CONTENTS

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>Introducing DD Boost</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Revision History</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Overview of DD Boost</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Supported Configurations</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Upgrade Compatibility</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>DD Boost Features</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overview of DD Boost Features</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Distributed Segment Processing</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>In-flight Encryption</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Global authentication and encryption</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Methods of setting authentication and encryption</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Authentication and encryption settings</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Authentication and encryption options</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Backwards compatibility scenarios</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Managed File Replication (MFR)</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Low-Bandwidth Optimization</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Encrypted Managed File Replication</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>DD Boost and High Availability</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>DD Boost, HA, and failover</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Partial HA configurations</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>MTree Replication</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>IPv6 Support</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Dynamic Interface Groups: DD Boost IP Data Path Management</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Interfaces</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Clients</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Using interface groups for Managed File Replication (MFR)</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>IP Failover Hostname</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>DD Boost-over-Fibre Channel Transport</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>DD Boost-over-Fibre Channel Path Management</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Initial Path Selection</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Dynamic Re-Balancing</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Client Path Failover</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Queue-Depth Constraints</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Virtual Synthetic Backups</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Client Access Validation</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>DD Boost Multiuser Data Path</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Storage Unit Management</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Multiuser Storage Units Access Control</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Storage Unit Capacity Quotas</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Storage Units Stream Count Management</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Data-pattern optimized read-ahead</td>
<td>37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3</th>
<th>Preparing the Protection System for DD Boost</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enabling DD Boost on a Protection System</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Assigning Multiple Users to DD Boost</td>
<td>40</td>
</tr>
</tbody>
</table>
As part of an effort to improve its product lines, Dell EMC periodically releases revisions of its software and hardware. Therefore, some functions described in this document might not be supported by all versions of the software or hardware currently in use. The product release notes provide the most up-to-date information on product features.

Contact your Dell EMC technical support professional if a product does not function properly or does not function as described in this document.

Note: This document was accurate at publication time. Go to EMC Online Support https://support.emc.com to ensure that you are using the latest version of this document.

Purpose

This guide explains how to configure and use Dell EMC DD Boost when used with partner applications, including:

- Dell NetVault Backup
- Dell vRanger Pro
- EMC Avamar
- EMC Database application agent for DD Boost for Enterprise Applications and ProtectPoint
- EMC Microsoft application agent for DD Boost for Enterprise Applications
- EMC NetWorker
- Hewlett-Packard HP Data Protector
- Pivotal Greenplum Data Computing Appliance
- Quest NetVault
- Quest vRanger Pro
- Veeam Backup and Replication
- VMware vSphere Data Protection Advanced (VDPA)

Note: A separate guide, the **DD Boost for OpenStorage Administration Guide**, has been published specifically for use with Veritas backup applications (NetBackup and Backup Exec). Consult that publication for guidance on using DD Boost with Veritas OpenStorage.

Audience

This guide is for system administrators who are familiar with backup applications and general backup administration.

Related documentation

Where to get help for Dell EMC products

EMC support, product, and licensing information can be obtained as follows:

Product information

For documentation, release notes, software updates, or information about EMC products, go to EMC Online Support at https://support.emc.com.
Technical support

Go to EMC Online Support and click Service Center. You will see several options for contacting EMC Technical Support. Note that to open a service request, you must have a valid support agreement. Contact your EMC sales representative for details about obtaining a valid support agreement or with questions about your account.

Where to get help for partner applications

Documentation for backup applications is available through the backup application vendor.

Special notice conventions used in this document

EMC uses the following conventions for special notices:

- **NOTICE**: A notice identifies content that warns of a potential business or data loss.

- **Note**: A note identifies information that is incidental, but not essential, to the topic. Notes can provide an explanation, a comment, reinforcement of a point in the text, or just a related point.
Typographical conventions

EMC uses the following type style conventions in this document:

Table 1 Typography

<table>
<thead>
<tr>
<th>Type Style</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold</td>
<td>Indicates interface element names, such as names of windows, dialog boxes, buttons, fields, tab names, key names, and menu paths (what the user specifically selects or clicks)</td>
</tr>
<tr>
<td>Italic</td>
<td>Highlights publication titles listed in text</td>
</tr>
<tr>
<td>Monospace</td>
<td>Indicates system information, such as:</td>
</tr>
<tr>
<td></td>
<td>- System code</td>
</tr>
<tr>
<td></td>
<td>- System output, such as an error message or script</td>
</tr>
<tr>
<td></td>
<td>- Pathnames, filenames, prompts, and syntax</td>
</tr>
<tr>
<td></td>
<td>- Commands and options</td>
</tr>
<tr>
<td>Monospace italic</td>
<td>Highlights a variable name that must be replaced with a variable value</td>
</tr>
<tr>
<td>Monospace bold</td>
<td>Indicates text for user input</td>
</tr>
<tr>
<td><code>[]</code></td>
<td>Square brackets enclose optional values</td>
</tr>
<tr>
<td>`</td>
<td>`</td>
</tr>
<tr>
<td><code>{ }</code></td>
<td>Braces enclose content that the user must specify, such as x or y or z</td>
</tr>
<tr>
<td>...</td>
<td>Ellipses indicate nonessential information omitted from the example</td>
</tr>
</tbody>
</table>

Your comments

Your suggestions will help us continue to improve the accuracy, organization, and overall quality of the user publications. Send your feedback about this document to: DPAD.Doc.Feedback@emc.com.
CHAPTER 1

Introducing DD Boost

This chapter contains the following topics:

- Revision History ... 10
- Overview of DD Boost .. 10
- Supported Configurations .. 11
- Upgrade Compatibility ... 11
Revision History

The following table presents the revision history of this document.

Table 2 Revision History of DD Boost for Partner Integration Release 7.0

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 (7.0)</td>
<td>September 2019</td>
<td>This revision changes the DD Boost version number to 7.0.</td>
</tr>
</tbody>
</table>

Note: In this guide, "the protection system" or simply "the system" refers to both Data Domain and PowerProtect DD systems running DD OS 7.0 or later.

Overview of DD Boost

EMC DD Boost enables backup servers to communicate with storage systems without the need for protection storage systems to emulate tape. The software has two components:

- DD Boost libraries that you install on each backup server to integrate with the DD Boost server that runs on the protection system.
- The DD Boost server that runs on protection systems.

Note: A protection system can be a single protection system, a gateway, a DD Cloud Tier system, or a DD high availability (HA) system.

The backup application sets policies that control when backups and duplications occur. Administrators manage backup, duplication, and restores from a single console and can use all of the features of DD Boost, including WAN-efficient replicator software. The application manages all files (collections of data) in the catalog, even those created by the protection system.

The protection system exposes pre-made disk volumes called storage units to a DD Boost-enabled backup server. Multiple backup servers, each with the DD Boost libraries, can use the same storage unit on a protection system as a storage server. Each backup server can run a different operating system, provided that the operating system is supported by DD Boost and the backup application.

The figure shows an example configuration of DD Boost.
Supported Configurations

DD Boost is supported on all protection systems.

The plug-in version must be compatible with the software version of your protection system and with backup application configurations. DD Boost does not support combinations other than those detailed in the *DD Boost Compatibility Guide* available at the Online Support site https://support.emc.com.

Upgrade Compatibility

The upgrade compatibility policy for replication is as follows:
All maintenance and patch versions within a *family* are backward compatible. A family is identified by the first two digits of the release number, such as 6.2. For example, 6.2.0.0, 6.2.0.10, 6.2.0.20, and 6.2.0.30 are all backward compatible.

Replication is backward compatible across two consecutive release families, such as 7.0 and 6.2, although only the current release within each family is fully tested.
New and enhanced capabilities are available for Single Node and DD Cloud Tier. DD High Availability (HA) is also supported.

This chapter describes the major features and functionality of the DD Boost software in the following topics:

- Overview of DD Boost Features
- Distributed Segment Processing
- In-flight Encryption
- Global authentication and encryption
- Managed File Replication (MFR)
- DD Boost and High Availability
- MTree Replication
- IPv6 Support
- Dynamic Interface Groups: DD Boost IP Data Path Management
- IP Failover Hostname
- DD Boost-over-Fibre Channel Transport
- DD Boost-over-Fibre Channel Path Management
- Virtual Synthetic Backups
- Client Access Validation
- DD Boost Multiuser Data Path
- Storage Unit Management
- Data-pattern optimized read-ahead
Overview of DD Boost Features

Backup applications are a critical component of data recovery and disaster preparedness strategies. Each strategy requires a strong, simple, and flexible foundation that enables users to respond quickly and manage operations effectively.

Protection systems integrate easily with backup software and provide retention and recovery benefits of inline deduplication. Additionally, protection systems provide replication protection over the WAN for offsite disaster recovery.

DD Boost increases performance by distributing the deduplication process between the client and the backup server.

Note: DD Boost performance can vary depending on the type of hardware on which the DD Boost client is running. Best performance is seen with clients running on Intel x86-based family processors. Due to architectural limitations, poorer performance may be seen on non-x86-based systems such as Itanium (HP-UX), Power (AIX), and Sparc (Solaris).

Distributed Segment Processing

The distributed segment processing functionality of the DD Boost software distributes the deduplication process between client and server to avoid sending duplicate data to the protection system.

Distributed segment processing provides the following benefits:

- Potentially lower network traffic generation because the DD Boost Library sends only unique data to a protection system. In general, the greater the redundancy in the data set, the greater the saved network bandwidth to the protection system.
- Improved backup times because less data is sent to the protection system.

Figure 2 Distributed Segment Processing Enabled
1. Database Server
2. Protection System
3. DD Boost libraries
4. Segment
5. Fingerprint
6. Compress
7. Filter
8. Write

Note: When using the Solaris 11/11.1 bundled OpenSSL 1.0.0.j and running on either Solaris 11 (with SRU2 or later) or Solaris 11.1 or later, the plug-in offers improved distributed segment processing (DSP) compared to other Solaris systems. DSP is now enabled by default for Solaris plug-ins running on a SPARC T4+-class machines (T4, T5, M6, M7) processor and running Solaris 11 (with SRU2 or later) or Solaris 11.1 or later.

In-flight Encryption

In-flight encryption allows applications to encrypt in-flight backup or restore data over LAN from the protection system. This feature was introduced to offer a more secure data transport capability.

When configured, the client is able to use TLS to encrypt the session between the client and the protection system. The specific cipher suite used is either ADH-AES256-SHA, if the HIGH encryption option is selected, or ADH-AES128-SHA, if the MEDIUM encryption option is selected.

Global authentication and encryption

DD Boost offers global authentication and encryption options to defend your system against man-in-the-middle (MITM) attacks.

The global options ensure new clients are protected, but also allow you to configure different values for each client. In addition, client settings can only strengthen security, not reduce it.

Setting the global authentication mode and encryption strength establishes minimum levels of authentication and encryption. All connection attempts by all clients must meet or exceed these levels.

Note: These measures are not enabled by default; you must change the settings manually.

The default global options are backwards-compatible, meaning:

- You do not have to update the DD Boost library.
 All existing clients and applications will perform in the same manner with the default settings of the new options.
- There is no impact on performance because there is no added encryption.
- Clients and applications that use certificates with transport layer security (TLS) can continue to work with no changes.

Note: If the global settings are different than the default settings, existing clients might need to be updated.

Methods of setting authentication and encryption

You can specify authentication and encryption settings in three ways.

- Connection request
 You do this by using the ddp_connect_with_config API in the client application.
Per-client settings
You do this by using CLI commands on the protection system.

Global settings
You do this by using CLI commands on the protection system.

If both per-client and global values are set, the stronger or higher setting is enforced. Any client that tries to connect with a weaker authentication or encryption setting is rejected.

Authentication and encryption settings

You can consider several factors when deciding authentication and encryption settings. However, it is recommended that you always choose the maximum available setting for maximum security.

Maximum security will impact performance. If you have a controlled environment where maximum security is not required, you might want to use other settings.

Global settings

The global setting determines the minimum levels of authentication and encryption. Connection attempts that do not meet these criteria will fail.

Per-client settings

If the setting is defined on a per-client basis, the setting you choose must either match or be greater than the maximum per-client authentication setting and the maximum global authentication setting.

For example:

- If a client is configured to require "two-way password" authentication and the global authentication setting is two-way TLS, then two-way TLS authentication must be used.
- If the client is configured with the authentication setting "two-way TLS" and the global setting is "two-way passwords", then "two-way TLS" must be used.

Caller-specified values

If the caller-specified values are lower than either the global or per-client settings, the connection is not allowed. However, if the caller-specified values are higher than the global or per-client settings, the connection will be made using the caller-specified values.

For example, if the caller specifies "two-way-password" but either the global or per-client value is "two-way," the connection attempt fails. However, if the caller specified "two-way" and the global and per-client values are "two-way-password," "two-way" authentication is used.

Authentication and encryption options

You can select one of three allowed settings for both the global and authentication and encryption settings.

For the per-client settings, five authentication settings are allowed and three encryption settings (the same encryption settings as those for global).

⚠️ **Note:** Authentication and encryption values must be set at the same time due to dependencies.

Global authentication and encryption options

You have a range of choices with the options `global-authentication-mode` and `global-encryption-strength`.

Authentication settings

The following list ranks authentication values from weakest to strongest:

1. none
Not secure; this is the default setting.

2. anonymous
 This option is not secure against MITM attacks.
 In-flight data is encrypted.

3. one-way
 This method requires the use of certificates.
 This is not secure against MITM attacks.
 In-flight data is encrypted.

4. two-way password
 This option is secure against MITM attacks.
 In-fligh data is encrypted.

5. two-way
 This option requires the user of certificates.
 This is the most secure option, and is secure against MITM attacks.
 In-fligh data is encrypted.

Note that "anonymous" and "one-way" are only allowed for per-client settings, not global settings.

Encryption settings

The following list ranks encryption values from weakest to strongest:

1. none
 Not secure; this is the default setting.
 Can only be specified if authentication is "none."

2. medium
 Employs AES 128 and SHA-1.

3. high
 Employs AES 256 and SHA-1.

Global authentication

The three global-authentication-mode options offer different levels of protection and backwards compatibility.

Global authentication and encryption values can only be set through command-line interface (CLI) commands on the DD Boost Server. The CLI commands you use to set these values are described in the following sections.

For a complete list of DD Boost commands and options, see the *DD OS Command Reference Guide*.

None

dboost option set global-authentication-mode none
 global-encryption-strength none

"None" is the least secure but most backwards-compatible option.

You can select "none" if your system has crucial performance requirements and you do not need protection from MITM attacks. Your system can operate in the same manner as before without suffering any performance degradation due to TLS.

When authentication is set to "none," encryption must be set to "none." If you select a different setting for authentication than "none," the encryption setting cannot be "none."

Two-way password

dboost option set global-authentication-mode two-way-password
 global-encryption-strength {medium | high}

Note

- Anonymous and one-way are only allowed for per-client settings, not global settings.
- Encryption settings rank from weakest (none) to strongest (high).
- Global authentication modes offer different protection levels and must be set through CLI commands.
- "None" is the least secure and most backwards-compatible option.
- "Two-way" provides the most secure protection against MITM attacks.
- CLI commands are used to set authentication and encryption modes globally.
- For complete DD Boost commands and options, refer to the *DD OS Command Reference Guide*.
The **two-way** password method performs two-way authentication using TLS with pre-shared key (PSK) authentication. Both the client and the protection system are authenticated using the previously established passwords. When this option is selected, all data and messages between the client and the protection system are encrypted.

This option is the only secure option available with DD Boost for OpenStorage and protects fully against man-in-the-middle (MITM) attacks.

Encryption strength must be either **medium** or **high**.

Two-way password authentication is unique because it is the only method that is both secure against MITM and can be done without the caller specifying it.

Two-way

```
ddboost option set global-authentication-mode two-way
global-encryption-strength {medium | high}
```

This the most secure option.

The two-way option employs TLS with certificates. Two-way authentication is achieved using certificates provided by the application.

This setting is compatible with existing use of certificates. Setting the global authentication setting to "two-way" requires all applications that connect to the protection system to support and supply certificates.

Any application that does not support certificates and does not specify two-way authentication and provide certificates through the `ddp_connect_with_config` API will fail.

(Note: The two-way authentication option is not available with DD Boost for OpenStorage. If the global authentication mode is set to two-way, all OST applications fail.)

Backwards compatibility scenarios

Older client and new protection system

In this case, an application using a Boost library is employed with DD OS 6.1 or later. In this scenario, the client cannot perform two-way-password authentication, which has the following ramifications:

- Any global authentication settings must be set to "none or "two-way" since the client cannot perform "two-way-password" authentication.
- Per-client authentication settings can be any value except "two-way-password" for the same reason.
- Any global or per-client settings of two-way password will cause applications with older client libraries to fail.
- The new protection system will support existing connection protocols for old clients.

New client and older protection system

The older protection system cannot perform "two-way-password" authentication, which has the following ramifications:

- There are no global authentication or encryption settings.
- The per-client protection system authentication setting cannot be "two-way password."
- The client will first attempt to use the new connection protocol or RPC; upon failure, the client reverts to the old protocol.
- The client can connect with other authentication methods except "two-way-password."
Authentication and encryption setting examples

The following tables show examples in which settings are specified using calls, per-client settings, and global settings, and whether those settings can succeed.

These examples assume you have a DD Boost client connection to a protection system with DD OS 6.1 or later. These examples do not apply to either of the situations described in Backwards Compatibility Scenarios.

Note: If the global or per-client setting requires two-way authentication, the caller must specify it and provide the necessary certificates.

Table 3 One Setting

<table>
<thead>
<tr>
<th>Call specifies</th>
<th>Per-client settings</th>
<th>Global settings</th>
<th>Used values</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>None</td>
<td>None</td>
<td>SUCCEEDS</td>
</tr>
<tr>
<td>Authentication: two-way-password Encryption: medium</td>
<td>None</td>
<td>None</td>
<td>SUCCEEDS</td>
</tr>
<tr>
<td>None</td>
<td>Authentication: two-way-password Encryption: medium</td>
<td>None</td>
<td>SUCCEEDS</td>
</tr>
<tr>
<td>None</td>
<td>None</td>
<td>Authentication: two-way-password Encryption: medium</td>
<td>SUCCEEDS</td>
</tr>
<tr>
<td>None</td>
<td>None</td>
<td>Authentication: two-way Encryption: high</td>
<td>FAILS</td>
</tr>
<tr>
<td>Authentication: two-way Encryption: high</td>
<td>None</td>
<td>None</td>
<td>SUCCEEDS</td>
</tr>
</tbody>
</table>

Table 4 Multiple Settings

<table>
<thead>
<tr>
<th>Call specifies</th>
<th>Per-client settings</th>
<th>Global settings</th>
<th>Used values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication: two-way Encryption: medium</td>
<td>None</td>
<td>Authentication: two-way Encryption: high</td>
<td>FAILS</td>
</tr>
<tr>
<td>Authentication: two-way Encryption: high</td>
<td>None</td>
<td>None</td>
<td>SUCCEEDS</td>
</tr>
</tbody>
</table>
Table 4 Multiple Settings (continued)

<table>
<thead>
<tr>
<th>Call specifies</th>
<th>Per-client settings</th>
<th>Global settings</th>
<th>Used values</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Authentication: two-way</td>
<td>Authentication: two-way-password</td>
<td>FAILS Two-way and high are required.</td>
</tr>
<tr>
<td></td>
<td>Encryption: high</td>
<td>Encryption: medium</td>
<td>The client must specify two-way and provide certificates.</td>
</tr>
<tr>
<td>Encryption: high</td>
<td>Encryption: high</td>
<td>Encryption: medium</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>Authentication: two-way-password</td>
<td>Authentication: two-way</td>
<td>FAILS Two-way and medium are required.</td>
</tr>
<tr>
<td></td>
<td>Encryption: medium</td>
<td>Encryption: medium</td>
<td>The client must specify two-way and provide certificates.</td>
</tr>
<tr>
<td>Encryption: high</td>
<td>Encryption: medium</td>
<td>Encryption: medium</td>
<td></td>
</tr>
</tbody>
</table>

Managed File Replication (MFR)

The DD Boost software enables applications to control the DD Replicator software so that copies of data on one protection system can be created on a second protection system using the network-efficient replication technology.

Because backup applications control replication of data between multiple protection systems, they can provide backup administrators with a single point of management for tracking all backups and duplicate copies.

Dynamic interface groups provide the ability to control the interfaces used for DD Boost MFR, to direct the replication connection over a specific network, and to use multiple network interfaces with high bandwidth and reliability for failover conditions. For more information, see Using Dynamic Interface Groups for MFR on page 47.

Low-Bandwidth Optimization

The low-bandwidth Replicator option reduces the WAN bandwidth utilization. It is useful if managed file replication is being performed over a low-bandwidth network (WAN) link. This feature provides additional compression during data transfer and is recommended only for managed file replication jobs that occur over WAN links that have fewer than 6Mb/s of available bandwidth.

Both the source and destination protection systems must be configured with this setting to enable low-bandwidth optimization, and the option applies to all replication jobs.

For more information about this topic, refer to the DD OS Administration Guide.
Encrypted Managed File Replication

This option allows applications to use SSL to encrypt the replication session between two protection systems. All data and metadata is sent encrypted over the network.

The source and destination systems negotiate automatically to perform encryption transparent to the requesting application. Encrypted file replication uses the ADH-AES256-SHA cipher suite.

The option is enabled on each protection system and applies to all managed file replication jobs on that system. Both the source and the destination protection systems participating in managed file replication jobs must have this option enabled.

Encrypted managed file replication can be used with the encryption of data-at-rest feature available on the DD OS with the optional Encryption license. When encrypted managed file replication is used with the encryption of data-at-rest feature, the encrypted backup image data is encrypted again using SSL for sending over WAN.

Note:
- For more information about this topic, see the *DD OS Administration Guide*. Both the source and the destination protection systems must be running DD OS 5.0 or later to use this feature. Enabling this feature does not require restarting the file system on a protection system.
- The low-bandwidth optimization option and the encryption option can be used together.

DD Boost and High Availability

Beginning with DD OS 5.7.1, protection systems with DD Boost can accommodate high availability (HA) configurations.

During normal operations, DD Boost on the Active node sends to the Standby node any Boost data and state information necessary to continue Boost operations on the Standby node if a failure should occur.

Note: DD Boost currently supports only Active-Standby configurations.

DD Boost performs periodic operations to force user data to disk on the server. Boost on the client buffers all user data between these periodic synchronize-to-disk operations so that if a DD server fails, the data can be re-sent.

This method applies to virtual writes as well. You can mix standard write operations with synthetic write operations.

With distributed segment processing, the DD Boost Library uses 24 MB of memory for every file backed up. DD Boost 5.7 with HA uses 128 MB of memory for every file backed up.

DD Boost, HA, and failover

When a protection system with HA enabled fails, recovery occurs in less than ten minutes. Once the failed system recovers, DD Boost recovery begins and applications using Boost automatically recover without failing or receiving an error. DD Boost recovery make take longer than ten minutes since Boost recovery cannot begin until failover of the DD system is complete.

No changes are necessary to allow applications to take advantage of DD Boost HA capabilities. When using DD Boost 3.2.1 and DD OS 5.7.1 on HA configurations, applications automatically recover if a failover occurs. No action is required from the application.
Partial HA configurations

Managed File Replication (MFR) is supported between any two protection systems running compatible versions of DD OS, regardless of whether one or both of the DD systems is enabled for HA.

MFR between two HA systems will succeed in the event of failure of either system since both support HA. An MFR in progress will recover seamlessly if either the source HA system or the destination HA system fails.

In addition, MFR between an HA system and a non-HA system will succeed if the HA system fails; it will not succeed if the non-HA system fails.

MFR to HA-enabled systems

A single node DD system running DD OS 5.7 or later and performing MFR to an HA system recovers seamlessly if the HA system fails. The MFR will not recover seamlessly if the single node DD source system fails.

MFR from HA-enabled systems

An MFR from an HA system to a single-node protection system running DD OS 5.7 or later recovers seamlessly if the source HA system fails. However, the MFR will not recover seamlessly if the single-node DD destination system fails.

Note that in all cases involving partial HA configurations, the non-HA system must be running DD OS 5.7 to allow an MFR to continue seamlessly should a failure occur. In partial HA configurations where the non-HA system is running a version of DD OS older than 5.7, the MFR will not recovery seamlessly from a failure of either system.

In all cases, the application must be using DD HA Boost 3.2.1 libraries for seamless recovery of MFR to occur.

MTree Replication

Beginning with DD OS Release 5.5, MTree replication for storage units is supported for different user names on source and destination protection systems. To enable MTree replication for storage units, you must convert the target storage unit from MTree to storage unit by assigning a user to the MTree. To assign a user to the MTree, use the DD OS daasboost storage-unit modify command. (See the DD OS Command Reference Guide for details.)

IPv6 Support

IPv6 replication support includes managed file replication, which you configure using the ddboost file-replication option set ipversion ipv6 command.

The client connects to the protection system using the hostname. The hostname parameter is of type string and can also accept an IPv4 address in the form a.b.c.d or any valid IPv6 address (1234:abcd::4567 or 12:34:56:78::0, for example). If both IPv4 and IPv6 addressing exist in the network, the IP address family that is provided by the client upon connection is used as the preferred IP address family to resolve the hostname. If a single IP address family exists in the network (only IPv4 or only IPv6), then the hostname resolves to that address, and that address is used for the client-to-protection backup and restore connection. If no preferred IP address family is specified by the client, then the client-to-protection backup and restore connection will use whatever IP address that the DNS resolves. The default is IPv4. For backward compatibility, IPv4 is set as the preferred IP address. If the address resolution fails, it is up to the client to try to reconnect with a new hostname.
Dynamic Interface Groups: DD Boost IP Data Path Management

Note: This feature applies to the DD Boost-over-IP transport only.

The Dynamic Interface Groups (DIG) feature lets you combine multiple Ethernet links into a group and register only one interface on the protection system with the backup application. The DD Boost Library negotiates with the protection system on the interface registered with the application to obtain the best interface to send data to the protection system. Load balancing provides higher physical throughput to the protection system compared to configuring the interfaces into a virtual interface using Ethernet-level aggregation (using LACP, for example).

The protection system load balances the connections coming in from multiple backup application hosts on all interfaces in the group. Load balancing is transparent to the backup application and is handled by the DD Boost software. Because DIG works at the DD Boost software layer, it is seamless to the underlying network connectivity and supports physical and virtual interfaces. The data transfer is load-balanced based on the number of connections outstanding on the interfaces. Only connections for backup and restore jobs are load-balanced.

DIG also works with other network layer functionality on protection systems, including VLAN tagging and IP aliasing. This functionality allows additional flexibility in segregating traffic into multiple virtual networks, all of which run on the same physical links on the protection system.

Note: See the DD OS Administration Guide for more information about how to configure VLAN tagging and IP aliasing on a protection system.

DIG also provides the ability to control the interfaces used for DD Boost MFR, to direct the replication connection over a specific network, and to use multiple network interfaces with high bandwidth and reliability for failover conditions. For more information, see Using Dynamic Interface Groups for MFR on page 47.

The DIG feature provides the following benefits:

- Eliminates the need to register the protection system on multiple interfaces with the application, which simplifies installation and configuration.
- Transparently fails over all in-process jobs from the failed interface to healthy operational links. From the point of view of the backup application, the jobs continue uninterrupted.
- Routes subsequent incoming backup jobs to the available interfaces if one of the interfaces in the group goes down while the protection system is still operational.
- Automatically load-balances backup and restore jobs on multiple interfaces in the group, resulting in higher utilization of the links.
- Works with 1-GbE interfaces and 10-GbE interfaces in the same interface group. Combining interfaces of different speeds in a single DIG is allowed and supported.
- An administrator can define multiple interface groups where load balancing and failover apply within a DIG <group-name>. This increases the capability to support a backup server that can reach only some of the protection system interfaces, such as clients on VLANs.
- Each interface group <group-name> includes a list of interfaces and clients that belong to the DIG. Within a DIG <group-name>, all interfaces are reachable by all the clients for <group-name>.
- Public IP-to-private VLAN configuration using client host range:
 - Clients can reach the protection private network if they are on the same subnet.
 - Avoids static route on clients by adding IP alias/VLAN IP on the protection system to match the client subnet.
Clients on the same domain name need to reach different private networks—the alias/VLAN IP network.

Redirects clients off the public network to the appropriate private network for data isolation or to avoid configuration of static routes, keeping the client and protection IP addresses on the same subnet.

For more information, see Clients on page 25.

Interfaces

A Dynamic Interface Group (DIG) interface is a member of a single interface group `<group-name>` and may have the following characteristics:

- Physical interface such as `eth0a`
- Virtual interface, created for link failover or link aggregation, such as `veth1`
- Virtual alias interface such as `eth0a:2` or `veth1:2`
- Virtual VLAN interface such as `eth0a.1` or `veth1.1`

Within an interface group `<group-name>`, all interfaces must be on unique interfaces (Ethernet, virtual Ethernet) to ensure failover in the event of network error.

DIG provides full support for static IPv6 addresses, providing the same capabilities for IPv6 as for IPv4. Concurrent IPv4 and IPv6 client connections are allowed. A client connected with IPv6 sees IPv6 DIG interfaces only. A client connected with IPv4 sees IPv4 DIG interfaces only. Individual interface groups include all IPv4 addresses or all IPv6 addresses.

Figure 3 DIG Support for IPv4 and IPv6 Addressing

Interface Enforcement

The Dynamic Interface Group (DIG) feature gives you the ability to enforce private network connectivity, ensuring that a failed job does not reconnect on the public network after network errors. When interface enforcement is enabled, a failed job can only retry on an alternative private network IP address. Interface enforcement is only available for clients that use DIG interfaces.

Interface enforcement is off (FALSE) by default. To enable interface enforcement, you must add the following setting to the system registry:

```
system.ENFORCE_IFGROUP_RW=TRUE
```
Note: In the previous example, ifgroup refers to the interface group.

After you've made this entry in the registry, you must do a `filesystem restart` for the setting to take effect.

The following illustration shows the decision flow for DIG connections. If interface enforcement is on (TRUE), the system always attempts to reconnect on a private IP address when a job fails. If a private IP address is not available, the job is canceled, and a `Cancel job for non-ifgroup interface` error message is generated. If interface enforcement is off (FALSE), a failed job resumes using a public IP address.

Figure 4 DIG Connection Decision

Clients

A Dynamic Interface Group (DIG) client is a member of a single interface group `<group-name>` and may consist of:

- A fully qualified domain name (FQDN) such as ddboost.datadomain.com
- Wild cards such as `*.datadomain.com` or `*`
- A short name for the client, such as ddboost
- Client public IP range, such as 128.5.20.0/24

Prior to write or read processing, the client requests a DIG IP address from the server. To select the client DIG association, the client information is evaluated according to the following order of precedence (see Figure 5 on page 27):
1. IP address of the connected protection system. If there is already an active connection between the client and the protection system, and the connection exists on the interface in the DIG, then the DIG interfaces are made available for the client.

2. Connected client IP range. An IP mask check is done against the client source IP; if the client's source IP address matches the mask in the DIG clients list, then the DIG interfaces are made available for the client.
 - For IPv4, `xx.xx.xx.0/24 (128.5.20.0/24 in Figure 5 on page 27)` provides a 24-bit mask against the connecting IP. The `/24` represents which bits are masked when the client's source IP address is evaluated for access to the DIG. For IPv4, 16, 20, 24, 28, and 32 bit masks are supported.
 - For IPv6, `xxxx::0/112` provides a 112-bit mask against the connecting IP. The `/112` represents what bits are masked when the client's source IP address is evaluated for access to the DIG. For IPv6, 64, 112, and 128 bit masks are supported.
 - DD OS 6.1 supports any five masks ranging from `/8` to `/32`.
 - DD OS 6.1 supports prefix hostname matches (for example, `abc_.emc.com` for hosts that have the prefix `abc`).

 This host-range check is useful for separate VLANs with many clients where there isn't a unique partial hostname (domain).

3. Client Name: `abc-11.d1.com`

4. Client Domain Name: `*.d1.com`

5. All Clients: `*`

 Note: In a mixed network with IPv4 and IPv6 addressing, DIG client configuration should not allow IPv6 to match an IPv4 group, nor should it allow IPv4 to match an IPv6 group. Therefore, `*` should not be configured. Also, if the clients on IPv4 and IPv6 are on the same domain name (`*.domain.com`, for example), only fully qualified domain names or host-range (IP with mask) should be used.

 If none of these checks find a match, DIG interfaces are not used for this client.
Using interface groups for Managed File Replication (MFR)

Interface groups can be used to control the interfaces used for DD Boost MFR, to direct the replication connection over a specific network, and to use multiple network interfaces with high bandwidth and reliability for failover conditions. All protection system IP types are supported—IPv4 or IPv6, Alias IP/VLAN IP, and LACP/failover aggregation.

Note: Interface groups used for replication are different from the interface groups previously explained and are supported for DD Boost Managed File Replication (MFR) only. For detailed information about using interface groups for MFR, see the *DD Boost for Partner Integration Administration Guide* or the *DD Boost for OpenStorage Administration Guide*.

Without the use of interface groups, configuration for replication requires several steps:

1. Adding an entry in the `/etc/hosts` file on the source system for the target system and hard coding one of the private LAN network interfaces as the destination IP address.
2. Adding a route on the source system to the target system specifying a physical or virtual port on the source system to the remote destination IP address.
3. Configuring LACP through the network on all switches between the systems for load balancing and failover.
4. Requiring different applications to use different names for the target system to avoid naming conflicts in the `/etc/hosts` file.

Using interface groups for replication simplifies this configuration through the use of the DD OS System Manager or DD OS CLI commands. Using interface groups to configure the replication path lets you:

- Redirect a hostname-resolved IP address away from the public network, using another private system IP address.
• Identify an interface group based on configured selection criteria, providing a single interface group where all the interfaces are reachable from the target system.

• Select a private network interface from a list of interfaces belonging to a group, ensuring that the interface is healthy.

• Provide load balancing across multiple system interfaces within the same private network.

• Provide a failover interface for recovery for the interfaces of the interface group.

• Provide host failover if configured on the source system.

• Use Network Address Translation (NAT)

The selection order for determining an interface group match for file replication is:

1. Local MTree (storage-unit) path and a specific remote system hostname
2. Local MTree (storage-unit) path with any remote system hostname
3. Any MTree (storage-unit) path with a specific system hostname

The same MTree can appear in multiple interface groups only if it has a different system hostname. The same system hostname can appear in multiple interface groups only if it has a different MTree path. The remote hostname is expected to be an FQDN, such as dd9900-1.example.com.

The interface group selection is performed locally on both the source system and the target system, independent of each other. For a WAN replication network, only the remote interface group needs to be configured since the source IP address corresponds to the gateway for the remote IP address.

IP Failover Hostname

The Failover Hostname feature lets you configure an alternative PowerProtect or Data Domain administrative IP address and hostname for use on failover at first connection or on failover resulting from network errors. You can configure the alternative hostname in DNS or in the /etc/hosts file on the DD Boost client. Both IPv4 and IPv6 are supported.

To configure the alternative hostname, append -failover to the protection system hostname.

IPv4 Example:

```
10.6.109.38  ddp-880-1.datadomain.com ddp-880-1
10.6.109.40  ddp-880-1-failover.datadomain.com ddp-880-1-failover
```

IPv6 Example:

```
3000::230  ddp-880-2-v6.datadomain.com ddp-880-2-v6
3000::231  ddp-880-2-v6-failover.datadomain.com ddp-880-2-v6-failover
```

This feature eliminates the need to have the administrative IP address in link failover mode. In addition, you can add this failover interface to an interface group so you can connect directly to this group without going through the system's standard administrative interface, thereby improving load balance and throughput performance. If the initial connection fails, the failover IP address is used, if it is available. Once the connection is established, interface group is used to select the read/write interfaces. Using the IPv4 example above:

1. The client attempts to connect to ddp-880-1.datadomain.com.

2. If the connection fails, the client attempts to connect to ddp-880-1-failover.datadomain.com.

3. If network errors occur after the initial connection is made, the connection is retried on the other interface. If the initial connection was on ddp-880-1-failover.datadomain.com, for example, the client retries the connection on ddp-880-1.datadomain.com. The last address attempted on errors is always the protection system IP address.
DD Boost-over-Fibre Channel Transport

In earlier versions of DD OS, all communication between the DD Boost Library and any protection system was performed using IP networking. The application specified the protection system using its hostname or IP address. See Figure 6 on page 29.

Figure 6 DD Boost-over-IP Transport

1. Backup Server
2. Applications, DD Boost Library, TCP/IP Transport
3. Protection System
4. DD Boost Service
5. TCP/IP

DD OS now offers an alternative transport mechanism for communication between the DD Boost Library and the protection system — Fibre Channel.

Note: Windows, Linux, HP-UX on Itanium, AIX, and Solaris client environments are supported.

To request access to a protection system using the DD Boost-over-FC transport, the application specifies the protection system using the special string `DFC-<dfc-server-name>`, where `<dfc-server-name>` is the DD Boost-over-FC server name configured for the protection system.

Note: Just as IP hostnames are not case-sensitive, the `dfc-server-name` is not case-sensitive.
Figure 7 SCSI Commands between Backup Server and protection system.

1. Backup Server
2. Application, DD Boost Library, DD Boost-over-FC Transport
3. Protection System
4. DD Boost Service
5. DD Boost-over-FC Server
6. SCSI Commands over FC
7. SCSI Processor Devices

Setting up the DD Boost-over-FC service on the protection system requires additional configuration steps. See Configuring DD Boost-over-FC Service for details.

For the DD Boost-over-FC transport, load balancing and link-level high availability is achieved through a different means, not through Dynamic Interface Groups (DIG). See the section DD Boost-over-Fibre Channel Path Management for a description.

Note: The DD Boost-over-FC communication path applies only between the backup server/DD Boost Library and the protection system, and does not apply to communication between two protection systems. As shown in the next figure, such communication is ALWAYS over an IP network, regardless of the communication path between the backup server and the protection systems.
DD Boost-over-Fibre Channel Path Management

The Dynamic Interface Group (DIG)-based mechanism described in DIG: DD Boost IP Load Balancing and Failover is based on Ethernet interfaces and is not applicable to the Fibre Channel transport. Instead, a different path mechanism is provided for the DD Boost-over-FC solution.

The protection system advertises one or more SCSI processor-type devices to the backup server, over one or more physical paths. The operating system discovers all devices through all available paths, and creates a generic SCSI device for each discovered device and path.

For example, consider the case where:

- Backup server has 2 initiator HBA ports (A and B)
- Protection System has 2 FC target endpoints (C and D)
- Fibre Channel Fabric zoning is configured such that both initiator HBA ports can access both FC target endpoints
- Protection system is configured with a SCSI target access group containing:
 - Both FC target endpoints on the protection System
Both initiator HBA ports
4 devices (0, 1, 2, and 3)

Figure 9 DD Boost-over-FC Path Management Scenario

1. Four Devices
2. Backup Server
3. HBA Initiator A
4. HBA Initiator B
5. Protection System
6. Fibre Channel Endpoint C
7. Fibre Channel Endpoint D

In this case, the backup server operating system may discover up to 16 generic SCSI devices, one for each combination of initiator, target endpoint, and device number:

- /dev/sg11: (A, C, 0)
- /dev/sg12: (A, C, 1)
- /dev/sg13: (A, C, 2)
- /dev/sg14: (A, C, 3)
- /dev/sg15: (A, D, 0)
- /dev/sg16: (A, D, 1)
- /dev/sg17: (A, D, 2)
- /dev/sg18: (A, D, 3)
- /dev/sg19: (B, C, 0)
- /dev/sg20: (B, C, 1)
- /dev/sg21: (B, C, 2)
- /dev/sg22: (B, C, 3)
- /dev/sg23: (B, D, 0)
- /dev/sg24: (B, D, 1)
- /dev/sg25: (B, D, 2)
- /dev/sg26: (B, D, 3)

When the application requests that the DD Boost Library establish a connection to the server, the DD Boost-over-FC Transport logic within the DD Boost Library uses SCSI requests to build a catalog of these 16 generic SCSI devices, which are paths to access the DD Boost-over-FC service on the desired protection system. As part of establishing the connection to the server, the DD Boost-over-FC Transport logic provides to the server this catalog of paths.
Initial Path Selection

The server maintains statistics on the DD Boost-over-FC traffic over the various target endpoints and known initiators. During the connection setup procedure, Path Management logic in the server consults these statistics, and selects the path to be used for this connection, based upon the following criteria:

- For Queue-Depth Constrained clients (see below), evenly distribute the connections across different paths
- Choose the least busy target endpoint
- Choose the least busy initiator from among paths to the selected target endpoint

Dynamic Re-Balancing

The server periodically performs dynamic re-balancing. This involves consulting the statistics to look for situations where:

- For Queue-Depth Constrained clients (see below), connections are distributed unequally across available paths
- Workload across target endpoints is out of balance
- Workload across initiators is out of balance

If such a situation is discovered, the server may mark one or more connections for server-directed path migration. This is achieved by having the server request, during a future data transfer operation, that the DD Boost Library start using a different available path from the catalog for subsequent operations.

Client Path Failover

The client may start using a different path because it is directed to do so by the server dynamic re-balancing logic. But the client may also decide, on its own, to start using a different available path. This happens if the client receives errors when using the connection's current path.

For example, assume the path catalog for a connection consists of 8 paths:

- /dev/sg21: (A, C, 0)
- /dev/sg22: (A, C, 1)
- /dev/sg23: (A, D, 0)
- /dev/sg24: (A, D, 1)
- /dev/sg25: (B, C, 0)
- /dev/sg26: (B, C, 1)
- /dev/sg27: (B, D, 0)
- /dev/sg28: (B, D, 1)

and the server selects the (A, C, 0) path during initial path selection. The DFC transport logic in the DD Boost Library starts sending and receiving data for the connection, using SCSI commands to /dev/sg21.

Later, the link from target endpoint C to its switch becomes unavailable, due to cable pull or some hardware failure. Any subsequent SCSI request submitted by the DFC transport logic to /dev/sg21 will fail with an error code indicating that the SCSI request could not be delivered to the device.

In this case, the DFC transport logic looks in the catalog of devices, for a path with a different physical component; that is, a different combination of initiator and target endpoint. The SCSI
request is retried on the selected path, and the process is repeated until a path is discovered over which the SCSI request can be successfully completed.

Queue-Depth Constraints

For the purposes of the DD Boost-over-FC solution, the specific SCSI device over which a request is received is irrelevant. All SCSI devices are identical, destination objects for SCSI commands as required by the SCSI protocol. When processing a SCSI request, the server logic gives no consideration to the specific device on which the SCSI request arrived.

Why bother to allow for more than one device? Because certain client-side operating systems impose a restriction on the number of outstanding IO requests which can be conducted simultaneously over a given generic SCSI device. For example, the Windows SCSI Pass-Through Interface mechanism will only conduct 1 SCSI request at a time through each of its generic SCSI devices. This impacts the performance of the DD Boost-over-FC solution, if multiple connections (e.g. backup jobs) are trying to use the same generic SCSI device.

Additionally, the protection system also imposes a limit on the number of outstanding IO requests per advertised SCSI device. For performance reasons with larger workloads, multiple SCSI devices may need to be advertised on the protection system.

We use the term “queue-depth” to describe the system-imposed limit on the number of simultaneous SCSI requests on a single device. Client systems (like Windows) whose queue depth is so low as to impact performance are considered “queue-depth constrained.”

Refer to Sizing DD Boost-over-FC device-set on page 60 for guidance regarding how many devices to configure based on the workload, type of protection system, and whether or not the client system is queue-depth constrained.

Virtual Synthetic Backups

A synthetic full or synthetic cumulative incremental backup is a backup assembled from previous backups. Synthetic backups are generated from one previous, traditional full or synthetic full backup, and subsequent differential backups or a cumulative incremental backup. (A traditional full backup means a non-synthesized, full backup.) A client can use the synthesized backup to restore files and directories in the same way that a client restores from a traditional backup.

During a traditional full backup, all files are copied from the client to a backup server and the resulting image set is sent to the protection system. The files are copied even though those files may not have changed since the last incremental or differential backup. During a synthetic full backup, the previous full backup and the subsequent incremental backups on the protection system are combined to form a new, full backup. The new, full synthetic backup is an accurate representation of the clients’ file system at the time of the most recent full backup.

Because processing takes place on the protection system under the direction of the backup server instead of the client, virtual synthetic backups help to reduce the network traffic and client processing. Client files and backup image sets are transferred over the network only once. After the backup images are combined into a synthetic backup, the previous incremental and/or differential images can be expired.

The virtual synthetic full backup is a scalable solution for backing up remote offices with manageable data volumes and low levels of daily change. If the clients experience a high rate of daily change, the incremental or differential backups are too large. In this case, a virtual synthetic backup is no more helpful than a traditional full backup. To ensure good restore performance it is recommended that a traditional full backup be created every two months, presuming a normal weekly full and daily incremental backup policy.

The virtual synthetic full backup is the combination of the last full (synthetic or full) backup and all subsequent incremental backups. It is time stamped as occurring one second after the latest
incremental backup. It does NOT include any changes to the backup selection since the latest incremental backup.

DD OS also supports “in-line” virtual synthetic backups in which each subsequent incremental backup is merged in-line with the current full backup, producing a full backup image set on the protection system. After each incremental backup, you have a full backup image set ready for a restore operation. This ensures you always have the latest full backup and do not need to specifically run the full synthetic backup to “stitch together” the base and all the incremental backups that have accumulated to that point.

Client Access Validation

Configuring client access validation for DD Boost limits access to the protection system for DD Boost clients by requiring DD Boost authentication (per connection) for:

- The initial connection to the protection system
- Each restart of DD Boost (Enable/Disable)
- Each file system restart
- Each protection system reboot

The list of clients can be updated at anytime without a restart requirement, thus eliminating access validation impact on jobs in progress.

DD Boost Multiuser Data Path

DD Boost multiuser data path enhancements improve storage unit isolation. Multiple users can be configured for DD Boost access on a protection system.

Storage Unit Management

You can use DD OS ddboost commands to configure and modify storage units, tenants, and quota limits, and to configure stream warning limits for each storage unit.

Multiuser Storage Units Access Control

The Multiuser Storage Unit Access Control feature for DD Boost enhances the user experience by supporting multiple usernames for the DD Boost protocol, providing data isolation for multiple users sharing a protection system. Using the DD Boost protocol, the backup application connects to the protection system with a username and password to support this feature. Both the username and password are encrypted using public key cryptography.

The system administrator creates a local protection user for each backup application to be used for their storage units. The storage unit user is required when the storage unit is created. When backup applications connect to the protection system, the applications can only access the storage units owned by the username used to make the connection. Access to a storage unit is determined dynamically so that changes to a storage unit’s username take effect immediately. When a storage unit's username is changed to another username, all read and write operations by the backup application using the old username fail immediately with permission errors.

The tenant-unit keyword is introduced to the ddboost storage-unit command for integration with the DD Secure Multi-Tenancy feature. One storage unit must be configured for each tenant unit. Each tenant unit can be associated with multiple storage units. Tenant unit association and storage unit username ownership are independent from each other. The tenant unit is used for management path using the command-line-interface, but cannot be used for data path, for example, read and write. All commands for storage units support tenant units.
Note: For more information about tenant units, refer to the *DD OS Administration Guide*.

Storage Unit Capacity Quotas

DD OS users can use quotas to provision protection system logical storage limits, ensuring that dedicated portions of the protection system are available as unique storage units. DD Boost storage-unit quota limits may be set or removed dynamically. Quotas may also be used to provision various DD Boost storage units with different logical sizes, enabling an administrative user to monitor the usage of a particular storage unit over time.

You can also configure the reported physical size; this is the size reported to the backup application. The physical size is the Disk Pool "raw size" in NetBackup. On the protection system itself, the actual size is shown. The logical capacity quota is still available if you configure the physical size. You can modify the reported physical size at a later time using `ddboost storage-unit modify`. You can display the reported physical size using `ddboost storage-unit show`.

See the `ddboost`, `quota`, and `mtree` sections of the *DD OS Command Reference Guide* for details on the quota feature, and commands pertaining to quota operations.

Note: Be careful with this feature when you are using backup applications (such as Veritas NetBackup and Backup Exec) that use the DD Boost API for capacity management. The DD Boost API attempts to convert the logical setting to a physical setting for the API by dividing the logical setting by the deduplication ratio. Logical quotas may need to be adjusted when the deduplication ratio changes.

Storage Units Stream Count Management

You can configure five types of stream warning limits for each storage unit:

- write-stream-soft-limit
- read-stream-soft-limit
- repl-stream-soft-limit
- combined-stream-soft-limit
- combined-stream-hard-limit

For each storage unit, stream counters are maintained to monitor backup, restore, replication-in, and replication-out data. To configure stream limits when creating a storage unit, use the `ddboost storage-unit create` command. To configure stream limits for an existing storage unit, use the `ddboost storage-unit modify` command. To display the active streams per storage unit, use the `ddboost streams show active` command.

When any stream count exceeds the warning limit quota, an alert is generated. The alert automatically clears once the stream limit returns below the quota for over 10 minutes.

Any of these stream warning limits can also be set to `none`.

Note: DD Boost backup applications are expected to reduce their workload to remain below the stream warning quotas. You can reconfigure the warning limit to avoid exceeding the quotas.

For more information about configuring stream limits, see Configuring Storage Units with Stream Limits (Optional) on page 42.
Data-pattern optimized read-ahead

Starting with version 3.5.0, the DD Boost application uses enhanced read-ahead logic to intelligently enable and disable read-ahead data caching based on specific data-access patterns.

Overview

In the 3.5.0 DD Boost release, significant changes were made to the read-ahead logic to enable more intelligent detection of specific access patterns. This feature typically enables much faster random restore times. Performance of sequential workflows is generally unaffected.

Note:

- This feature is not dependent on a DD OS release. The read-ahead improvements are contained within the DD Boost library itself.
- Since this feature is a heuristic, there may be cases where the performance is less than it was in previous versions due to the access pattern of the reads.

For more information about this feature, contact DD Boost Engineering.
CHAPTER 3
Preparation the Protection System for DD Boost

Note: Complete descriptions of commands used in this guide are provided in the DD OS Command Reference Guide.

This chapter covers the following topics:

- Enabling DD Boost on a Protection System ... 40
- Assigning Multiple Users to DD Boost ... 40
- Creating Storage Units .. 41
- Configuring Logical Quotas for Storage Units (Optional) .. 42
- Configuring Storage Units with Stream Limits (Optional) 42
- Configuring Distributed Segment Processing .. 44
- Configuring Dynamic Interface Groups .. 44
- Using Dynamic Interface Groups for MFR ... 47
- Configuring MFR ... 57
- Configuring Client Access Validation .. 58
- Configuring DD Boost-over-FC Service ... 59
- Setting Global Authentication and Encryption ... 66
Enabling DD Boost on a Protection System

About this task

Every protection system that is enabled for DD Boost deduplication must have a unique name. You can use the DNS name of the protection system, which is always unique.

Procedure

1. On the protection system, log in as an administrative user.
2. Verify that the file system is enabled and running by entering:
   ```bash
   # filesys status
   The file system is enabled and running.
   ```
3. Add the DD Boost license using the provided license key.
 Refer to the applicable *DD OS Release Notes* for the most up-to-date information on licensing and service.
4. Enable DD Boost deduplication by entering:
   ```bash
   # ddboost enable
   DD Boost enabled
   ```

Note:
- The users must be configured in the backup application to connect to the protection system. For more information, refer to the *DD OS Administration Guide*.
- Multiple users can be configured for DD Boost access on a protection system. The username, password, and role must have already been set up on the protection system using the DD OS command:
  ```bash
  user add <user> [password <password>] [role {admin | security | user | backup-operator | data-access}] [min-days-between-change <days>] [max-days-between-change <days>] [warn-days-before-expire <days>] [disable-days-after-expire <days>] [disable-date <date>]
  ```
 For example, to add a user with a login name of *jsmith* and a password of *usr256* with administrative privilege, enter:
  ```bash
  # user add jsmith password usr256 role admin
  ```
 Then, to add *jsmith* to the DD Boost user list, enter:
  ```bash
  # ddboost user assign jsmith
  ```

Assigning Multiple Users to DD Boost

As system administrator, you need to create a local protection system user for each backup application to use with their storage units. The storage units are either created with a username, or can be modified to change the username for an upgrade. Storage units are accessible only to applications with the username that owns the storage unit. Each storage unit is owned by one username, and the same username can own multiple storage units. The application passes the username and password to DD Boost, and DD Boost passes them to the protection system when attempting to connect to the protection system. The protection system then authenticates the username and password. The username and password can be shared by different applications.

When a storage unit is created with a valid protection system local user but not assigned to DD Boost, the user is automatically added to the DD Boost users list in the same way that a user is
added via the `ddboost user assign` command. If a storage unit is created without specifying the owning username, the current DD Boost user name is assigned as owner.

To assign and add one or more users to the DD Boost users list, enter:

```
# ddboost user assign user1 user2
User "user1" assigned to DD Boost.
User "user2" assigned to DD Boost.
```

To verify and display the users in the users list, enter:

```
# ddboost user show
```

<table>
<thead>
<tr>
<th>DD Boost user</th>
<th>Default tenant-unit</th>
<th>Using Token Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>ddbu1</td>
<td>Unknown</td>
<td>Yes</td>
</tr>
<tr>
<td>ddbu2</td>
<td>Unknown</td>
<td>-</td>
</tr>
<tr>
<td>ddbu3</td>
<td>Unknown</td>
<td>Yes</td>
</tr>
<tr>
<td>ddbu4</td>
<td>Unknown</td>
<td>-</td>
</tr>
<tr>
<td>ddbu5</td>
<td>Unknown</td>
<td>-</td>
</tr>
<tr>
<td>ddbu6</td>
<td>Unknown</td>
<td>-</td>
</tr>
<tr>
<td>ddbu7</td>
<td>Unknown</td>
<td>Yes</td>
</tr>
<tr>
<td>ddbu8</td>
<td>Unknown</td>
<td>-</td>
</tr>
</tbody>
</table>

To unassign and delete the user from the users list, enter:

```
# ddboost user unassign user1
User "user1" unassigned from DD Boost.
```

Creating Storage Units

About this task

You need to create one or more storage units on each protection system enabled for DD Boost.

Procedure

1. To create a storage unit on the protection system, enter:

```
# ddboost storage-unit create NEW_STU1 user user1
Created storage-unit "NEW_STU1" for "user1".
```

 Note: A storage unit name must be unique on any given protection system. However, the same storage unit name can be used on different protection systems. The username owns the storage unit and ensures that only connections with this username’s credentials are able to access this storage unit.

 See the section on `ddboost storage-unit` in the *DD OS Command Reference Guide* for details on command options.

 Note: When a storage-unit is created with a valid protection system local user who is not already assigned to DD Boost, the user is automatically added to the DD Boost user list in the same way that a `ddboost user assign` command.

2. Repeat the above step for each Boost-enabled protection system.

3. To modify a storage unit on the protection system, enter:

```
# ddboost storage-unit modify NEW_STU1 user user2
Storage-unit "NEW_STU1" modified for user "user2".
```

 Note: The `ddboost storage-unit modify` command allows the backup application to change the user-name ownership of the storage unit. Changing the username does not need to change attributes of every file on the storage unit, therefore it is fast.
4. To display the users list for the storage units, enter:

```
# ddboost storage-unit show
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Pre-Comp (GiB)</th>
<th>Status</th>
<th>User</th>
<th>Report Physical Size (MiB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>backup</td>
<td>3.0</td>
<td>RW</td>
<td>sysadmin</td>
<td></td>
</tr>
<tr>
<td>DDBOOST_STRESS_SU</td>
<td>60.0</td>
<td>RW</td>
<td>sysadmin</td>
<td></td>
</tr>
<tr>
<td>task2</td>
<td>0.0</td>
<td>RW</td>
<td>sysadmin</td>
<td></td>
</tr>
<tr>
<td>tasking1</td>
<td>0.0</td>
<td>RW</td>
<td>sysadmin</td>
<td></td>
</tr>
<tr>
<td>DD1</td>
<td>0.0</td>
<td>RW</td>
<td>sysadmin</td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td>5.0</td>
<td>RW</td>
<td>sysadmin</td>
<td></td>
</tr>
<tr>
<td>TEST_DEST</td>
<td>0.0</td>
<td>D</td>
<td>sysadmin</td>
<td></td>
</tr>
<tr>
<td>STU-NEW</td>
<td>0.0</td>
<td>D</td>
<td>ddu1</td>
<td>200</td>
</tr>
<tr>
<td>getevent</td>
<td>0.0</td>
<td>RW</td>
<td>ddu1</td>
<td></td>
</tr>
<tr>
<td>DDP-5-7</td>
<td>120.0</td>
<td>RW</td>
<td>sysadmin</td>
<td></td>
</tr>
<tr>
<td>TESTME</td>
<td>150.0</td>
<td>RW</td>
<td>sysadmin</td>
<td></td>
</tr>
<tr>
<td>DDP-5-7-F</td>
<td>100.0</td>
<td>RW</td>
<td>sysadmin</td>
<td></td>
</tr>
<tr>
<td>testSU</td>
<td>0.0</td>
<td>RW</td>
<td>sysadmin</td>
<td></td>
</tr>
</tbody>
</table>

D : Deleted
Q : Quota Defined
RO : Read Only
RW : Read Write
RD : Replication Destination

Configuring Logical Quotas for Storage Units (Optional)

About this task

The storage on a protection system can be provisioned through optional quota limits for a storage-unit. Quota limits can be specified either at the time of creation of a storage-unit, or later through separate commands. For more information, refer to the sections on quotas and ddboost in the *DD OS Command Reference Guide*.

Procedure

1. To enable quota limits on the protection system, enter:

   ```
   # quota enable
   ```

2. To configure quota limits at the time of creation of a storage unit, specify the quota-soft-limit and quota-hard-limit values with the following command:

   ```
   # ddboost storage-unit create storage-unit
   [quota-soft-limit n {MiB|GiB|TiB|PiB}] [quota-hard-limit n {MiB|GiB|TiB|PiB}]
   ```

3. To modify quota limits after they've been created, specify the new quota-soft-limit and quota-hard-limit values with the following command:

   ```
   # ddboost storage-unit modify storage-unit
   [quota-soft-limit {n {MiB|GiB|TiB|PiB}|none}] [quota-hard-limit {n {MiB|GiB|TiB|PiB}|none}]
   ```

4. To verify the quota limits of a storage unit:

   ```
   # quota show storage-units storage-unit-list
   ```

Configuring Storage Units with Stream Limits (Optional)

The system administrator configures stream warning limits against each storage-unit for each of the five limits:

- write-stream-soft-limit
- read-stream-soft-limit
You can assign four types of soft stream warning limits against each storage-unit (read, write, replication, and combined), and you can assign a combined hard stream limit. Assigning a hard stream limit per storage-unit enables you to fail new DD Boost streams when the limit is exceeded, including read streams, write streams, and replication streams. The hard stream limit is detected before the stream operation starts. The hard stream limit cannot exceed the capacity of the protection system model, and it cannot be less than any other single limit (read, write, replication, or combined).

When any stream count exceeds the warning limit quota, an alert is generated. The alert automatically clears once the stream limit returns below the quota for over 10 minutes.

Note: DD Boost users are expected to reduce the workload to remain below the stream warning quotas or the system administrator can change the warning limit configured to avoid exceeding the limit.

To create a storage unit with stream limits, you could enter:

```
# ddboost storage-unit create NEW_STU0 user user2 write-stream-soft-limit 5
read-stream-soft-limit 1 repl-stream-soft-limit 2 combined-stream-hard-limit 10
```

Created storage-unit "NEW_STU0" for "user2".
Set stream warning limits for storage-unit "NEW_STU0".

To modify the stream limits for a storage unit, you could enter:

```
# ddboost storage-unit modify NEW_STU1 write-stream-soft-limit 3
read-stream-soft-limit 2 repl-stream-soft-limit 1 combined-stream-hard-limit 8
```

NEW_STU1: Stream soft limits: write=3, read=2, repl=1, combined=none

Setting a limit to none disables that limit.

To display the DD Boost stream limits for all the active storage units, enter `ddboost streams show active`. To display the DD Boost stream limits for a specific storage unit, enter:

```
# ddboost streams show active storage-unit STU-1
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Read</th>
<th>Write</th>
<th>Repl-out</th>
<th>Repl-in</th>
<th>Read</th>
<th>Write</th>
<th>Repl</th>
<th>Combined</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>STU-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
</tbody>
</table>

DD System Stream Limits: read=30 write=90 repl-in=90 repl-out=82 combined=90

Note: The protection system stream limits displayed in the output are based on the type of the protection system.

To display the DD Boost stream limits history for a specific storage unit for a specific time, enter:

```
# ddboost streams show history storage-unit NEW_STU0 last 1hours
```

INTERVAL: 10 mins
"-" indicates that the data is not available for the intervals

<table>
<thead>
<tr>
<th>Storage-Unit: "NEW_STU0"</th>
<th>Date</th>
<th>Time</th>
<th>read streams</th>
<th>write streams</th>
<th>repl-out streams</th>
<th>repl-in streams</th>
</tr>
</thead>
<tbody>
<tr>
<td>--------------------------</td>
<td>------------</td>
<td>------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2013/08/29 12:00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2013/08/29 12:10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2013/08/29 12:20</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2013/08/29 12:30</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2013/08/29 12:40</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2013/08/29 12:50</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2013/08/29 13:00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Configuring Distributed Segment Processing

The distributed segment processing option is configured on the protection system and applies to all the backup servers and the DD Boost libraries installed on them.

The option can be configured using the following command:

```
# ddboost option set distributed-segment-processing {enabled | disabled}
```

Note: Enabling or disabling the distributed segment processing option does not require a restart of the protection file system.

Distributed segment processing is supported with version 2.2 or later of the DD Boost libraries communicating with a protection system that is running DD OS 4.8 or later.

Distributed segment processing is enabled by default on a system initially installed with DD OS 5.2. If a system is upgraded from DD OS 5.1, 5.0.x or 4.9.x to DD OS 5.2, distributed segment processing is left in its previous state.

Distributed segment processing is enabled (and cannot be disabled) on DD OS 5.5.1.0 and earlier.

Distributed segment processing is enabled by default for Solaris plug-ins running on a SPARC T4 or T5 processor and running Solaris 11 (with SRU2 or later) or Solaris 11.1 or later.

Configuring Dynamic Interface Groups

About this task

Note: This feature applies only to DD Boost over IP. For an overview of the Dynamic Interface Group (DIG) feature, see Dynamic Interface Groups: DD Boost IP Load Balancing and Failover.

When a protection system receives a connection request from a client in a configured interface group, the DIG feature assigns the connection to the least used interface in the group, providing load balancing and higher input/output throughput.

To configure DIG, create an interface group on the protection system by adding existing interfaces to the group as described below.

Procedure

1. **Create the interface group:**

   ```
   # ifgroup create group_name
   ```

 Examples:

   ```
   # ifgroup create external
   # ifgroup create lab10G
   ```

 Note: The `group_name` “default” can be used without being created first. In all the remaining `ifgroup` commands, the “default” group is used if not specified.

2. **Add clients and interfaces to each interface group. The interfaces must already have been created with the `net` command.**

   ```
   # ifgroup add group_name
   {interface {ipaddr | ipv6addr} | client host}
   ```

 This command provides full interface group support for static IPv6 addresses, providing the same capabilities for IPv6 as for IPv4. Concurrent IPv4 and IPv6 client connections are allowed. A client connected with IPv6 sees IPv6 interface group interfaces only. A client...
connected with IPv4 sees IPv4 interface-group interfaces only. Individual interface groups include all IPv4 addresses or all IPv6 addresses.

Examples:

```
# ifgroup add interface 10.6.109.140 client *.datadomain.com
# ifgroup add interface 10.6.109.141 client *
# ifgroup add ipv4-group interface 192.4.5.21
# ifgroup add ipv4-group interface 192.4.5.22
# ifgroup add ipv4-group interface 192.4.5.23
# ifgroup add ipv4-group interface 192.4.5.24
# ifgroup add ipv6-group interface 2000::af:21
# ifgroup add ipv6-group interface 2000::af:22
# ifgroup add ipv6-group interface 2000::af:23
# ifgroup add ipv6-group interface 2000::af:24
# ifgroup add ipv4-group client 128.5.1.25.0/24
# ifgroup add ipv6-group client 2620::128:25:0/112
```

Note:
- If no `group_name` is specified, the default group is used.
- IPv6 addresses can be entered using upper- or lower-case characters and with multiple zeroes.
- These commands properly detect any mismatches with IPv4 or IPv6 interfaces.

3. Select one interface on the protection system to register with the backup application. It is recommended that you create a failover aggregated interface and register that interface with the backup application.

Note: It is not mandatory to choose an interface from the interface group to register with the backup application. An interface that is not part of the interface group can also be used to register with the backup application. It is a best practice to register the interface with a resolvable name using DNS or any other name resolution mechanism.

Note: The interface registered with the backup application is used by the backup application and its DD Boost libraries to communicate with the protection system. If this interface is not available, then backups to that protection system are not possible.

4. Once an interface and client are configured, the group is automatically enabled. Check the status (enabled or disabled) of the interface group:

```
# ifgroup status [group_name]
Status of ifgroup “default” is “enabled”
```

Note: If no `group_name` is specified, the default group is used.

5. Verify the entire configuration of all the groups with interfaces and clients:

```
# ifgroup show config all
```

Results

Sample output is displayed in the following table.

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Status</th>
<th>Interfaces Count</th>
<th>Clients Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>enabled</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>external</td>
<td>enabled</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>lab10G</td>
<td>enabled</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Status</th>
<th>Interfaces</th>
</tr>
</thead>
</table>

Dell EMC DD Boost for Partner Integration Administration Guide 45
Modifying an Interface Group

About this task

After the interface group is set up, you can add or delete interfaces from the group. The following example shows how to remove an interface from the configured interface group on the protection system.

Procedure

1. Make sure that no jobs are active from the backup application to the protection system on the interface you are removing from the group. You can do this from the protection system by checking the status of existing connections in the interface group by enter the following command:

 # ddboost show connections

2. Delete an interface or client from group-name or default group on the protection system.

 # ifgroup del default interface 10.6.109.144

 After this, the interface is released from the group and would no longer be used by the DD Boost Storage Server for any jobs from the backup servers.

 Note: Removing the interface registered with the backup application makes the protection system inaccessible to the backup servers. The configuration of the interface group on the protection system is not deleted.

Results

To make any changes to any interface that is added to the interface group on the protection system at the network layer, remove the interface from the group and add it back.

Note: If you make changes using the net command that modifies the interfaces, such as enabling an interface that is configured for interface group, execute the ddboost show connections command to update the load-balancing view. Updating the load balancing view allows the interface group to use the interface.

Removing an Interface Group

About this task

The following example illustrates removing a configured interface group on the protection system.
Procedure

1. Make sure that no jobs are active from the backup application to the protection system. Check the status of connections in the interface group by using the following command on a protection system:

   ```
   # ifgroup show connections
   ```

2. Ensure there are no pending jobs from backup servers connected to the protection system.

3. Disable the `group-name` or default group on the system:

   ```
   # ifgroup disable <group-name>
   ```

4. Reset the interface group:

   ```
   # ifgroup reset <group-name>
   ```

Results

All the interfaces are released from the group. However, backup servers can still access the DD Boost storage server on the protection system on the interface registered with the backup application.

When a group is no longer needed, use the destroy option to remove the group from the configuration:

```
# ifgroup destroy group-name
```

Example:

```
# ifgroup destroy external
```

Clients are matched to a group by their hostname independent of the group status (enabled/disabled). Therefore, disabling a group will not force a client to use a different group. When a client is found in a disabled group, it will use the registered interface and stay on the original connection.

Note: You can also manage interface groups from the System Manager Data Management DD Boost view. (See the *DD OS Administration Guide*).

Using Dynamic Interface Groups for MFR

The Dynamic Interface Group (DIG) feature provides the ability to control the interfaces used for DD Boost MFR to direct the replication connection over a specific network, and to use multiple network interfaces with high bandwidth and reliability for failover conditions. All protection IP types are supported—IPv4 or IPv6, Alias IP/VLAN IP, and LACP/failover aggregation.

Note: The DIG feature is supported for DD Boost Managed File Replication (MFR) only.

Without the use of interface groups, configuration for replication requires several steps:

1. Adding an entry in the `/etc/hosts` file on the source protection system for the target protection system and hard coding one of the private LAN network interfaces as the destination IP address.

2. Adding a route on the source protection system to the target protection system specifying a physical or virtual port on the source protection system to the remote destination IP address.

3. Configuring LACP through the network on all switches between the protection systems for load balancing and failover.

4. Requiring different applications to use different names for the target protection system to avoid naming conflicts in the `/etc/hosts` file.

Using interface groups for replication simplifies this configuration through the use of the DD System Manager or DD OS CLI commands. Using interface groups to configure the replication path lets you:
- Redirect a hostname-resolved IP address away from the public network, using another private protection system IP address.
- Identify an interface group based on configured selection criteria, providing a single interface group where all the interfaces are reachable from the target protection system.
- Select a private network interface from a list of interfaces belonging to a group, ensuring that the interface is healthy.
- Provide load balancing across multiple protection system interfaces within the same private network.
- Provide a failover interface for recovery for the interfaces of the interface group.
- Provide host failover if configured on the source protection system.
- Use Network Address Translation (NAT)

The selection order for determining an interface group match for file replication is:

1. Local MTree (storage-unit) path and a specific remote protection system hostname
2. Local MTree (storage-unit) path with any remote protection system hostname
3. Any MTree (storage-unit) path with a specific protection system hostname

The same MTree can appear in multiple interface groups only if it has a different protection system hostname. The same protection system hostname can appear in multiple interface groups only if it has a different MTree path. The remote hostname is expected to be an FQDN, such as dd890-1.domain.com.

The interface group selection is performed locally on both the source protection system and the target protection system, independent of each other. For a WAN replication network, only the remote interface group needs to be configured since the source IP address corresponds to the gateway for the remote IP address.

Replication over LANs

To configure interface groups for replication over a LAN:

1. Create a replication interface group on the source protection system.
2. Assign for replication the local MTree path on the source protection and the hostname of the destination protection.
3. Create a replication interface group on the destination protection system.
4. Assign for replication the local MTree path on the destination protection and the hostname of the source protection.

In **Figure 10** on page 49:

- Protection system DDP-670-1 is the replication source.
- Interface group 10G-REPL1 is configured with three interfaces, each of which is reachable from the destination.
- The full path to the local MTree is /data/coll/TO_860.
- DD860-ART-1 is the hostname of the remote protection system (from the perspective of DDP-670-1).
- Protection system DDP-860-ART-1 is the replication destination.
- The replication interface group 10G-REPL2 is configured with two interfaces, each of which is reachable from the source.
- The full path to the local MTree is /data/coll/FROM_670.
- DDP-670-1 is the hostname of the remote protection system (from the perspective of DD860-ART-1).
Figure 10 Using Interface Groups for Replication over a LAN

To configure the replication scenario illustrated in Figure 10 on page 49:

1. Create an interface group 10G-REPL1 with three interfaces for replication on DDP-670-1. To confirm:

   ```
   # ifgroup show config 10G-REPL1 interfaces
<table>
<thead>
<tr>
<th>Group-name</th>
<th>Status</th>
<th>Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>10G-REPL1</td>
<td>enabled</td>
<td>172.29.0.11</td>
</tr>
<tr>
<td>10G-REPL1</td>
<td>enabled</td>
<td>172.29.0.12</td>
</tr>
<tr>
<td>10G-REPL1</td>
<td>enabled</td>
<td>172.29.0.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
   # ifgroup replication assign 10G-REPL1 mtree /data/col1/TO_860 remote dd860-art-1
   Assigned replication mtree "/data/col1/TO_860" with remote "dd860-art-1" to ifgroup "10G-REPL1".

   To confirm:
   ```

   ```
   # ifgroup show config 10G-REPL1 replication
<table>
<thead>
<tr>
<th>Group-name</th>
<th>Status</th>
<th>Replication Mtree</th>
<th>Replication Remote Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>10G-REPL1</td>
<td>enabled</td>
<td>/data/col1/TO_860</td>
<td>dd860-art-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
   # ifgroup show config 10G-REPL2 interfaces
<table>
<thead>
<tr>
<th>Group-name</th>
<th>Status</th>
<th>Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>10G-REPL2</td>
<td>enabled</td>
<td>172.29.0.21</td>
</tr>
<tr>
<td>10G-REPL2</td>
<td>enabled</td>
<td>172.29.0.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
   3. Create an interface group 10G-REPL2 with two interfaces for replication on DD860-ART-1. To confirm:

   ```
 # ifgroup replication assign 10G-REPL2 mtree /data/col1/DDP_860 remote dd860-art-1
 Assigned replication mtree "/data/col1/DDP_860" with remote "dd860-art-1" to ifgroup "10G-REPL2".

 To confirm:
   ```

   ```
 # ifgroup show config 10G-REPL2 replication
<table>
<thead>
<tr>
<th>Group-name</th>
<th>Status</th>
<th>Replication Mtree</th>
<th>Replication Remote Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>10G-REPL2</td>
<td>enabled</td>
<td>/data/col1/DDP_860</td>
<td>dd860-art-1</td>
</tr>
</tbody>
</table>
   ```

   4. Assign the full MTree path and remote hostname for replication:
Assigned replication mtree "/data/col1/FROM_670" with remote "ddp-670-1 to ifgroup "10G-REPL2".

To confirm:

```
ifgroup show config 10G-REPL2 replication
```

<table>
<thead>
<tr>
<th>Group-name</th>
<th>Status</th>
<th>Replication Mtree</th>
<th>Replication Remote Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>10G-REPL2</td>
<td>enabled</td>
<td>/data/col1/FROM_670</td>
<td>ddp-670-1</td>
</tr>
</tbody>
</table>

Replication over WANs

There are two options for configuring interface groups for replication over WANs:

- Use the interface group on the destination only and let the source protection system select the source interface based on the route configuration.
- Use interface groups on both the source and destination systems, and make sure that the IP on the source can reach the IP on the destination—you can verify that by using a trace route from both the source and destination.

Figure 11 on page 51 shows how interface groups can be used for replication over WANS:

- Protection system DDP-670-1 is the replication source.
- Interface group 10G-REPL3 is configured with two interfaces, each of which is reachable from one destination IP address.
- The full path to the local MTree is /data/col1/TO_890.
- DDP-890-1 is the hostname of the remote protection system (from the perspective of DDP-670-1).
- Protection system DDP-890-1 is the replication destination.
- Interface group 10G-REPL4 is configured with two interfaces, each of which is reachable from one source IP address.
- The full path to the local MTree is /data/col1/FROM_670.
- DDP-670-1 is the hostname of the remote protection system (from the perspective of DDP-890-1).
- There are two networks—WAN Network A and WAN Network B—in the same interface group.
Other Supported Use Cases

Backup applications need to replicate data over their own networks and use multiple network interfaces with high bandwidth and failover capability. To support these needs, interface groups provide support for various replication paths, including multiple customer network, fan-out, and cascading paths.

Multiple Customer Network

A service provider with multiple customers may require that customers be able to replicate data across their own networks. In Figure 12 on page 52, one customer is using Network A for replication of MTree11 from protection system 1 (DDR1) to system 2 (DDR2), as well as MTree2 from system 2 to system 1. Another customer is using Network B for replication of MTree33 from System 1 to System 2.
These replication paths have the same source and destination protection systems, so the interface group is configured based on the MTree paths. For Network A, Ifgroup-K is configured based on the MTree11 and MTree22 paths, and Ifgroup-J is configured based on the MTree1 and MTree2 paths. For Network B, Ifgroup-L is configured based on the MTree33 path, and Ifgroup-R is configured based on the MTree3 path.

Fan-Out

In Figure 13 on page 53, MTree2 is replicated from protection system 1 (DDR1) to System 2 (DDR2), and from system 1 to system 3 (DDR3).
Because the same source MTree is used, the interface group is configured based on the hostname of the remote protection system. For Network A, Ifgroup-K is configured based on the hostname of protection system 2, and Ifgroup-J is configured based on the hostname of protection system 1. For Network B, Ifgroup-L is configured based on the hostname of protection system 3, and Ifgroup-R is configured based on the hostname of protection system 1.

Cascading

In Figure 14 on page 54, MTree1 is replicated from protection system 1 (DDR1) to system 2 (DDR2), then to system 3 (DDR3).
For Network A, Ifgroup-J is configured based on the hostname of remote protection system 3, and Ifgroup-K is configured based on the hostname of remote protection system 2 or the path of MTree13. For Network C, Ifgroup-H is configured based on the hostname of protection system 1, and Ifgroup-Q is configured based on the hostname of remote protection system 2 or the path of MTree1.

**Replication Failover Hostname**

Supported only for DD Boost file replication, the Replication Failover Hostname feature provides the same functionality as the Failover Hostname feature for backup (see IP Failover Hostname on page 28 for details).

For replication, you configure the destination host name (remote protection system) in the `/etc/hosts` file on the source protection system as a failover name with another IP address that exists on the destination system.

These replication connections use the host-“failover” retry capability:

- File replication commands executed prior to the start of replication:
  - Creating a new file
  - Deleting a file
  - Finding a synthetic base file
- Requesting an interface group IP address from the destination system

Interface-group replication over IPv4 supports replication with NAT. The configuration is on the destination protection system, where the source protection queries for an IP address. Therefore, the destination protection needs to have an interface group with the IP addresses that the source protection system can use (before NAT conversion) to reach the destination. For example:
Source DD -> 128.222.4.15 --NAT--> 192.169.172.8 Target DD
Source DD -> 128.222.4.16 --NAT--> 192.169.172.9 Target DD

On the remote protection system:

net config ethx:1 128.222.4.15 << on the ethx of IP 192.169.172.8
net config ethy:1 128.222.4.16 << on the ethy of IP 192.169.172.8

Create an interface-group replication group and add the new IP addresses:

ifgroup create nat-repl
ifgroup add nat-repl interface 128.222.4.15
ifgroup add nat-repl interface 128.222.4.16
ifgroup replication assign remtoe <source DD hostname>

Network Address Translation (NAT) Support

Interface groups support Network Address Translation (NAT) for MFR. NAT is currently supported only with IPv4 addressing.

Interface group replication with NAT requires the public IP address, not the local IP address, for the destination interface group.

**Note:** On a protection system, alias IP addresses can be configured on an active interface with IP addresses that are not reachable. In Figure 15 on page 56, IP addresses 215.55.7.20 and 215.55.7.21 are aliases, configured strictly for interface group use.

To configure interface groups to support NAT:

1. Create a “natlan” interface group.
2. Create an alias IP address for the local interface.
3. Assign the external public IP address to the alias.
4. Add each new IP address to the “natlan” interface group.
5. Add replication selection (local MTree path and/or remote protection hostname).
6. For the source protection for replication, the source IP address of the connection needs to use the local private network.
7. For the destination protection for replication, the destination IP address of the connection needs to use the public network.

In Figure 15 on page 56, DD1 and DD2 are each in a private network. Replication with NAT can be used in both directions, where the MTree name selects between the two interface groups. Only the source protection system uses an interface group to select the source and destination IP. The source protection queries the remote protection for an IP address to use, so all IP addresses must always be from the perspective of the source protection. Replication from DD1 on Network-1 to DD2 on Network-2 uses Local-lan2 with natlan2 to select both source and destination IP addresses for connection. Replication from DD2 on Network-2 to DD1 on Network-1 uses Local-lan1 with natlan1. Therefore, only the remote query for interface group IP addresses must adjust for NAT configuration.

**Note:** Replication with NAT requires that the following system registry entry be enabled (it is disabled by default):

```
system.IFGROUP_REPLICATION_NAT_SUPPORT = TRUE
```
Resolving Backup/Replication Conflicts

When the registered administrative interface for backup is used for interface group replication, backup jobs erroneously select the replication interface group. To avoid this problem, add a client with the name "no-auto-detect" to the interface group that has the administrative IP address. To allow for multiple replication groups, "no-auto-detect" is internally appended with a number.

To add the client:

```
ifgroup add repl-group client no-auto-detect
Added client "no-auto-detect" to ifgroup "repl-group".
```

```
ifgroup show config repl-group clients
Group-name | Status | DD Boost Clients
---------- | ------ | -------------------------------
repl-group | enabled | no-auto-detect.4
```

To remove the client:

```
```
# ifgroup del repl-group client no-auto-detect.4
Deleted client "no-auto-detect.4" from ifgroup "repl-group".

Configuring MFR

Enabling Low-Bandwidth Optimization

To enable the low-bandwidth option for managed file replication, enter:

```bash
ddboost file-replication option set low-bw-optim enabled
Low bandwidth optimization enabled for optimized duplication.
```

小心：启用或禁用低带宽优化选项不需要重新启动保护文件系统。

低带宽优化也可以在 Enterprise Manager Data Management DD Boost 视图中监视和管理。 (见《DD OS Administration Guide》。)

无需在备份服务器上进行配置更改，因为此功能对备份应用是透明的。

小心：

- 启用此功能需要额外的资源（CPU和内存），所以建议仅在带宽低于6 Mbps的低带宽网络上使用此功能。
- 低带宽选项仅支持单独保护系统。

Enabling Encryption

要启用加密的文件复制选项，请执行以下操作：

```bash
ddboost file-replication option set encryption enabled
```

输出指示您请求的加密已启用。

无需在备份服务器上进行配置更改，因为此功能对备份应用是透明的。开启此功能需要额外的资源（CPU和内存）。

Enabling IPv6 Support

现有的 Managed File Replication 命令现在包括IPv4或IPv6功能。为了提供IPv6支持，DD Boost 添加了一个新的关键词ipversion到注册表中提供一个选项来支持IPv6网络。此ipversion关键词变量通过hostname系统设置控制。如果此选项设置为ipv6，IPv6是首选IP地址类型。如果此选项设置为ipv4，则IPv4是首选IP地址类型。如果没有指定首选IP地址，那么默认使用IPv4。

要设置DD Boost文件复制的首选IP版本为IPv6，请执行以下操作：

```bash
ddboost file-replication option set ipversion ipv6
Ipversion for file-replication set to "ipv6"
```

要显示DD Boost文件复制选项的当前值，请执行以下操作：

```bash
ddboost file-replication option show ipversion
Ipversion for file-replication is: ipv6
```
To reset DD Boost file replication option to the default value IPv4, enter:

```
ddboost file-replication option reset ipversion
```

### Changing the MFR TCP Port

Changing the MFR TCP port affects all replication, not just MFR. Changing the MFR TCP port requires a restart of the protection file system and should be a planned event.

To change the Replication TCP port from the default of 2051 to `port-number`, enter the following commands on both the source and destination protection systems:

```
replication option set listen-port port-number
filesys restart
```

**Note:** Managed file replication and directory replication both use listen-port option. Managed file replication uses the `replication option set listen-port` command on both the source and destination to specify the port on which the destination listens and the port on which the source connects. Directory replication uses the listen-port option to specify only the replication destination server listen-port. On the replication source, the connection port for a specific destination is entered using the `replication modify` command.

- For more information on these topics, see the *DD OS Command Reference Guide*.

### Configuring Client Access Validation

Configuring client access control for DD Boost limits access to the protection system for DD Boost clients and removes dependency on the DNS. By default, if no clients are added to the clients list when DD Boost is enabled, all clients will be automatically included in the clients list. By default a `*` wildcard is used.

To restrict access, remove the `*` wildcard from the list and then add your new clients.

The backup server client list may contain both fully qualified domain names or short names. The backup host's fully qualified domain name needs to be correctly configured for reverse lookup in DNS.

To delete all clients from the DD Boost clients list, enter:

```
ddboost clients delete client-list
```

Optionally, to delete all clients previously added and reset the DD Boost clients list, enter:

```
ddboost client reset
```

Clients can be added as both fully qualified domain names and short names. To add clients to the DD Boost clients list, enter:

```
ddboost clients add client-list [encryption-strength {none | medium | high} authentication-mode {one-way | two-way | two-way-password | anonymous | kerberos}]
```

**Example:**

```
ddboost clients add ddboost-dl.domain.com ddboost-dl
Added "ddboost-dl.domain.com"
Added "ddboost-dl"
```

To view the DD Boost clients list, enter:

```
ddboost clients show config
```

<table>
<thead>
<tr>
<th>Client</th>
<th>Encryption Strength</th>
<th>Authentication Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>
During access validation, the following search order is used to restrict access:

- Wild card * followed by partial, for example, *domain.com followed by *.com
- Perfect match of sent client name, for example, ddboost-dl.domain.com

If the search does not find a matching entry for the client, the client will be denied access.

### Configuring DD Boost-over-FC Service

#### Before you begin

In order to support the DD Boost-over-FC service, it is necessary to install supported Fibre Channel Target HBAs into the system. (See also the DD OS Command Reference Guide and Administration Guide for information about scsitarget as a related command that may be helpful in managing the SCSI target subsystem.)

**Note:**
- Windows, Linux, HP-UX, AIX, and Solaris client environments are supported.
- To enable DD Boost-over-FC on clients running AIX, you can install the AIX DDdfc device driver. The SCSI disk device is available for AIX. For details, see Installing the AIX DDdfc Device Driver (Optional for AIX Clients) on page 64.

Ensure that the client's HBA ports and the protection system's endpoints are defined and that appropriate zoning has been done if you are connecting through a Fibre Channel switch.

#### Procedure

1. Enable the DD Boost-over-FC service:
   
   ```bash
 # ddboost option set fc enabled
   ```

2. Optional: set the DFC-server-name:
   
   ```bash
 # ddboost fc dfc-server-name set <server-name>
   ```

   Alternatively, accept the default, which has the format DFC-<base hostname>. The hostname cannot be the fully-qualified domain name.

   A valid DFC server name consists of one or more of the following characters:
   - lower-case letters (“a”–“z”)
   - upper-case letters (“A”–“Z”)
   - digits (“0”–“9”)
   - underscore (“_”)
   - dash (“–”)

   **Note:** The dot or period character (“.”) is not valid within a dfc-server-name; this precludes using the fully qualified domain name of a protection system as its dfc-server-name.

   **Note:** Similar to IP hostnames, the dfc-server-name is not case-sensitive. Multiple protection systems accessible by the same clients using DDBoot-over-FC should be configured without case-sensitive dfc-server-name.

3. Create a SCSI target access group:
   
   ```bash
 # ddboost fc group create <group-name>
   ```
Example:

```
ddboost fc group create lab_group
```

4. To display the available list of scsitarget endpoints, enter:

```
scsitarget endpoint show list
```

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>System Address</th>
<th>Transport</th>
<th>Enabled</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>endpoint-fc-0</td>
<td>6a</td>
<td>FibreChannel</td>
<td>Yes</td>
<td>Online</td>
</tr>
<tr>
<td>endpoint-fc-1</td>
<td>6b</td>
<td>FibreChannel</td>
<td>Yes</td>
<td>Online</td>
</tr>
</tbody>
</table>

5. Indicate which endpoints to include in the group:

```
ddboost fc group add
<group-name>
device-set
count count endpoint endpoint-list
```

Example:

```
ddboost fc group add lab_group device-set count 8 endpoint 6a
```

**Note:** You can use the `disk` option for the `ddboost fc group add` command if you want to create a DFC group uses the client's native disk driver. This option is supported for AIX, Solaris, and Linux systems.

6. Verify that initiators are present. To view a list of initiators seen by the protection system:

```
scsitarget initiator show list
```

7. Add initiators to the SCSI target access group:

```
ddboost fc group add group-name initiator initiator-spec
```

Example:

```
ddboost fc group add lab_group initiator "initiator-15,initiator-16"
```

---

**Sizing DD Boost-over-FC device-set**

The protection system advertises one or more "DFC devices" of type Processor, which the DD Boost library uses to communicate with the DD Boost-over-FC service. On the protection system, access to these DFC devices is granted to one or more initiators by adding the initiators to a ddboost-type scsitarget access group:

```
ddboost fc group add lab_group initiator "initiator-15,initiator-16"
```

The number of DFC devices advertised to the initiator is controlled by configuring the device-set of the scsitarget access group:

```
ddboost fc group modify lab_group device-set count 4
```

The maximum number of supported DFC devices per protection system is 64. You can have the same devices in multiple groups, but each group is limited to 64 devices.

**Note:** AIX DDdfc drivers support 128 devices. However, if you use the `disk` option with the `ddboost fc add` command, this limitation is removed.

Because the DFC client sees each path to the protection system as a separate device, more paths and more DFC devices mean better performance for constrained clients such as AIX, Windows, and Solaris.

So, how many DFC devices should be advertised to initiators on a given backup server? The answer depends upon several factors:
1. Is the backup server queue-depth constrained?

Windows platforms are considered “queue-depth constrained,” because the Windows SCSI Pass-Through Interface mechanism will only conduct 1 SCSI request at a time through each of its generic SCSI devices. This impacts the performance of the DD Boost-over FC solution, if multiple connections (for example, backup jobs) are trying to use the same generic SCSI device. So, for Windows platforms running more than one job, it is useful to advertise multiple DFC devices.

Contrast this with the behavior of the Linux SCSI Generic driver, which imposes no such restriction. Linux is not considered “queue-depth constrained,” so it is sufficient to simply advertise one DFC device to initiators on Linux systems.

2. Number of physical paths between backup server and protection system

For each advertised DFC device, the backup server operating system will create n generic SCSI devices, one for each physical path through which the backup server OS can access the device.

For example, if:

• Backup server has 2 initiator HBA ports (A and B)
• Protection System has 2 FC target endpoints (C and D)
• Fibre Channel Fabric zoning is configured such that both initiator HBA ports can access both FC target endpoints

then the backup server OS will see each device through four physical paths:

A -> C
A -> D
B -> C
B -> D

and will create 4 generic SCSI devices for each advertised DFC device.

For a Windows backup server (with its queue-depth=1 limitation), this allows up to 4 simultaneous SCSI requests to the protection system, even with only one DFC device advertised.

**Sizing Calculation**

The following calculation may be used to determine the number of DFC devices to advertise on the protection system and to the initiators on a given backup server. A best practice is to advertise the same number of DFC devices be advertised to all initiators on the same backup server.

**On the Protection System**

The protection system imposes a limit on the number of simultaneous requests to a single DFC SCSI device. Because of this limit, the number of devices advertised needs to be tuned depending on the maximum number of simultaneous jobs to the system at any given time. In general, the larger the number of jobs expected from backup servers using DD Boost over FC, the higher the number of devices advertised.

Let J be the maximum number of simultaneous jobs running using DFC, to the protection system at any given time.

Let C be the maximum number of connections per job:

• 3 for DD Cloud Tier Systems
• 1 for other types of protection systems

Calculate:

• Maximum simultaneous connections to the DD system, using DFC, from ALL backup servers:
- $S = J \times C$
- DFC Device Count $D = \text{minimum}(64, 2 \times (S/128))$, round up
- All DFC access groups must be configured with “D” devices.

**Example:**

Assume:

- 8 backup/master servers, single protection systems, each server running a maximum of 50 jobs at any given time.
- Here, $J = 8 \times 50 = 400$, $C = 1$ (single protection system), $S = J \times C = 400$, $D = 2 \times 400 / 128 = 6.25$, round up to 7.
- Therefore, all DFC groups on the protection system must be configured with 7 devices.

Assume:

- 8 backup servers, DD Cloud Tier systems, each server running a maximum of 30 jobs at any given time.
- Here, $J = 8 \times 30 = 240$, $C = 3$ (DD Cloud Tier system), $S = J \times C = 720$, $D = 2 \times 720 / 128 = 11.25$, round up to 12.
- Therefore, all DFC groups on the DD system must be configured with 12 devices.

**Linux Backup Servers**

The number of DFC devices advertised on the protection system using the calculations listed under On the Protection System is sufficient for Linux backup servers. No additional configuration is required. Linux backup servers are not queue-depth constrained, so many connections can share the same DFC generic SCSI device with no performance impact.

**Windows Backup Servers**

The Power Protect or Data Domain server path management logic spreads out connections across available logical paths (Initiator, Target Endpoint, DFC Device). We want to configure enough DFC devices such that each connection uses its own generic SCSI device (logical path) on the backup server, with a max DFC device count of 64.

Let $X =$ the number of DFC devices configured on the protection system (from On the Protection System). Let $P =$ number of physical paths between backup server and protection system. Let $J =$ maximum number of simultaneous jobs, and let $C =$ maximum number of connections per job:

– 3 for DD Cloud Tier systems
– 1 for other types of protection systems

Calculate:

- Maximum simultaneous connections from backup server $S = J \times C$, DFC device count $D = \text{minimum}((S/P), X)$, round up, up to a maximum of 64.

Note that if the value of $D$ is greater than $X$, then it is sufficient to configure $D$ devices, but only for the access group(s) with Windows clients.

**Examples:**

Assume:

- 4 physical paths between the backup server and protection system, 30 maximum jobs, DD Cloud Tier system
- In this case, $X = 25$, $P = 4$, $J = 30$, and $C = 3$
- Maximum simultaneous connections from backup server $S = (J \times C) = 90$
- DFC device count $D = (90/4, 25) = 25$

So, the protection system should be configured to advertise 25 devices to each initiator on the backup server.
Assume:

- 2 physical paths between the backup server and protection system, 50 maximum jobs, single protection system
- In this case, X = 18, P = 2, J = 40, C = 1
- Maximum simultaneous connections from backup server S = (J * C) = 40
- DFC device count D = max(40/2, 18) = 20

So, the protection system should be configured to advertise 20 devices to each initiator on the backup server.

Note that since the value of D (20) is greater than the value of X (18), it is sufficient to configure two devices only for the DFC access group with Windows clients.

**HP-UX Backup Servers**

The number of DFC devices advertised on the protection system using the calculations listed under On the Protection System is sufficient for HP-UX backup servers. No additional configuration is required.

**Note:** When a protection system is connected to an HP-UX host over a SAN, there is a distinct entry in the /dev/pt directory for each path between the protection system and the HP-UX host. The entries are named /dev/pt/pt<x>, where <x> is a unique number assigned by the operating system. For example, if there are two FC ports on the protection system connected to the same FC switch, and the HP-UX host has two FC ports connected to the FC switch, the entries in the /dev/pt directory will be /dev/pt/pt1, /dev/pt/pt2, /dev/pt/pt3, and /dev/pt/pt4.

**AIX Backup Servers**

For AIX, the proprietary device entries are exclusively locked on a per-process basis—one and only one process can use a device entry. Calculations are based on application instance usage. If an application spawns multiple processes, each process exclusively locks at least one device entry. Multi-threaded applications lock one device per thread. For these reasons, you should configure the protection system to advertise as many DFC devices as possible (up to the maximum of 128). A Device Busy error may result if there are not enough devices accessible to the AIX clients.

**Note:** If you are using the proprietary device driver, the total number of streams in a policy should not exceed the number of AIX DFC devices available; otherwise the backup job might fail.

**Solaris Backup Servers**

For Solaris, device entries are exclusively locked on a per-process basis—one and only one process can use a device entry. Calculations are based on application instance usage. If an application spawns multiple processes, each process exclusively locks at least one device entry. Multi-threaded applications lock one device per thread. For these reasons, you should configure the protection system to advertise as many DFC devices as possible to avoid 'in use' errors from the sgen device driver. A Device Busy error may result if there are not enough devices accessible to the Solaris clients.

The number of sgen devices is the number of Fibre Channel ports accessible to the Solaris instance times the number of different paths to the protection system endpoint(s) times the number of LUNs in the access group.

A user who needs to use Solaris DFC disk as a non-root user must be assigned "sys_devices" privileges.
If a user needs to use Solaris DFC disk, you can assign "sys_devices" privileges as shown in the following example:

```
usermod -K defaultpriv=basic,proc_exec,sys_devices userid
```

## Installing the AIX DDdfc Device Driver (Optional for AIX Clients)

### About this task

DD Boost-over-FC is supported on clients running AIX versions 6.1 and 7.1. The AIX DDdfc device driver can be installed to enable the DD Boost-over-FC feature. However, you can also use the `ddboost fc group add` command with the optional `disk` characteristic to enable DD-Boost-over-FC. If you choose the latter option, no additional software needs to be installed. AIX will then treat associated DFC devices as native disk drives. The driver is packaged with the DD Boost libraries.

For more information on the `ddboost fc group add` command, see the [DD OS Command Reference Guide](#).

The driver’s filename is `DDdfc.rte.1.0.0.x.bff`, where `x` is the version number. To install the driver:

### Procedure

1. On the AIX client, log in as the root user.
2. Enter `# smitty install`.
3. Select `Install and Update Software`.
4. Select `Install Software`.
5. Enter the path to the `DDdfc.rte.1.0.0.x.bff` file, where `x` is the version number.
6. Press F4 to view the list of installable items at the above path.
7. Scroll down the list until you find the `DDdfc.rte.1.0.0.x` version that you want.
8. Press Tab to toggle the value on the `Preview only?` line to No.
9. Press Enter to confirm your selections and install the driver.

### After you finish

If you make any DFC configuration changes that impact the AIX client, execute these commands:

```
rmdev -Rdl DDdfc
cfgmgr
```

Do not access the DFC device(s) while these commands are executing. After these commands are run, it may take a few minutes before the configuration is effective.

If running these commands does not successfully restore full functionality, you must reboot the AIX client.

## Configuring the SCSI Generic Device Driver for Solaris Clients

### About this task

DD Boost-over-FC is supported on clients running Solaris 10 and 11 on SPARC and x86 hardware. DFC for Solaris uses the SCSI generic device driver (sgen), which is included in the Solaris installation. Use the following procedure to ensure that sgen successfully identifies the processor devices at startup.
Procedure

1. Add the following line in the `forceload` section of `/etc/system`:
   ```
 forceload: drv/sgen
   ```
   This step should resolve issues with sgen not properly loading during startup and keep the sgen driver loaded.

2. To check for existing usage of sgen, enter `grep sgen /etc/driver_aliases`.
   
   **Note:** The existence of a `/dev/scsi`, `/dev/scsi/processor`, or `/dev/scsi/*` directory does not necessarily mean that sgen is currently configured. There could be dangling files.

3. If there is no existing use of sgen, or if sgen is used only for "scsiclass,03", enter:
   
   a. `rem_drv sgen`
   
   b. `add_drv -m '* 0600 root sys' -i '"scsiclass,03"' sgen`
   
   **Note:** It is critical that you use single and double quotes exactly as shown above.
   
   This command should return to the prompt with no errors or warnings. Check connectivity to the protection system. There should be at least one file in `/dev/scsi/processor`.

   c. To confirm at least one entry for three configuration files, enter: `grep sgen /etc/` `minor_perm` `/etc/name_to_major` and `/etc/driver_aliases`.
      
      Example results of this command are:
      ```
 /etc/minor_perm:sgen * 0600 root sys
 /etc/name_to_major:sgen 151
 /etc/driver_aliases:sgen "scsiclass,03"
      ```
      
      **Note:** The `name_to_major` number will likely be different than this example.

4. If the sgen device is already used for other devices, enter:
   
   a. `rem_drv sgen`
   
   b. `add_drv -m '* 0600 root sys' -i '"scsiclass,03" "scsiclass,XX"' sgen`
   
   **Note:** XX would be the device type from a previously run `grep sgen /etc/driver_aliases`. It is critical that you use single and double quotes exactly as shown above.
   
   An example of this command is: `add_drv -m '* 0600 root sys' -i '"scsiclass,03" "scsiclass,06"' sgen`.
   
   This command should return to the prompt with no errors or warnings. Check connectivity to the protection system. There should be at least one file in `/dev/scsi/processor`.

   c. To confirm at least one entry for three configuration files, enter: `grep sgen /etc/` `minor_perm` `/etc/name_to_major` and `/etc/driver_aliases`.

   d. Open the `/kernel/drv/sgen.conf` file. If the device-type-config-list is uncommented, add “processor” to the list to ensure that the driver is recognized. For example, if the device-type-config-list is uncommented as in this example:
   ```
 device-type-config-list="direct", "sequential", "worm", "rodirect", "optical", "changer";
   ```
   
   Change the entry to:
Setting Global Authentication and Encryption

You can specify global authentication and encryption settings with DD Boost 3.4 and later.

About this task

For more information on global authentication and encryption settings, see Authentication and encryption options on page 16.

Note: Both one-way and two-way authentication require the client to be knowledgeable of certificates, which are not supported by DD Boost for OpenStorage.

Procedure

1. Enter the `ddboost option set` command with the type of authentication and strength of encryption you want to set:

   ```
 ddboost option set global-authentication-mode {none | two-way | two-way-password} global-encryption-strength {none | medium | high}
   ```

   Note: Authentication and encryption values must be set at the same time due to dependencies.

Showing Global Authentication and Encryption Settings

You can verify the current global authentication and encryption settings with DD Boost 3.4 and later.

Procedure

1. Enter the `ddboost option show` command with the arguments shown in the following example:

   ```
 ddboost option show global-authentication-mode | global-encryption-strength
   ```

Resetting Global Authentication and Encryption Settings

You can globally reset authentication and encryption with DD Boost 3.4 and later.

Procedure

1. Enter the `ddboost option reset` command as shown in the following example:

   ```
 ddboost option reset global-authentication-mode | global-encryption-strength
   ```

   Both global values are reset to `none` when either is reset.

   Note: Authentication and encryption values are reset at the same time due to dependencies.
CHAPTER 4

Backup Application Administration

<table>
<thead>
<tr>
<th>Note: Complete descriptions of commands used in this guide are provided in the <em>DD OS Command Reference Guide.</em></th>
</tr>
</thead>
</table>

This chapter covers the following major topics:

- Configuring a Backup Server ................................................................. 68
- Backup Administration ...................................................................................... 68
Configuring a Backup Server

Configure backup servers as specified by the backup application.

Backup Administration

Network Time-Outs

Backup and restore jobs often take a long time to complete. Although the plug-in can recover from temporary network interruptions, the operating system on the backup application system might terminate a job prematurely if the backup application time-outs are set too low.

A best practice is setting time-outs to at least 30 minutes (1800 seconds).

Note: After losing a network connection, administrators should issue the `ddboost reset stats` command to clear job connections.
This chapter provides basic troubleshooting tips that might enable customers to resolve issues on their own. For issues that cannot be resolved, customers should contact their contracted support providers.

For more information, see the Dell EMC Knowledge Base, which is available at Online Support.

This chapter covers the following topics:

- General Troubleshooting
- Protection System Settings for File Replication
- Resolve time-out error
- Managed File Replication Job Fails
- Virtual Synthetic Backup
General Troubleshooting

When investigating problems, be aware that the DD Boost software has components on both a protection system and a backup application system. The two environments must be compatible. The following troubleshooting considerations apply to both systems:

- **Supported Configurations**
  
  **Note:** A supported configuration can become unsupported if any component changes.

- **Authorization Failures**
  If you encounter authorization failures, ensure that all of the systems have correct access credentials for the other systems. Refer to the backup application documentation for more information about access credentials.

Protection System Settings for File Replication

For all DD OS versions, the `replication throttle` command controls replication. Setting the throttle too low can cause file replication to fail.

Resolve time-out error

**Procedure**

1. Verify that the client can `ping` the protection system.
2. Verify that the file system is running on the protection system by entering:
   ```bash
 # fileys status
   ```
3. Verify that NFS is running on the protection system by entering:
   ```bash
 # nfs status
   ```

Managed File Replication Job Fails

A typical activity monitor job detail indicates a media write error (84) occurred. The backup application log states that the NFS operation is not supported. Common causes for this error include:

- The replication license is not installed.
- Encryption is not set on both the source and destination protection systems.

Add license for Replication

**Procedure**

1. Obtain a replication license from Dell EMC.
2. From the command line interface on each protection system, update the license file:
   ```bash
 # elicense update license file
   ```
Verify Encrypted Managed File Replication Configuration

Verify the encryption option for managed file replication is enabled on both the source and destination protection systems.

Enabling Encryption on page 57 describes how to enable encrypted managed file replication.

Virtual Synthetic Backup

- Verify that normal backups are OK.
- Verify that the Storage Lifecycle Policy attributes are set properly.
- Verify that TIR files are being generated in the storage unit.

```bash
ddboost storage-unit show [compression] [storage-unit] [tenant-unit tenant-unit]
```

- Verify that DDP_SynWR RPCs are being sent.
  ```bash
 # ddboost show stats
  ```

- Verify that OptimizedImage flag is set.

- Verify virtual-synthetics is enabled on the protection system.
  ```bash
 # ddboost option show
  ```
Basic Troubleshooting