy running-config startup-config
    ```
Configuring LLDP interface-level command options

Only one LLDP profile can be assigned to an interface. If you do not use the `lldp profile` option at the interface level, the global configuration is used on the interface. If there are no global configuration values defined, the global default values are used.

To configure LLDP interface-level command options, perform the following steps from Privileged EXEC mode.

1. Enter the `interface` command to specify the CEE interface type and slot/port number.
 Example of selecting the Ten Gigabit Ethernet port number 0/10.
   ```
   switch(config)#interface tengigabitethernet 0/10
   ```

2. Apply an LLDP profile to the interface.
 Example of applying the LLDP profile “network_standard” to the current interface.
   ```
   switch(conf-if-te-0/10)#lldp profile network_standard
   ```

3. Configure the FCoE priority bits for an interface. The value is specified as 0x0-0xff.
 Example
   ```
   switch(conf-if-te-0/10)#fcoe-priority-bits 0x0-0xff
   ```

4. Configure the DCBX version for an interface for CEE. For detailed information on these version command keywords, see “DCBX interaction with other vendor devices” on page 85. The default is to automatically detect the DCBX version.
 Example
   ```
   switch(conf-if-te-0/10)#lldp version cee
   ```

5. Enter the `copy` command to save the `running-config` file to the `startup-config` file.
   ```
   switch(conf-if-te-0/10)#exit
   switch(config)#end
   switch#copy running-config startup-config
   ```

Clearing LLDP-related information

To clear LLDP-related information, perform the following steps from Privileged EXEC mode.

1. Use the `clear` command to:
 - Clear LLDP neighbor information.
     ```
     switch#clear lldp neighbors tengigabitethernet 0/1
     ```
 - Clear LLDP statistics.
     ```
     switch#clear lldp statistics tengigabitethernet 0/1
     ```

Displaying LLDP-related information

To display LLDP-related information, perform the following steps from Privileged EXEC mode.

1. Use the `show lldp neighbors` command to:
 - Display LLDP general information.
     ```
     switch#show lldp
     ```
LLDP configuration and management

- Display LLDP interface-related information.
  ```
  switch#show lldp interface tengigabitethernet 0/1
  ```

- Display LLDP neighbor-related information.
  ```
  switch#show lldp neighbors interface tengigabitethernet 0/1 detail
  ```
Chapter 8
Configuring ACLs using the CEE CLI

In this chapter

• ACL overview ... 93
• Default ACL configuration .. 94
• ACL configuration guidelines and restrictions 94
• ACL configuration and management 94

ACL overview

NOTE
In the Brocade Fabric OS v6.3.0 release, only Layer 2 MAC access control lists (ACLs) are supported.

ACLs filter traffic for the Brocade FCoE hardware and permit or deny incoming frames from passing through interfaces that have the ACLs applied to them. You can apply ACLs on VLANs and on Layer 2 interfaces. Each ACL is a unique collection of permit and deny statements (rules) that apply to frames. When a frame is received on an interface, the switch compares the fields in the frame against any ACLs applied to the interface to verify that the frame has the required permissions to be forwarded. The switch compares the frame, sequentially, against each rule in the ACL and either forwards the frame or drops the frame.

The switch examines ACLs associated with options configured on a given interface. As frames enter the switch on an interface, ACLs associated with all inbound options configured on that interface are examined. With MAC ACLs you can identify and filter traffic based on the MAC address, and EtherType.

The primary benefits of ACLs are as follows:

• Provide a measure of security.
• Save network resources by reducing traffic.
• Block unwanted traffic or users.
• Reduce the chance of denial of service (DOS) attacks.

There are two types of MAC ACLs:

• Standard ACLs—Permit and deny traffic according to the source MAC address in the incoming frame. Use standard MAC ACLs if you only need to filter traffic based on source addresses.
• Extended ACLs—Permit and deny traffic according to the source and destination MAC addresses in the incoming frame, as well as EtherType.

MAC ACLs are supported on the following interface types:

• Physical interfaces
• Logical interfaces (LAGs)
Default ACL configuration

Table 14 lists the default ACL configuration.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC ACLs</td>
<td>By default, no MAC ACLs are configured.</td>
</tr>
</tbody>
</table>

ACL configuration guidelines and restrictions

Follow these ACL configuration guidelines and restrictions when configuring ACLs:

- The order of the rules in an ACL is critical. The first rule that matches the traffic stops further processing of the frames.
- Standard ACLs and extended ACLs cannot have the same name.

ACL configuration and management

You need to enter either the `copy running-config startup-config` command or the `write memory` command to save your configuration changes to Flash so that they are not lost if there is a system reload or power outage.

NOTE
To see the minimum configuration required to enable FCoE on the Brocade 8000 switch, refer to “Minimum CEE configuration to allow FCoE traffic flow” on page 35.

Creating a standard MAC ACL and adding rules

NOTE
You can use the `resequence` command to change all the sequence numbers assigned to the rules in a MAC ACL. For detailed information, see “Reordering the sequence numbers in a MAC ACL” on page 96.

To create a standard MAC ACL and add rules, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Create a standard MAC ACL and enter ACL configuration mode.

In this example, the name of the standard MAC ACL is “test_01.”

```
switch(config)#mac access-list standard test_01
switch(conf-macl-std)#
```
3. Enter the **deny** command to create a rule in the MAC ACL to drop traffic with the source MAC address.

 `switch(conf-macl-std)#deny 0022.3333.4444 count`

4. Enter the **permit** command to create a rule in the MAC ACL to permit traffic with the source MAC address.

 `switch(conf-macl-std)#permit 0022.5555.3333 count`

5. Use the **seq** command to create MAC ACL rules in a specific sequence.

 `switch(conf-macl-std)#seq 100 deny 0011.2222.3333 count`
 `switch(conf-macl-std)#seq 1000 permit 0022.1111.2222 count`

Creating an extended MAC ACL and adding rules

NOTE

You can use the resequence command to change all the sequence numbers assigned to the rules in a MAC ACL. For detailed information, see "Reordering the sequence numbers in a MAC ACL" on page 96.

The MAC ACL name length is limited to 64 characters.

To create an extended MAC ACL and add rules, perform the following steps from Privileged EXEC mode.

1. Enter the **configure terminal** command to enter global configuration mode.
2. Create an extended MAC ACL and enter ACL configuration mode.

 Example of setting the name of the extended MAC ACL to "test_02."

 `switch(config)#mac access-list extended test_02`

3. Create a rule in the MAC ACL to **permit** traffic with the source MAC address and the destination MAC address.

 Example

 `switch(conf-macl-ext)#permit 0022.3333.4444 0022.3333.5555`

4. Use the **seq** command to insert the rule anywhere in the MAC ACL.

 Example

 `switch(conf-macl-ext)#seq 5 permit 0022.3333.4444 0022.3333.5555`

5. Enter the **copy** command to save the running-config file to the startup-config file.

 `switch(conf-macl-std)#exit`
 `switch(config)#end`
 `switch#copy running-config startup-config`

Modifying MAC ACL rules

You cannot modify the existing rules of a MAC ACL. However, you can remove the rule and then recreate it with the desired changes.

If you need to add more rules between existing rules than the current sequence numbering allows, you can use the resequence command to reassign sequence numbers. For detailed information, see "Reordering the sequence numbers in a MAC ACL" on page 96.
Use a sequence number to specify the rule you wish to modify. Without a sequence number, a new rule is added to the end of the list, and the existing rule is unchanged.

NOTE
Using the *permit* and *deny* keywords, you can create many different rules. The examples in this section provide the basic knowledge needed to modify MAC ACLs.

NOTE
This example assumes that test_02 contains an existing rule number 100 with the “deny any any” options.

To modify a MAC ACL, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `mac` command to specify the ACL called test_02 for modification.
   ```console
   switch(config)# mac access-list extended test_02
   ```
3. Enter the `no seq` command to delete the existing rule 100.
   ```console
   switch(config)# no seq 100
   ```
4. Enter the `seq` command to re-create rule number 100 by recreating it with new parameters.
   ```console
   switch(config-macl-ext)# seq 100 permit any any
   ```

Removing a MAC ACL

To remove a MAC ACL, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `mac` command to specify and delete the ACL that you want to remove. In this example, the extended MAC ACL name is “test_02.”

   ```console
   Example of deleting the extended MAC ACL named “test_02.”
   ```
   ```console
   switch(config)# no mac access-list extended test_02
   ```

Reordering the sequence numbers in a MAC ACL

You can reorder the sequence numbers assigned to rules in a MAC ACL. Reordering the sequence numbers is useful when you need to insert rules into an ACL and there are not enough available sequence numbers.

The first rule receives the number specified by the starting-sequence number that you specify. Each subsequent rule receives a number larger than the preceding rule. The difference in numbers is determined by the increment number that you specify. The starting-sequence number and the increment number must be in the range of 1 through 65535.

For example, in the task listed below the `resequence` command assigns a sequence number of 50 to the rule named test_02, then the second rule has a sequence number of 55 and the third rule a has a sequence number of 60.
To reorder the rules in a MAC ACL, perform the following task from Privileged EXEC mode.

1. Enter the `resequence` command to assign sequence numbers to the rules contained in the MAC ACL.

 Example
   ```
   switch# resequence access-list mac test_02 50 5
   ```

Applying a MAC ACL to a CEE interface

Ensure that the ACL that you want to apply exists and is configured to filter traffic in the manner that you need for this CEE interface. An ACL does not take effect until it is expressly applied to an interface using the `access-group` command. Frames can be filtered as they enter an interface (ingress direction).

To apply a MAC ACL to a CEE interface, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `interface` command to specify the CEE interface type and slot/port number.

 Example of selecting the Ten Gigabit Ethernet port number 0/1.
   ```
   switch(config)#interface tengigabitethernet 0/1
   ```
3. Enter the `switchport` command to configure the interface as a Layer 2 switch port.
4. Enter the `mac-access-group` command to specify the MAC ACL that is to be applied to the Layer 2 CEE interface in the ingress direction.

 Example
   ```
   switch(conf-if-te-0/1)#mac access-group test_02 in
   ```

Applying a MAC ACL to a VLAN interface

Ensure that the ACL that you want to apply exists and is configured to filter traffic in the manner that you need for this VLAN interface. An ACL does not take effect until it is expressly applied to an interface using the `access-group` command. Frames can be filtered as they enter an interface (ingress direction).

To apply a MAC ACL to a VLAN interface, perform the following steps from Privileged EXEC mode.

1. Enter the `configure terminal` command to enter global configuration mode.
2. Enter the `interface` command to apply the VLAN interface to the MAC ACL.

 Example
   ```
   switch(config)#interface vlan 50
   ```
3. Enter the `mac-access-group` command to specify the MAC ACL that is to be applied to the VLAN interface in the ingress direction.

 Example
   ```
   switch(conf-if-vl-82)#mac access-group test_02 in
   ```
ACL configuration and management
In this chapter

- QoS overview ... 99
- Rewriting ... 100
- Queueing ... 100
- Congestion control ... 106
- Multicast rate limiting .. 109
- Scheduling ... 110
- Converged Enhanced Ethernet map configuration 113

QoS overview

Quality of Service (QoS) provides you with the capability to control how the traffic is moved from switch to switch. In a network that has different types of traffic with different needs (CoS), the goal of QoS is to provide each traffic type with a virtual pipe. FCoE uses traffic class mapping, scheduling, and flow control to provide quality of service.

Traffic running through the switches can be classified as either multicast traffic or unicast traffic. Multicast traffic has a single source but multiple destinations. Unicast traffic has a single source with a single destination. With all this traffic going through inbound and outbound ports, QoS can be set based on egress port and priority level of the CoS.

QoS can also be set on interfaces where the end-station knows how to mark traffic with QoS and it lies with the same trusted interfaces. An untrusted interface is when the end-station is untrusted and is at the administrative boundaries.

The QoS features are:

- Rewriting—Rewriting or marking a frame allows for overriding header fields such as the priority and VLAN ID.
- Queueing—Queueing provides temporary storage for frames while waiting for transmission. Queues are selected based on ingress ports, egress ports, and configured user priority level.
- Congestion control—When queues begin filling up and all buffering is exhausted, frames are dropped. This has a detrimental effect on application throughput. Congestion control techniques are used to reduce the risk of queue overruns without adversely affecting network throughput. Congestion control features include IEEE 802.3x Ethernet Pause, Tail Drop, and Ethernet Priority Flow Control (PFC).
- Multicast rate limiting—Many multicast applications cannot be adapted for congestion control techniques and the replication of frames by switching devices can exacerbate this problem. Multicast rate limiting controls frame replication to minimize the impact of multicast traffic.
Rewriting

Rewriting a frame header field is typically performed by an edge device. Rewriting occurs on frames as they enter or exit a network because the neighboring device is untrusted, unable to mark the frame, or is using a different QoS mapping.

The frame rewriting rules set the Ethernet CoS and VLAN ID fields. Egress Ethernet CoS rewriting is based on the user-priority mapping derived for each frame as described later in the queueing section.

Queueing

Queue selection begins by mapping an incoming frame to a configured user priority, then each user-priority mapping is assigned to one of the switch’s eight unicast traffic class queues or one of the four multicast traffic class queues.

NOTE
You need to enter the `copy running-config startup-config` command to save your configuration changes to NVRAM so that they are not lost if there is a system reload or power outage.

User-priority mapping

There are several ways an incoming frame can be mapped into a user-priority. If the neighboring devices are untrusted or unable to properly set QoS, then the interface is considered untrusted. All traffic must be user-priority mapped using explicit policies for the interface to be trusted; if it is not mapped in this way, the IEEE 802.1Q default-priority mapping is used. If an interface is trusted to have QoS set then the CoS header field can be interpreted.

NOTE
The user priority mapping described in this section applies to both unicast and multicast traffic.

Default user-priority mappings for untrusted interfaces

When Layer 2 QoS trust is set to untrusted then the default is to map all Layer 2 switched traffic to the port default user priority value of 0 (best effort), unless configured to a different value.
Table 15 presents the Layer 2 QoS untrusted user priority generation table.

TABLE 15 Default priority value of untrusted interfaces

<table>
<thead>
<tr>
<th>Incoming CoS</th>
<th>User Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>port <user priority> (default 0)</td>
</tr>
<tr>
<td>1</td>
<td>port <user priority> (default 0)</td>
</tr>
<tr>
<td>2</td>
<td>port <user priority> (default 0)</td>
</tr>
<tr>
<td>3</td>
<td>port <user priority> (default 0)</td>
</tr>
<tr>
<td>4</td>
<td>port <user priority> (default 0)</td>
</tr>
<tr>
<td>5</td>
<td>port <user priority> (default 0)</td>
</tr>
<tr>
<td>6</td>
<td>port <user priority> (default 0)</td>
</tr>
<tr>
<td>7</td>
<td>port <user priority> (default 0)</td>
</tr>
</tbody>
</table>

NOTE

Non-tagged Ethernet frames are interpreted as incoming CoS value of 0 (zero).

You can override the default user-priority mapping by applying explicit user-priority mappings.

When neighboring devices are trusted and able to properly set QoS then Layer 2 QoS trust can be set to COS and the IEEE 802.1Q default-priority mapping is applied.

Table 16 presents the Layer 2 CoS user priority generation table conforming to 802.1Q default mapping. You can override this default user priority table per port if you want to change (mutate) the COS value.

TABLE 16 IEEE 802.1Q default priority mapping

<table>
<thead>
<tr>
<th>Incoming CoS</th>
<th>User Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Configuring the QoS trust mode

The QoS trust mode controls user priority mapping of incoming traffic. The Class of Service (CoS) mode sets the user priority based on the incoming CoS value. If the incoming packet is not priority tagged, then fallback is to the Interface Default CoS value.

NOTE

When a CEE map is applied on an interface, the `cos trust` command is not allowed. The CEE map always puts the interface in the CoS trust mode.
Perform the following steps from Privileged EXEC mode to configure the QoS trust mode.

1. Enter global configuration mode.
   ```
   switch#configure terminal
   ```

2. Specify the 10-gigabit Ethernet interface.
 Example of selecting the 10-Gigabit Ethernet interface port 0/2.
   ```
   switch(config)#interface tengigabitethernet 0/2
   ```

3. Set the interface mode to 'trust'.
   ```
   switch(conf-if-te-0/2)#qos trust cos
   ```
 Example of setting the QoS trust on a 10-Gigabit Ethernet interface port 0/2.
   ```
   switch:admin>cmsh
   switch>enable
   switch#configure terminal
   Enter configuration commands, one per line.  End with CNTL/Z.
   switch(config)#interface tengigabitethernet 0/2
   switch(config-if-te-0/2)#qos trust cos
   switch(config-if-te-0/2)#exit
   switch(config)#end
   ```

4. Enter the copy command to save the running-config file to the startup-config file.
   ```
   switch#copy running-config startup-config
   ```

Configuring user-priority mappings

Perform the following steps from Privileged EXEC mode to configure user-priority mappings.

1. Enter global configuration mode.
   ```
   switch#configure terminal
   ```

2. Specify the 10-gigabit Ethernet interface.
 Example of selecting the 10-Gigabit Ethernet interface port 0/2.
   ```
   switch(config)#interface tengigabitethernet 0/2
   ```

3. Set the interface mode to '3'.
   ```
   switch(conf-if-te-0/2)#qos cos 3
   ```
 Example of setting the interface default CoS to '3'
   ```
   switch:admin>cmsh
   switch>enable
   switch#configure terminal
   Enter configuration commands, one per line.  End with CNTL/Z.
   switch(config)#interface tengigabitethernet 0/2
   switch(config-if-te-0/2)#qos cos 3
   switch(config-if-te-0/2)#exit
   switch(config)#end
   ```

4. Enter the copy command to save the running-config file to the startup-config file.
   ```
   switch#copy running-config startup-config
   ```
Creating a CoS-to-CoS mutation

Perform the following steps from Privileged EXEC mode to create a CoS-to-CoS mutation.

1. Enter global configuration mode.

 switch#configure terminal

2. Create the CoS-to-CoS mutation QoS map name. In this example ‘test’ is used.

 switch(config)#qos map cos-mutation test 0 1 2 3 5 4 6 7

 Example of creating a CoS-to-CoS mutation QoS map to swap CoS 4 and CoS 5 (i.e. Inbound CoS 4 is mapped to outbound CoS 5 and Inbound CoS 5 is mapped to outbound CoS 4) all other CoS passes through unchanged.

 switch:admin>cmsh
 switch>enable
 switch#configure terminal
 Enter configuration commands, one per line. End with CNTL/Z.
 switch(config)#qos map cos-mutation test 0 1 2 3 5 4 6 7
 switch(config)#end

3. Enter the copy command to save the running-config file to the startup-config file.

 switch#copy running-config startup-config

Applying a CoS-to-CoS mutation QoS map

Perform the following steps from Privileged EXEC mode to apply a CoS-to-CoS mutation QoS map.

1. Enter global configuration mode.

 switch#configure terminal

2. Specify the 10-gigabit Ethernet interface.

 Example of selecting the 10-Gigabit Ethernet interface port 0/2.

 switch(config)#interface tengigabitethernet 0/2

3. Activate or apply changes made to the CoS-to-CoS mutation QoS map name. In this example ‘test’ is used.

 switch(config)#qos map cos-mutation test 0 1 2 3 5 4 6 7

 Example of applying (activating) the CoS-to-CoS mutation QoS map on an interface.

 switch:admin>cmsh
 switch>enable
 switch#configure terminal
 Enter configuration commands, one per line. End with CNTL/Z.
 switch(config)#interface tengigabitethernet 0/2
 switch(conf-if-te-0/2)#qos cos-mutation test
 switch(conf-if-te-0/2)#exit
 switch(config)#end
 switch#

4. Enter the copy command to save the running-config file to the startup-config file.

 switch#copy running-config startup-config
Traffic class mapping

The Brocade 8000 supports eight unicast traffic classes for isolation and to control servicing for different priorities of application data. Traffic classes are numbered from 0 through 7, with higher values designating higher priority.

The traffic class mapping stage provides some flexibility in queue selection:

- The mapping may be many-to-one, such as mapping one byte user priority (256 values) to eight traffic classes.
- There may be a non-linear ordering between the user priorities and traffic classes.

Unicast traffic

Table 17 presents the Layer 2 default traffic class mapping supported for a COS-based user priority to conform to 802.1Q default mapping.

<table>
<thead>
<tr>
<th>User priority</th>
<th>Traffic class</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

You are allowed to override these default traffic class mappings per port. Once the traffic class mapping has been resolved it is applied consistently across any queueing incurred on the ingress and the egress ports.

Multicast traffic

The Brocade 8000 supports four multicast traffic classes for isolation and to control servicing for different priorities of application data. Traffic classes are numbered from 0 through 3, with higher values designating higher priority. The traffic class mapping stage provides some flexibility in queue selection.

Table 18 presents the Layer 2 default traffic class mapping supported for a COS-based user priority to conform to 802.1Q default mapping.

<table>
<thead>
<tr>
<th>User Priority</th>
<th>Traffic class</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
Once the traffic class mapping has been resolved for ingress traffic, it is applied consistently across all queueing incurred on the ingress and egress ports.

Mapping CoS-to-Traffic-Class

Perform the following steps from Privileged EXEC mode to map a CoS-to-Traffic-Class.

1. Enter global configuration mode.
   ```
   switch#configure terminal
   ```

2. Create the CoS-Traffic-Class mapping by specifying a name and the mapping.
   ```
   switch(config)#qos map cos-traffic-class test 1 0 2 3 4 5 6 7
   ```
 Example of creating CoS-to-Traffic-Class QoS map to map CoS 0 (best effort) to Traffic Class 1 and CoS 1 to below best effort Traffic Class 0, all other CoS go through unchanged. This mapping matches the default behavior recommended in IEEE 802.1Q for systems supporting 8 Traffic Classes.
   ```
   switch:admin>
   switch>enable
   switch#configure terminal
   ```

3. Enter the copy command to save the running-config file to the startup-config file.
   ```
   switch#copy running-config startup-config
   ```

Activating a mapping CoS-to-Traffic-Class

Perform the following steps from Privileged EXEC mode to activate a CoS-to-traffic class mapping.

1. Enter global configuration mode.
   ```
   switch#configure terminal
   ```

2. Specify the 10-gigabit Ethernet interface.
   ```
   switch(config)#interface tengigabitethernet 0/2
   ```
 Example of selecting the 10-Gigabit Ethernet interface port 0/2.
   ```
   switch(config)#interface tengigabitethernet 0/2
   ```

3. Activate the CoS-to-Traffic-Class mapping by name.
   ```
   switch(config)#qos cos-traffic-class test
   ```
 Example of activating the CoS-to-Traffic-Class QoS map on an interface.
   ```
   switch:admin>cmsh
   switch>enable
   switch#configure terminal
   ```
 Enter configuration commands, one per line. End with CNTL/Z.
   ```
   switch(config)#interface tengigabitethernet 0/2
   switch(config)#interface tengigabitethernet 0/2
   ```

TABLE 18 Default user priority for multicast traffic class mapping

<table>
<thead>
<tr>
<th>User Priority</th>
<th>Traffic class</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>

Congestion control

_queues can begin filling up due to a number of reasons, such as over subscription of a link or backpressure from a downstream device. Sustained, large queue buildups generally indicate congestion in the network and can affect application performance through increased queueing delays and frame loss.

Congestion control covers features that define how the system responds when congestion occurs or active measures taken to prevent the network from entering a congested state.

Tail drop

Tail drop queueing is the most basic form of congestion control. Frames are queued in FIFO order and queue buildup can continue until all buffer memory is exhausted. This is the default behavior when no additional QoS has been configured.

The basic tail drop algorithm does not have any knowledge of multiple priorities and per traffic class drop thresholds can be associated with a queue to address this. When the queue depth breaches a threshold, then any frame arriving with the associated priority value will be dropped. Figure 13 shows how you can utilize this feature to ensure that lower priority traffic cannot totally
consume the full buffer memory. Thresholds can also be used to bound the maximum queueing delay for each traffic class. Additionally if the sum of the thresholds for a port is set below 100 percent of the buffer memory, then you can also ensure that a single port does not monopolize the entire shared memory pool.

FIGURE 13 Queue depth

![Queue depth diagram](image)

The tail drop algorithm can be extended to support per priority drop thresholds. When the ingress port CoS queue depth breaches a threshold, then any frame arriving with the associated priority value will be dropped. Figure 13 shows how you can utilize this feature to ensure lower priority traffic cannot totally consume the full buffer memory. Thresholds can also be used to bound the maximum queueing delay for each traffic class. Additionally if the sum of the thresholds for a port is set below 100 percent of the buffer memory then you can also ensure that a single CoS does not monopolize the entire shared memory pool allocated to the port.

Changing the Tail Drop threshold

Perform the following steps from Privileged EXEC mode to change the Tail Drop threshold.

1. Enter global configuration mode.

   ```
   switch#configure terminal
   ```

2. Change the Tail Drop threshold for each multicast traffic class. In this example, 1000pkt is used.

   ```
   switch(config)#qos rcv-queue multicast threshold 1000 1000 1000 1000
   ```

 Example of increasing multicast frame expansion Tail Drop Threshold to 1000pkt for each multicast Traffic Class.

   ```
   switch:admin>cmsh
   switch>enable
   switch#configure terminal
   Enter configuration commands, one per line. End with CNTL/Z.
   switch(config)#qos rcv-queue multicast threshold 1000 1000 1000 1000
   switch(config)#end
   ```

3. Enter the copy command to save the running-config file to the startup-config file.

   ```
   switch#copy running-config startup-config
   ```
Ethernet pause

Ethernet Pause is an IEEE 802.3 standard mechanism for back pressuring a neighboring device. Pause messages are sent by utilizing the optional MAC control sublayer. A Pause frame contains a 2-byte pause number, which states the length of the pause in units of 512 bit times. When a device receives a Pause frame, it must stop sending any data on the interface for the specified length of time, once it completes transmission of any frame in progress. You can use this feature to reduce Ethernet frame losses by using a standardized mechanism. However the Pause mechanism does not have the ability to selectively back pressure data sources multiple hops away, or exert any control per VLAN or per priority, so it is disruptive to all traffic on the link.

Ethernet Pause includes the following features:

- All configuration parameters can be specified independently per interface.
- Pause On/Off can be specified independently for TX and RX directions. No support is provided for auto-negotiation.
- Pause generation is based on input (receive) queueing. Queue levels are tracked per input port. You can change the high-water and low-water threshold for each input port. When the instantaneous queue depth crosses the high-water mark then a Pause is generated. If any additional frames are received and the queue length is still above the low-water mark then additional Pauses are generated. Once the queue length drops below the low-water mark then Pause generation ceases.
- A Pause that is received and processed halts transmission of the output queues associated with the port for the duration specified in the Pause frame.

Enabling Ethernet Pause

Perform the following steps from Privileged EXEC mode to enable Ethernet Pause.

1. Enter global configuration mode.

 switch#configure terminal

2. Specify the 10-gigabit Ethernet interface.

 Example of selecting the 10-Gigabit Ethernet interface port 0/2.

 switch(config)#interface tengigabitethernet 0/2

3. Enable Ethernet Pause on the interface for both TX and RX traffic.

 switch(conf-if-te-0/2)#qos flowcontrol tx on rx on

 Example of enabling an interface 802.3x Pause flow control TX and RX.

 switch:admin>cmsh
 switch>enable
 switch#configure terminal
 Enter configuration commands, one per line. End with CNTL/Z.
 switch(config)#interface tengigabitethernet 0/2
 switch(config-if-te-0/2)#qos flowcontrol tx on rx on
 switch(config-if-te-0/2)#exit
 switch(config)#end

4. Enter the copy command to save the running-config file to the startup-config file.

 switch#copy running-config startup-config
Multicast rate limiting

Multicast rate limiting provides a mechanism to control multicast frame replication and cap the effect of multicast traffic.
Multicast rate limit is applied to the output of each multicast receive queue. Rate limits apply equally to ingress receive queueing (first level expansion) and egress receive queueing (second level expansion) since the same physical receive queues are utilized. You can set policies to limit the maximum multicast frame rate differently for each traffic class level and cap the total multicast egress rate out of the system.

Multicast rate limiting includes the following features:

- All configuration parameters are applied globally. Multicast rate limits are applied to multicast receive queues as frame replications are placed into the multicast expansion queues. The same physical queues are used for both ingress receive queues and egress receive queues so rate limits are applied to both ingress and egress queueing.
- Four explicit multicast rate limit values are supported, one for each traffic class. The rate limit values represent the maximum multicast expansion rate in packets per second (PPS).

Creating a receive queue multicast rate-limit

Perform the following steps from Privileged EXEC mode to create the receive queue multicast rate-limit.

1. Enter global configuration mode.

   ```
   switch#configure terminal
   ```

2. Create a lower maximum multicast frame expansion rate. In this example, the rate is to 10000 PPS.

   ```
   switch(config)#qos rcv-queue multicast rate-limit 10000
   ```

 Example of creating a lower maximum multicast frame expansion rate to 10000pkt/s.

   ```
   switch:admin>cmsh
   switch>enable
   switch#configure terminal
   Enter configuration commands, one per line. End with CNTL/Z.
   switch(config)#qos rcv-queue multicast rate-limit 10000
   ```

   ```
   switch(config)#end
   ```

3. Enter the copy command to save the running-config file to the startup-config file.

   ```
   switch#copy running-config startup-config
   ```

Scheduling

Scheduling arbitrates among multiple queues waiting to transmit a frame. The Brocade 8000 supports both Strict Priority (SP) and Deficit Weighted Round Robin (DWRR) scheduling algorithms. Also supported is the flexible selection of the number of traffic classes using SP-to-DWRR. When there are multiple queues for the same traffic class, then scheduling takes these equal priority queues into consideration.

Strict priority scheduling

Strict priority scheduling is used to facilitate support for latency-sensitive traffic. A strict priority scheduler drains all frames queued in the highest priority queue before continuing on to service lower priority traffic classes. A danger with this type of service is that a queue can potentially starve out lower priority traffic classes.
Figure 14 shows the frame scheduling order for an SP scheduler servicing two SP queues. The higher numbered queue, SP2, has a higher priority.

FIGURE 14 Strict priority schedule — two queues

Deficit weighted round robin scheduling

Weighted Round Robin (WRR) scheduling is used to facilitate controlled sharing of the network bandwidth. WRR assigns a weight to each queue; that value is then used to determine the amount of bandwidth allocated to the queue. The round robin aspect of the scheduling allows each queue to be serviced in a set ordering, sending a limited amount of data before moving onto the next queue and cycling back to the highest priority queue after the lowest priority is serviced.

Figure 15 shows the frame scheduling order for a WRR scheduler servicing two WRR queues. The higher numbered queue is considered higher priority (WRR2) and the weights indicate the network bandwidth should be allocated in a 2:1 ratio between the two queues. In Figure 15 WRR2 should receive 66 percent of bandwidth and WRR1 receives 33 percent. The WRR scheduler tracks the extra bandwidth used and subtracts it from the bandwidth allocation for the next cycle through the queues. In this way, the bandwidth utilization statistically matches the queue weights over longer time periods.

FIGURE 15 WRR schedule — two queues

Deficit Weighted Round Robin (DWRR) is an improved version of WRR. DWRR remembers the excess used when a queue goes over its bandwidth allocation and reduces the queue's bandwidth allocation in the subsequent rounds. This way the actual bandwidth usage is closer to the defined level when compared to WRR.

Traffic class scheduling policy

The traffic classes are numbered from 0 to 7; higher numbered traffic classes are considered higher priority. The Brocade 8000 provides full flexibility in controlling the number of SP-to-WRR queues. The number of SP queues is specified in N (SP1 through 8), then the highest priority traffic classes are configured for SP service and the remaining eight are WRR serviced. Table 19 shows the set of scheduling configurations supported.

When you configure the QoS queue to use strict priority 4 (SP4), then traffic class 7 will use SP4, traffic class 6 will use SP3, and so on down the list. You use the strict priority mappings to control how the different traffic classes will be routed in the queue.
Figure 16 shows that extending the frame scheduler to a hybrid SP+WRR system is fairly straightforward. All SP queues are considered strictly higher priority than WRR so they are serviced first. Once all SP queues are drained, then the normal WRR scheduling behavior is applied to the non-empty WRR queues.

Scheduling the QoS queue

Perform the following steps from Privileged EXEC mode specify the schedule to use.

1. Enter global configuration mode.
   ```
   switch# configure terminal
   ```
2. Specify the schedule to use and the traffic class to bandwidth mapping.
   ```
   switch(config)# qos queue scheduler strict-priority 4 dwrr 10 20 30 40
   ```

Example of setting the traffic class frame scheduler for 4 Strict Priority Traffic Class and 4 DWRR Traffic Class with Traffic Class 0 getting 10 percent bandwidth, Traffic Class 1 getting 20 percent bandwidth, Traffic Class 2 getting 30 percent bandwidth, and Traffic Class 3 getting 40 percent bandwidth.

```
switch:admin> cmsh
switch> enable
switch(config)# configure terminal
   Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# qos queue scheduler strict-priority 4 dwrr 10 20 30 40
switch(config)# end
```

3. Enter the copy command to save the running-config file to the startup-config file.
   ```
   switch# copy running-config startup-config
   ```

<table>
<thead>
<tr>
<th>Traffic Class</th>
<th>SP0</th>
<th>SP1</th>
<th>SP2</th>
<th>SP3</th>
<th>SP4</th>
<th>SP5</th>
<th>SP6</th>
<th>SP8</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>WRR8</td>
<td>SP1</td>
<td>SP2</td>
<td>SP3</td>
<td>SP4</td>
<td>SP5</td>
<td>SP6</td>
<td>SP8</td>
</tr>
<tr>
<td>6</td>
<td>WRR7</td>
<td>WRR7</td>
<td>SP1</td>
<td>SP2</td>
<td>SP3</td>
<td>SP4</td>
<td>SP5</td>
<td>SP7</td>
</tr>
<tr>
<td>5</td>
<td>WRR6</td>
<td>WRR6</td>
<td>WRR6</td>
<td>SP1</td>
<td>SP2</td>
<td>SP3</td>
<td>SP4</td>
<td>SP6</td>
</tr>
<tr>
<td>4</td>
<td>WRR5</td>
<td>WRR5</td>
<td>WRR5</td>
<td>WRR5</td>
<td>SP1</td>
<td>SP2</td>
<td>SP3</td>
<td>SP5</td>
</tr>
<tr>
<td>3</td>
<td>WRR4</td>
<td>WRR4</td>
<td>WRR4</td>
<td>WRR4</td>
<td>WRR4</td>
<td>SP1</td>
<td>SP2</td>
<td>SP4</td>
</tr>
<tr>
<td>2</td>
<td>WRR3</td>
<td>WRR3</td>
<td>WRR3</td>
<td>WRR3</td>
<td>WRR3</td>
<td>SP1</td>
<td>SP3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>WRR2</td>
<td>WRR2</td>
<td>WRR2</td>
<td>WRR2</td>
<td>WRR2</td>
<td>WRR2</td>
<td>SP2</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>WRR1</td>
<td>WRR1</td>
<td>WRR1</td>
<td>WRR1</td>
<td>WRR1</td>
<td>WRR1</td>
<td>SP1</td>
<td></td>
</tr>
</tbody>
</table>
Multicast queue scheduling

The multicast traffic classes are numbered from 0 to 3; higher numbered traffic classes are considered higher priority. A fixed mapping from multicast traffic class to equivalent unicast traffic class is applied to select the queue scheduling behavior. Table 20 presents the multicast traffic class equivalence mapping applied.

<table>
<thead>
<tr>
<th>Multicast traffic class</th>
<th>Equivalent unicast traffic class</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Once the multicast traffic class equivalence mapping has been applied, then scheduling and any scheduler configuration are inherited from the equivalent unicast traffic class. See Table 19 on page 112 for details on exact mapping equivalencies.

Unicast ingress and egress queueing utilizes a hybrid scheduler that simultaneously supports SP+WRR service and multiple physical queues with the same service level. Multicast adds additional multicast expansion queues. Since multicast traffic classes are equivalent to unicast service levels, they're treated exactly as their equivalent unicast service policies.

Scheduling the QoS multicast queue

Perform the following steps from Privileged EXEC mode to schedule the QoS multicast queue.

1. Enter global configuration mode.

 switch#configure terminal

2. Specify the schedule to use and the traffic class to bandwidth mapping.

 switch(config)#qos queue multicast scheduler dwrr 10 20 30 40

 Example of setting the multicast Traffic Class frame expansion scheduler for Traffic Class 0 getting 10 percent bandwidth, Traffic Class 1 getting 20 percent bandwidth, Traffic Class 2 getting 30 percent bandwidth, and Traffic Class 3 getting 40 percent bandwidth.

 switch:admin>cmsh
 switch>enable
 switch#configure terminal
 Enter configuration commands, one per line. End with CNTL/Z.
 switch(config)#qos queue multicast scheduler dwrr 10 20 30 40
 switch(config)#end

3. Enter the copy command to save the running-config file to the startup-config file.

 switch#copy running-config startup-config

Converged Enhanced Ethernet map configuration

The CEE QoS covers frame classification, priority and traffic class (queue) mapping, congestion control, and scheduling. Under the CEE Provisioning model all of these features are configured utilizing two configuration tables, Priority Group Table and Priority Table.
CEE Priority Group Table defines each Priority Group ID (PGID) and its scheduling policy (Strict Priority versus DWRR, DWRR weight, relative priority), and partially defines the congestion control (PFC) configuration. There are 16 rows in the CEE Priority Group Table. Table 21 presents the default CEE Priority Group Table configuration.

Table 21: Default CEE Priority Group Table configuration

<table>
<thead>
<tr>
<th>PGID</th>
<th>Bandwidth%</th>
<th>PFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.0</td>
<td>—</td>
<td>N</td>
</tr>
<tr>
<td>15.1</td>
<td>—</td>
<td>N</td>
</tr>
<tr>
<td>15.2</td>
<td>—</td>
<td>N</td>
</tr>
<tr>
<td>15.3</td>
<td>—</td>
<td>N</td>
</tr>
<tr>
<td>15.4</td>
<td>—</td>
<td>N</td>
</tr>
<tr>
<td>15.5</td>
<td>—</td>
<td>N</td>
</tr>
<tr>
<td>15.6</td>
<td>—</td>
<td>N</td>
</tr>
<tr>
<td>15.7</td>
<td>—</td>
<td>N</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>N</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>N</td>
</tr>
</tbody>
</table>

Strict Priority versus DWRR is derived directly from the PGID value. All PGIDs with prefix 15 receive Strict Priority scheduling policy and all PGIDs in the range 0 through 7 receive DWRR scheduling policy. Relative priority between Priority Group is exactly the ordering of entries listed in the table, with PGID 15.0 being highest priority and PGID 7 being lowest priority. Congestion control configuration is partially specified by toggling the PFC column On or Off. This provides only partial configuration of congestion control because the set of priorities mapped to the Priority Group is not known, which leads into the CEE Priority Table.

CEE Priority Table defines each CoS mapping to Priority Group, and completes PFC configuration. There are eight rows in the CEE Priority Table. Table 22 shows the default CEE Priority Table configuration.

Table 22: Default CEE priority table

<table>
<thead>
<tr>
<th>CoS</th>
<th>PGID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15.6</td>
</tr>
<tr>
<td>1</td>
<td>15.7</td>
</tr>
<tr>
<td>2</td>
<td>15.5</td>
</tr>
<tr>
<td>3</td>
<td>15.4</td>
</tr>
<tr>
<td>4</td>
<td>15.3</td>
</tr>
<tr>
<td>5</td>
<td>15.2</td>
</tr>
</tbody>
</table>
Converged Enhanced Ethernet map configuration

Creating a CEE map

Perform the following steps from Privileged EXEC mode to create a CEE map.

1. Enter global configuration mode.
   ```
   switch# configure terminal
   ```

2. Create a CEE map. In this example, the name ‘test’ is used.
   ```
   switch(config)# cee-map test
   ```

 Example of creating a CEE map enter CEE-Map CLI configuration submode.
   ```
   switch:admin>cmsh
   switch>enable
   switch# configure terminal
   Entering configuration commands, one per line. End with CNTL/Z.
   switch(config)# cee-map test
   switch(config)# end
   ```

3. Enter the copy command to save the running-config file to the startup-config file.
   ```
   switch# copy running-config startup-config
   ```

Defining a priority group table map

Perform the following steps from Privileged EXEC mode to define a priority group table map.

1. Enter global configuration mode.
   ```
   switch# configure terminal
   ```

2. Specify the name of the CEE map to define. In this example ‘test’ is used.
   ```
   switch(config)# cee-map test
   ```

3. Define the CEE map with for PGID 0.
   ```
   switch(config-ceemap)# priority-group-table 0 weight 50 pfc
   ```

4. Define the CEE map with for PGID 1.
   ```
   switch(config-ceemap)# priority-group-table 1 weight 50
   ```

 Example of defining a CEE map with a Priority Group Table.

<table>
<thead>
<tr>
<th>PGID</th>
<th>PG%</th>
<th>PFC</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>-</td>
<td>N</td>
<td>IPC</td>
</tr>
<tr>
<td>0</td>
<td>50</td>
<td>Y</td>
<td>SAN</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>N</td>
<td>LAN</td>
</tr>
</tbody>
</table>

 Example of a default CEE priority table.

<table>
<thead>
<tr>
<th>CoS</th>
<th>PGID</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>15.1</td>
</tr>
<tr>
<td>7</td>
<td>15.0</td>
</tr>
</tbody>
</table>
Converged Enhanced Ethernet map configuration

switch(config)#cee-map test
switch(config-ceemap)#priority-group-table 0 weight 50 pfc
switch(config-ceemap)#priority-group-table 1 weight 50
switch(config-ceemap)#exit
switch(config)#end

5. Enter the copy command to save the running-config file to the startup-config file.

switch#copy running-config startup-config

Defining a priority-table map

Perform the following steps from Privileged EXEC mode to define a priority-table map.

1. Enter global configuration mode.

switch#configure terminal

2. Specify the name of the CEE map to define. In this example ‘test’ is used.

switch(config)#cee-map test

3. Define the map.

switch(config-ceemap)#priority-table 1 1 0 0 1 1 1 1 15.0

Example of defining a CEE map with a Priority-to-Priority Group Table

<table>
<thead>
<tr>
<th>Priority</th>
<th>PGID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
</tr>
</tbody>
</table>

switch:admin>cmsh
switch>enable
switch#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)#cee-map test
switch(config-ceemap)#priority-table 1 1 0 0 1 1 1 1 15.0
switch(config-ceemap)#exit
switch(config)#end

4. Enter the copy command to save the running-config file to the startup-config file.

switch#copy running-config startup-config
Applying a CEE provisioning map to an interface

Perform the following steps from Privileged EXEC mode apply a CEE provisioning map.

1. Enter global configuration mode.
   ```bash
   switch# configure terminal
   ```
2. Specify the 10-gigabit Ethernet interface. In this example, 0/2 is used.
   ```bash
   switch(config)# interface tengigabitethernet 0/2
   ```
3. Apply the CEE map on the interface. In this example, the CEE map name ‘test’ is used.
   ```bash
   switch(conf-if-te-0/2)# cee test
   ```

Example of applying the CEE provisioning map on an interface.

```bash
switch:root> cmsh
switch> enable
switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# interface tengigabitethernet 0/2
switch(config)# interface tengigabitethernet 0/2
switch(config-if-te-0/2)# cee test
switch(config-if-te-0/2)# exit
switch(config)# end
```

4. Enter the copy command to save the running-config file to the startup-config file.
   ```bash
   switch# copy running-config startup-config
   ```

Verifying the CEE maps

Perform the following steps from Privileged EXEC mode to verify the CEE map.

1. Enter global configuration mode.
   ```bash
   switch# configure terminal
   ```
2. Verify the CEE map provisioning for a specified name.
   ```bash
   switch(config)# show cee maps name
   ```
Converged Enhanced Ethernet map configuration
Configuring 802.1x Port Authentication

In this chapter

- 802.1x protocol overview .. 119
- 802.1x configuration guidelines and restrictions 119
- 802.1x authentication configuration tasks 120
- Interface-specific administrative tasks for 802.1x 120

802.1x protocol overview

The 802.1x protocol defines a port-based authentication algorithm involving network data communication between client-based supplicant software, an authentication database on a server, and the authenticator device. In this situation the authenticator device is the Brocade FCoE hardware.

As the authenticator, the Brocade FCoE hardware prevents unauthorized network access. Upon detection of the new supplicant, the Brocade FCoE hardware enables the port and marks it “unauthorized”. In this state, only 802.1x traffic is allowed. All other traffic, such as DHCP and HTTP, is blocked. The Brocade FCoE hardware transmits an EAP-request to the supplicant, which responds with the EAP-response packet. The Brocade FCoE hardware, which then forwards the EAP-response packet to the RADIUS authentication server. If the credentials are validated by the RADIUS server database, the supplicant may access the protected network resources.

NOTE
802.1x port authentication is not supported by LAG (Link Aggregation Group) or interfaces that participate in a LAG.

NOTE
The EAP-MD5, EAP-TLS, EAP-TTLS and PEAP-v0 protocols are supported by the RADIUS server and are transparent to the authenticator switch.

When the supplicant logs off, it sends an EAP-logoff message to the Brocade FCoE hardware which then sets the port back to the “unauthorized” state.

802.1x configuration guidelines and restrictions

Follow these 802.1x configuration guidelines and restrictions when configuring 802.1x:

- If you globally disable 802.1x, then all interface ports with 802.1x authentication enabled automatically switch to force-authorized port-control mode.
802.1x authentication configuration tasks

The tasks in this section describe the common 802.1x operations that you will need to perform. For a complete description of all the available 802.1x CLI commands for the Brocade FCoE hardware, see the Converged Enhanced Ethernet Command Reference.

Configure authentication between the switch and CNA or NIC

For complete information on the aaaConfig command, see the Fabric OS Command Reference and the Fabric OS Administrator’s Guide.

NOTE
The aaaConfig command attempts to connect to the first RADIUS server. If the RADIUS server is not reachable, the next RADIUS server is contacted. However, if the RADIUS server is contacted and the authentication fails, the authentication process does not check for the next server in the sequence.

Perform the following steps to configure authentication.

1. Connect to the switch and log in using an account assigned to the admin role.
2. Add the RADIUS to the switch as the authentication server. This FOS CLI command moves the new RADIUS server to the top of the access list.

 switch:admin> aaaConfig --add 10.2.2.147 -conf radius 1

3. Enter global configuration mode.

 switch:admin> cmsh
 switch#configure t

4. Enable 802.1x authentication globally

 switch(config)#dot1x enable

5. Enter the copy command to save the running-config file to the startup-config file.

 switch(config)#end
 switch#copy running-config startup-config

Interface-specific administrative tasks for 802.1x

It is most efficient to configure the 802.1x port authentication protocol globally on the Brocade FCoE hardware, and then make customized changes to specific interface ports. Since all of the interfaces were enabled and configured in “802.1x authentication configuration tasks”, use the administrative tasks in this section to make any necessary customizations to specific interface port settings.

Configuring 802.1x on specific interface ports

To configure 802.1x port authentication on a specific interface port, perform the following steps from Privileged EXEC mode. Repeat this task for each interface port you wish to modify.

1. Enter the configure terminal command to enter global configuration mode.
2. Use the `interface` command to select the interface port to modify.

   ```
   switch(config)#interface tengigabitethernet 1/12
   ```

3. Use the `dot1x port-control` command to enable 802.1x authentication.

   ```
   switch(conf-if-te-1/12)#dot1x authentication
   ```

4. Enter the `copy` command to save the `running-config` file to the `startup-config` file.

   ```
   switch(conf-if-te-1/12)#exit
   switch(config)#end
   ```

   ```
   switch#copy running-config startup-config
   ```

Configuring 802.1x timeouts on specific interface ports

NOTE
While you are free to modify the timeouts, Brocade recommends that you leave timeouts set to their default values.

To configure 802.1x timeout attributes on a specific interface port, perform the following steps from Privileged EXEC mode. Repeat this task for each interface port you wish to modify.

1. Enter the `configure terminal` command to enter global configuration mode.

2. Use the `interface` command to select the interface port to modify.

   ```
   switch(config)#interface tengigabitethernet 1/12
   ```

3. Configure the timeout interval.

 Example of setting the timeout interval for an Extensible Authentication Protocol (EAP)-request frame.

   ```
   switch(conf-if-te-1/12)#dot1x timeout supp-timeout 40
   ```

Configuring 802.1x re-authentication on specific interface ports

To configure 802.1x port re-authentication on a specific interface port, perform the following steps from Privileged EXEC mode. Repeat this task for each interface port you wish to modify.

1. Enter the `configure terminal` command to enter global configuration mode.

2. Use the `interface` command to select the interface port to modify.

   ```
   switch(config)#interface tengigabitethernet 1/12
   ```

3. Enable 802.1x authentication for the interface port.

   ```
   switch(config-if-te-1/12)#dot1x enable
   ```

4. Configure reauthentication for the interface port.

   ```
   switch(config-if-te-1/12)#dot1x reauthentication
   ```

   ```
   switch(config-if-te-1/12)#dot1x timeout re-authperiod 4000
   ```

Disabling 802.1x on specific interface ports

To disable 802.1x authentication on a specific interface port, perform the following steps from Privileged EXEC mode.
1. Enter the **configure terminal** command to enter global configuration mode.

2. Use the **interface** command to select the interface port to modify.

   ```
   switch(config)#interface tengigabitethernet 1/12
   ```

3. Use the **no dot1x port-control** command to disable 802.1x Authentication.

   ```
   switch(conf-if-te-1/12)#no dot1x authentication
   ```

4. Enter the **copy** command to save the `running-config` file to the `startup-config` file.

   ```
   switch(conf-if-te-1/12)#exit
   switch(config)#end
   switch#copy running-config startup-config
   ```
In this chapter

- FCoE configuration guidelines and restrictions. 123
- Managing and displaying the FCoE configuration......................... 123

FCoE configuration guidelines and restrictions

Follow these FCoE configuration guidelines and restrictions when configuring FCoE:

- Speed negotiation—The Brocade 8000 switch supports auto-negotiated FC link speeds of 2, 4, and 8 Gbps. The Ethernet ports of the Brocade 8000 switch do not support auto-negotiation of Ethernet link speeds. The Ethernet ports only support 10-Gigabit Ethernet.
- Features that are not supported on the Brocade 8000 switch:
 - Virtual fabrics
 - Admin Domains
 - Port-based zoning
 - QoS zoning
 - Adaptive networking
 - FC-SP for the FCoE ports
 - Interop mode
 - Access Gateway mode
 - FC routing
 - Integrated routing
 - Hot Code Load (HCL) firmware download
 - Extended fabrics
 - FICON

- The CEE configuration database is maintained in a file separate from the Fabric OS configuration database. Fabric OS configuration management procedures remain unchanged.

Managing and displaying the FCoE configuration

FCoE technology bridges the boundary between the SAN and LAN sections of your network. FCoE configuration tasks require mostly configuration of the interface ports on the Brocade 8000 switch.

NOTE
To assist you in configuring FCoE, see “FCoE Initialization Protocol” on page 13.
Enabling or disabling an FCoE port

Perform the following tasks to enable or disable an FCoE port.

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable an FCOE port.</td>
<td>switch:admin> fcoe --enable port</td>
</tr>
<tr>
<td>Disable an FCOE port.</td>
<td>switch:admin> fcoe --disable port</td>
</tr>
</tbody>
</table>

Configuring FCMAP values for a VLAN

NOTE
For information on FCMAPs, see “FCoE Initialization Protocol” on page 13.

If the FCMAP default value is acceptable, then it can be applied to the specified VLAN. The `fcmapunset` command is only necessary if the FCMAP value was previously set to a non-default value. For example, if you reset the default value to a value other than the default value, and then want to change the value again, you must enter the `fcmapunset` command to return the value to the default value. The `fcmapunset` command always returns the FCMAP to the default value.

Perform the following tasks to configure FCMAP values for a VLAN.

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configure the FCMAP values for Fabric Provided MAC Addresses (FPMA) for the specified VLANs.</td>
<td>switch:admin> fcoe --fcmapset-vlan vid fcmapid</td>
</tr>
<tr>
<td>Syntax is as follows:</td>
<td></td>
</tr>
<tr>
<td>• vid—Specifies the VLAN ID for which the FCMAP must be set.</td>
<td></td>
</tr>
<tr>
<td>• fcmapid—Specifies the FCMAP to be set.</td>
<td></td>
</tr>
<tr>
<td>Remove the FCMAP from the specified VLAN.</td>
<td>switch:admin> fcoe --fcmapunset-vlan vid</td>
</tr>
</tbody>
</table>

Configuring FIP multicast advertisement intervals

NOTE
For information on the FCoE Initialization Protocol (FIP), see “FCoE Initialization Protocol” on page 13.

Perform the following task to configure FIP multicast advertisement intervals.

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configure FIP multicast advertisement intervals.</td>
<td>switch:admin> fcoe --fipcfg-advintvl intvl</td>
</tr>
<tr>
<td>Syntax is as follows:</td>
<td></td>
</tr>
<tr>
<td>• intvl—Specifies the interval in seconds. The minimum interval value is 0 seconds and the maximum value is 300 seconds. A value of 0 cancels the previous advertisement interval value.</td>
<td></td>
</tr>
</tbody>
</table>
Managing and displaying the FCoE login configuration

Another important task in administering FCoE is configuring the FCoE login information.

Enabling or disabling FCoE login configuration management

The fcoelogincfg command allows only configured Enode VN_ports to log in. Use the fcoelogingroup command to configure allowed Enode VN_ports. The default is disabled.

Disabling the fcoelogincfg command allows unrestricted login on Enode VN_ports.

Perform one of the following tasks to toggle the availability of FCoE login configuration management.

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable the FCoE login configuration management on the switch (this is a switch-based command, not port-based).</td>
<td>switch:admin> fcoelogincfg --enable</td>
</tr>
<tr>
<td>Disable the FCoE login configuration management on the switch.</td>
<td>switch:admin> fcoelogincfg --disable</td>
</tr>
</tbody>
</table>
Displaying or aborting the current configuration transaction

NOTE
The configuration changes created using the `fcoelogingroup` command are kept in a transaction buffer until you save the buffer using the fabric-wide `fcoelogincfg--save` command. The login configuration is saved as a transaction and to apply it you need to specifically save it.

Perform one of the following tasks to either display or abort the current configuration transaction.

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display the current configuration transaction.</td>
<td><code>switch:admin> fcoelogincfg --transshow</code></td>
</tr>
<tr>
<td>Abort the current configuration transaction.</td>
<td><code>switch:admin> fcoelogincfg --transabort</code></td>
</tr>
</tbody>
</table>

Cleaning up login groups and VN_port mappings

Perform the following tasks to cleanup login groups and VN_port mappings.

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform a cleanup of all conflicting login groups and VN_port mappings from the effective configuration. This purges not only the conflicting login groups but also the non-existing switches.</td>
<td><code>switch:admin> fcoelogincfg --purge</code></td>
</tr>
<tr>
<td>Perform a cleanup of all conflicting login groups and conflicting VN_port mappings from the effective configuration.</td>
<td><code>switch:admin> fcoelogincfg --purge-conflicting</code></td>
</tr>
<tr>
<td>Perform a cleanup of all login groups for non-existing switches from the effective configuration.</td>
<td><code>switch:admin> fcoelogincfg --purge-nonexisting</code></td>
</tr>
</tbody>
</table>

Displaying the FCoE login configuration

Perform the following tasks to display the FCoE login configuration.

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
</tr>
</thead>
</table>
| Display the FCoE login configuration. Syntax is as follows:
 - `switch swwn`—Displays all of the login groups for the specified switch.
 - `logingroup lgname`—Displays the login group configuration for the specified login group.
 - `saved`—Displays only the effective configuration. | `switch:admin> fcoelogincfg --show [-switch swwn | -logingroup lgname] [-saved]` |
| Display the status of the last configuration merge during the last fabric merge. This operand also displays conflicting login groups and login groups for non-existing switches. | `switch:admin> fcoelogincfg --show [-mergestatus]` |
Creating and managing the FCoE login group configuration

Another important task in administrating FCoE is configuring the FCoE login information.

Creating an FCoE login group

The FCoE login group enables you to configure login policies.

Perform the following task to create an FCoE login group.

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax is as follows:</td>
<td>switch:admin> fcoelogingroup --create lgname -switch swn</td>
</tr>
<tr>
<td>-create—Create a login group.</td>
<td>switch:admin> fcoelogingroup --create lgname -switch swn</td>
</tr>
<tr>
<td>lgname—Specify the name of the login group for this switch. The maximum length is a 64-byte string.</td>
<td>switch:admin> fcoelogingroup --create lgname -switch swn</td>
</tr>
<tr>
<td>-switch swn—Specify the WWN of the switch for which the login group is being created.</td>
<td>switch:admin> fcoelogingroup --create lgname -switch swn</td>
</tr>
<tr>
<td>-self—Specify the WWN of the current switch.</td>
<td>switch:admin> fcoelogingroup --create lgname -switch swn</td>
</tr>
<tr>
<td>-allowall—Allow all VN_port devices to log in to the switch.</td>
<td>switch:admin> fcoelogingroup --create lgname -switch swn</td>
</tr>
<tr>
<td>member—Identify the WWN of the VN_port. The WWN must be specified in hex as xx.xx.xx.xx.xx.xx.xx. Only specified members are allowed to log into the switch.</td>
<td>switch:admin> fcoelogingroup --create lgname -switch swn</td>
</tr>
</tbody>
</table>
Modifying the FCoE login group device list

Perform the following tasks to add or remove VN_port devices from the FCoE login group.

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add VN_port devices to the FCoE login group. Syntax is as follows:</td>
<td>switch:admin> fcoelogingroup --add lgname member; member;…</td>
</tr>
<tr>
<td>• lgname—Specify the name of the login group to which VN_port devices are to be added.</td>
<td></td>
</tr>
<tr>
<td>• member—Identify the WWN of the VN_port. The WWN must be specified in hex as xx.xx.xx.xx.xx.xx.xx. Only specified members are allowed to log into the switch.</td>
<td></td>
</tr>
</tbody>
</table>

Remove VN_port devices from the FCoE login group. Syntax is as follows: | switch:admin> fcoelogingroup --remove lgname member; member;… |
| • lgname—Specify the name of the login group from which VN_port devices are to be removed. | |
| • member—Identify the WWN of the VN_port. The WWN must be specified in hex as xx.xx.xx.xx.xx.xx.xx.x. Only specified members are allowed to log into the switch. | |

Deleting an FCoE login group

Perform the following task to delete an FCoE login group.

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete an FCoE login group. Syntax is as follows:</td>
<td>switch:admin> fcoelogingroup --delete lgname</td>
</tr>
<tr>
<td>• lgname—Specify the name of the login group.</td>
<td></td>
</tr>
</tbody>
</table>

Renaming an FCoE login group

Perform the following task to rename an FCoE login group.

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rename an FCoE login group. Syntax is as follows:</td>
<td>switch:admin> fcoelogingroup --rename lgname newlgname</td>
</tr>
<tr>
<td>• lgname—Specify the name of the login group from which VN_port devices are to be removed.</td>
<td></td>
</tr>
<tr>
<td>• member—Identify the WWN of the VN_port. The WWN must be specified in hex as xx.xx.xx.xx.xx.xx.xx.x. Only specified members are allowed to log into the switch.</td>
<td></td>
</tr>
</tbody>
</table>
Administering the switch

In this chapter

- CEE configuration management guidelines and restrictions 129
- CEE configuration management tasks .. 129
- Flash file management commands ... 130
- Debugging and logging commands .. 131

CEE configuration management guidelines and restrictions

Follow these guidelines and restrictions when performing any CEE configuration management tasks.

- The CEE configuration database is maintained in a file separate from the Fabric OS configuration database. Note that Fabric OS configuration management remains unchanged.
- The CEE configuration is not affected by configUpload and configDownload commands entered in the Fabric OS shell.
- The CEE configuration must be manually saved using the CEE CLI write or copy commands.

CEE configuration management tasks

This section describes the typical configuration management tasks you may encounter when administering the Brocade 8000 switch.

The current configuration on the switch is referred to as the running configuration (running-config). The running-config file can be written to non-volatile memory to save configuration changes. Additionally, the running-config file can be saved as the startup configuration (startup-config) file. When the switch is booted, the system reads the contents of the startup-config file and applies it to the running-config.

Typical CEE configuration management tasks are as follows:

- Saving the startup-config and running-config files to Flash.
- Uploading the startup-config and running-config files to a remote location.
- Uploading any configuration file saved and stored in Flash to a remote location.
- Downloading a configuration file from a remote location to the switch to serve as the startup-config file or the running-config file.
- Downloading a configuration file from a remote location to the switch Flash.
Table 23 describes the typical tasks used to manage the CEE configurations. The Converged Enhanced Ethernet Command Reference contains complete information on all available CLI commands.

Perform the following tasks from Privileged EXEC mode.

TABLE 23 CEE configuration management commands

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write the current running configuration file to the startup configuration file.</td>
<td>switch#copy running-config startup-config
Overwrite the startup config file (y/n): y</td>
</tr>
<tr>
<td>NOTE: If you enter y at the prompt, the running configuration file overwrites the startup configuration file. If you enter n at the prompt, the startup configuration file is not overwritten.</td>
<td></td>
</tr>
<tr>
<td>Copy the startup configuration file to the running configuration file.</td>
<td>switch#copy startup-config running-config</td>
</tr>
<tr>
<td>Erase the startup configuration file.</td>
<td>switch#write erase
NOTE: This command does not affect the running configuration file.</td>
</tr>
<tr>
<td>Copy the running configuration file to the archive folder on an FTP server.</td>
<td>switch#copy running-config
ftp://jsmith:password@/archive/config_file</td>
</tr>
<tr>
<td>Copy a stored startup configuration file in Flash to the running configuration.</td>
<td>switch#copy flash://test_filename running-config</td>
</tr>
<tr>
<td>Copy a configuration file from an FTP server to the startup configuration.</td>
<td>switch#copy
ftp://jsmith:password@/archive/test_filename startup-config</td>
</tr>
<tr>
<td>Display the contents of the running configuration file.</td>
<td>switch#show running-config</td>
</tr>
</tbody>
</table>

Flash file management commands

Table 24 describes the common tasks used to manage the Flash files on the Brocade 8000 switch. The Converged Enhanced Ethernet Command Reference contains complete information on all available CLI commands.

Perform the following tasks from Privileged EXEC mode.

NOTE Use of the flash:// prefix is optional.

TABLE 24 CEE Flash memory file management commands

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>List the files in the Flash memory directory.</td>
<td>switch#dir</td>
</tr>
<tr>
<td>Delete a file from the Flash memory directory.</td>
<td>switch#delete flash://example_filename</td>
</tr>
</tbody>
</table>
Debugging and logging commands

Table 25 describes the tasks related to debugging and logging commands on the Brocade 8000 switch. The Converged Enhanced Ethernet Command Reference contains complete information on all available CLI commands.

Perform the following tasks from Privileged EXEC mode.

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display debugging information for CEE components.</td>
<td>switch#show debug</td>
</tr>
<tr>
<td>Display logging information for CEE components.</td>
<td>switch#show logging</td>
</tr>
<tr>
<td>Display the collection of information needed for technical support.</td>
<td>switch#show tech-support</td>
</tr>
</tbody>
</table>

NOTE: The supportsave command in Fabric OS includes the debugging data provided by the above commands.
12 Debugging and logging commands
Configuring RMON using the CEE CLI

In this chapter

• RMON overview ... 133
• RMON configuration and management 133

RMON overview

Remote monitoring (RMON) is an Internet Engineering Task Force (IETF) standard monitoring specification that allows various network agents and console systems to exchange network monitoring data. The RMON specification defines a set of statistics and functions that can be exchanged between RMON-compliant console managers and network probes. As such, RMON provides you with comprehensive network-fault diagnosis, planning, and performance-tuning information.

RMON configuration and management

Alarms and events are configurable RMON parameters:

• Alarms—Monitors a specific management information base (MIB) object for a specified interval, triggers an alarm at a specified value (rising threshold), and resets the alarm at another value (falling threshold). Alarms can be used with events; the alarm triggers an event, which can generate a log entry or an SNMP trap.

• Events—Determines the action to take when an event is triggered by an alarm. The action can be to generate a log entry, an SNMP trap, or both.

Default RMON configuration

By default, no RMON alarms and events are configured and RMON collection statistics are not enabled.

Configuring RMON settings

To configure RMON alarms and events, perform the following steps from Privileged EXEC mode.

1. Enter the configure terminal command to enter global configuration mode.

 switch(config)#configure terminal
2. Configure the RMON alarms.

Example of an alarm that tests every sample for a rising threshold

```
switch(config)#rmon alarm 5 1.3.6.1.2.1.16.1.1.1.5.65535 interval 30 absolute
rising-threshold 95 event 27 owner john_smith
```

Example of an alarm that tests the delta between samples for a falling threshold

```
switch(config)#rmon alarm 5 1.3.6.1.2.1.16.1.1.1.5.65535 interval 10 delta
falling-threshold 65 event 42 owner john_smith
```

3. Enter the copy command to save the running-config file to the startup-config file.

```
switch(config)#end
switch(config)#copy running-config startup-config
```

Configuring RMON events

You can add or remove an event in the RMON event table that is associated with an RMON alarm number.

To configure RMON events, perform the following steps from Privileged EXEC mode.

1. Enter the **configure terminal** command to enter global configuration mode.

   ```
   switch#configure terminal
   ```

2. Configure the RMON event.

   ```
   switch(config)#rmon event 27 description Rising_Threshold log owner john_smith
   trap syslog
   ```

3. Enter the copy command to save the running-config file to the startup-config file.

   ```
   switch(config)#end
   switch#copy running-config startup-config
   ```

Configuring RMON Ethernet group statistics collection

You can collect RMON Ethernet group statistics on an interface. RMON alarms and events must be configured for you to display collection statistics. By default, RMON Ethernet group statistics are not enabled.

To collect RMON Ethernet group statistics on an interface, perform the following steps from Privileged EXEC mode.

1. Enter the **configure terminal** command to enter global configuration mode.

   ```
   switch#configure terminal
   ```

2. Enter the **interface** command to specify the CEE interface type and slot/port number.

 Example of selecting the Ten Gigabit Ethernet port number 0/1.

   ```
   switch(config)#interface tengigabitethernet 0/1
   ```

3. Enable the CEE interface.

   ```
   switch(conf-if-te-0/1)#no shutdown
   ```


 Example

   ```
   switch(conf-if-te-0/1)#rmon collection stats 200 owner john_smith
   ```
5. Enter the copy command to save the running-config file to the startup-config file.

```
switch(conf-if-te-0/1)#exit
switch(config)#end
switch#copy running-config startup-config
```
RMON configuration and management
Symbols

Numerics

8000 CEE switch
- congestion control and queuing, 11
- features, 3
- flow control, 13
- Layer 2 Ethernet, 8
- Layer 2 forwarding, 8
- licensing, 4
- logical connectivity, 4
- loop-free, 10
- tagging, 9
- trunking, 13

802.1x
- LAG, 119
- overview, 119
- timeouts, 121

A

Access Control Lists
- See ACL
- access interface, configuring, 42
- access mode, 37, 42

ACL
- configuration guidelines and restrictions, 94
- configuration procedures
- applying a MAC ACL to a CEE interface, 97
- applying a MAC ACL to a VLAN interface, 97
- creating extended MAC ACL and adding rules, 95
- creating standard MAC ACL and adding rules, 94
- important notes, 94
- modifying a MAC ACL, 95
- removing a MAC ACL, 96
- reordering the sequence numbers, 96
- default configuration, 94
- extended ACL, defined, 93
- overview, 12, 93
- standard ACL, defined, 93
- authentication server, 119
- authenticator, 119

B

basic management TLV sets, 82
blade
- FCOE10-24, 6
bridge
- forwarding delay, configuring for STP, RSTP, MSTP, 58
- hello time, configuring for STP, RSTP, 60
- maximum aging time, configuring for STP, RSTP, MSTP, 59
- priority, configuring for STP, RSTP, MSTP, 58

Brocade
- Brocade Connect, xix
- extension TLV set, 83
- proprietary aggregation, 75
- web site, xix
- Brocade FCoE hardware, 2
CEE interface

- applying a MAC ACL, 97
- configuring for STP, RSTP, MSTP, 64
- configuring the hello time for MSTP, 66
- disable or enable STP on the interface, 68
- enabling and disabling, 40
- enabling as an edge port for RSTP, MSTP, 65
- enabling guard root for STP, RSTP, MSTP, 65
- enabling LACP, 77
- enabling port fast, 67
- path cost, configuring for STP, RSTP, MSTP, 64
- restricting the port from becoming a root port for STP, RSTP, MSTP, 68
- restricting the topology change notification for STP, RSTP, MSTP, 68
- spanning-tree defaults, 56
- specifying a link type, 67
- specifying restrictions for an MSTP instance, 66
- specifying the port priority for STP, RSTP, MSTP, 67

CEE map, configuring, 115
CEE maps, verifying, 117
CEE provisioning map, applying, 117
Cisco interoperability, disabling for MSTP, 61
Cisco interoperability, enabling for MSTP, 61
classifier groups, VLAN, 45
classifier rules, VLAN, 44
CLI, CEE

- accessing, 21
- command completion, 25
- command modes, 21
 - console and VTY (line) configuration, 23
 - EXEC, 22
- feature configuration, 23
- global configuration, 22
- interface configuration, 22
- Privileged EXEC, 22
- protocol configuration, 22
- command syntax, 24
- configuration guidelines and restrictions, 19
- displaying commands, 24
- keyboard shortcuts, 23
- output modifiers, 25
- RBAC permissions, 20
cmsh command, 21
command completion, CEE CLI, 25
command modes, CEE, 21
command output modifiers, 25
command syntax, 24
configuration management

- saving changes, 20
congestion control

- QoS, 106
- queuing, 11
console interface, 21
converged mode, 37
counters, clearing, 46

Data Center Bridging (DCB) Capability Exchange Protocol

See DCBX
DCBX

- Enhanced Transmission Selection, 84
- interaction with other vendor devices, 85
- overview
- Priority Flow Control, 85
- TLV sets, 31
document conventions, xvii
dynamic link aggregation, 75

EAP, 119
edge detection, configuring for STP, RSTP, MSTP, 64
dynamic link aggregation, 75
edge port, enabling a CEE interface as an edge port for RSTP, MSTP, 65
Enhanced Transmission Selection

See ETS
error disable timeout interval, configuring for STP, RSTP, MSTP, 59
error disable timeout, configuring for STP, RSTP, MSTP, 59
Ethernet, forwarding, 8
ETS

- overview
- priority grouping of IPC, LAN, and SAN traffic, 84

Fabric OS shell, 21
FCoE

- configuration guidelines and restrictions, 123
- configuration procedures
 - creating and managing the FCoE login group
configuration, 127
managing and displaying FCoE login
configuration, 125
managing and displaying the configuration, 124
Layer 2 Ethernet overview, 8
logical connectivity, 4
login, 15
logout, 15
minimum configuration example, 35
overview, 1
queuing, 17
services, 4
speed negotiation, 123
terminology
CEE, 1
ENode, 1
FCoE Forwarder (FCF), 1
VF_port, 1
VN_port, 1
unsupported features, 123
VLAN forwarding, 9
FCoE blade, 6
FCoE initialization protocol
See FIP
FCOE10-24, 6
feedback, xx
Fibre Channel Association, xix
filtering VLAN ingress, 37
FIP
FC zoning, 16
FCoE login, 15
FCoE logout, 15
FIP discovery, 13
login, 14
logincfg, 16
logout, 15
name server, 16
registered state change notification (RSCN), 17
FLOGI, 1
flow control, 13
flushing MAC addresses, 63
frame classification, incoming, 10

G

glossary, xviii
guard root, enabling on a CEE interface for STP, RSTP, MSTP, 65

H

hello time, configuring for MSTP, 66
hops, configuring for MSTP, 62

I

IEEE 802.1 organizational TLV set, 82
IEEE 802.3 organizational TLV set, 83
incoming frame classification, 10
ingress VLAN filtering, 37
instance
MSTP, mapping a VLAN to, 61
specifying restrictions for an MSTP instance, 66

K

key terms, xviii
keyboard shortcuts, CEE CLI, 23

L

LACP
configuration guidelines and restrictions, 76
configuration procedures
clearing counters, 78
configuring system priority, 77
configuring timeout period, 77
displaying LACP information, 78
enabling on a CEE interface, 77
important notes, 76
default LACP configuration, 76
overview
troubleshooting tips, 78
LAGs
802.1x, 119
distribution process, 75
overview
top-of-the-rack configuration, 73
Layer 2
ACL
Ethernet overview, 8
Layer 2 forwarding, 8
link aggregation
Brocade-proprietary, 75
dynamic, 75
LACP, 75
LAG distribution process, 75
LAGs, 71
overview, 71
static, 75
Link Aggregation Control Protocol
See LACP
link aggregation group
See LAGs
Link Layer Discovery Protocol
See LLDP
link type, specifying, 67
LLDP
configuration guidelines and restrictions, 85
configuration procedures
clearing LLDP-related information, 91
disabling LLDP globally, 86
displaying LLDP-related information, 91
enabling LLDP globally, 86
global command options, 87
important notes, 86
interface-level command options, 91
DCBX overview
default configuration, 86
Layer 2 topology mapping, 82
overview, 81
TLV sets, 82
login
FCoE, 15
FIP, 14
logincfg, 16
logout
FCoE, 15
FIP, 15
loop-free network environment, 10

M
MAC addresses
configuration guidelines and restrictions, 39
flush from the VLAN FDB, 63
MSTP
configuration procedures, 57
default configuration, 55
displaying MSTP-related information, 64
overview, 53
MTU, configuring, 40
multicast rate limiting, QoS, 109
Multiple Spanning Tree Protocol
See MSTP

N
name server, 16
network
flow control, 13
loop-free
STP, RSTP, MSTP, 10
trunking, 13

O
output modifiers, CEE CLI, 25
overview
ACL, 93
link aggregation, 71
MSTP, 53
RSTP, 51
STP, 49

P
path cost
CEE interface, configuring for STP, RSTP, MSTP, 64
port channel, configuring for STP, RSTP, MSTP, 60
PEAP, 119
port configuration for STP, RSTP, MSTP, 64
port fast, enabling on a CEE interface, 67
port priority, specifying on a CEE interface for STP, RSTP, MSTP, 67
Priority Flow Control (PFC), 85
priority group table, mapping, 115
priority mapping, QoS, 100
priority-table, mapping, 116
Q

QoS
CEE QoS overview, 113
configuration procedures
applying a CEE provisioning map, 117
creating a CEE map, 115
mapping a priority group table, 115
mapping a priority-table, 116
overview, 113
verifying CEE maps, 117
congestion control, 106
multicast rate limiting, 109
overview, 99
queuing
traffic class mapping, 104
user-priority mapping, 100
queuing overview, 100
rewriting frame header field, 100
scheduling, 110
Quality of Service
See QoS
queuing
congestion control, 11
FCoE, 17
QoS, 100

S
saving configuration, 20
scheduling, QoS, 110
Spanning Tree Protocol
See STP
spanning-tree defaults, 56
speed negotiation, FC ports, 123
static link aggregation, 75
STP
configuration guidelines and restrictions, 55
configuration procedures, 57
default configuration, 55
displaying STP-related information, 64
overview, 49
supplicant, 119
switch
connecting servers, 35
port configuration, 42
serial number, xx
system priority, configuring for LACP, 77

T
T11-FC-BB5, 1
technical help, xix
telnet, 21
terminology
document, xviii
FCoE, 1
timeout period, configuring for LACP, 77
TLV sets
basic management TLV, 82
Brocade extension TLV set, 83
configuring, 31
IEEE 802.1 organizational TLV set, 82
IEEE 802.3 organizational TLV set, 83
top-of-the-rack configuration, 73
topology change notification, CEE interface, restricting for
STP, RSTP, MSTP, 68
topology mapping, LLDP, 82
traffic class mapping, QoS, 104
transmit hold count, configuring for RSTP, MSTP, 60
troubleshooting tips, LACP, 78
trunk interface, configuring, 42
trunk mode, 37, 42
trunking, 13

RADIUS, 119
Rapid Spanning Tree Protocol
See RSTP
RBAC permissions
region name, specifying for MSTP, 62
registered state notification protocol (RSCN), 17
revision number, specifying for MSTP, 62
Role-Based Action Control
See RBAC
root port, CEE interface, restricting for STP, RSTP, MSTP, 68
RSTP
configuration guidelines and restrictions
MSTP configuration guidelines and restrictions, 55
configuration procedures, 57
default configuration, 55
displaying RSTP-related information, 64
overview, 51

R
RADIUS, 119
Rapid Spanning Tree Protocol
See RSTP
RBAC permissions
region name, specifying for MSTP, 62
registered state notification protocol (RSCN), 17
revision number, specifying for MSTP, 62
Role-Based Action Control
See RBAC
root port, CEE interface, restricting for STP, RSTP, MSTP, 68
RSTP
configuration guidelines and restrictions
MSTP configuration guidelines and restrictions, 55
configuration procedures, 57
default configuration, 55
displaying RSTP-related information, 64
overview, 51

Quality of Service
See QoS
queuing
congestion control, 11
FCoE, 17
QoS, 100
U

unsupported features, 123
user-priority mapping, QoS, 100

V

Virtual LANs
See VLAN
VLAN
applying a MAC ACL, 97
configuration guidelines and restrictions, 39
configuration procedures
 clearing VLAN counters, 46
 configuring a CEE interface as a Layer 2 switch port, 42
 configuring a CEE interface as an access or trunk interface, 42
 configuring the MTU on an interface, 40
 displaying VLAN information, 46
 enabling and disabling a CEE interface, 40
 important notes, 39
 VLAN classifier groups, 45
 VLAN classifier rules, 44
default configuration, 39
FDB
 flushing, 63
 overview, 38
forwarding, 9
 important management notes, 39
ingress VLAN filtering, 37
 overview, 37
tagging, 9

W

web site, Brocade, xix

Z

zoning, FC, 16