

Dell EMC PowerMax Storage for Mission-Critical
SQL Server Databases

October 2019

H17234.1

Abstract

This white paper describes how mission-critical SQL Server databases
benefit from the Dell EMC PowerMax storage system, which uses
compression to deliver high performance and storage efficiency.
PowerMax storage provides ease of use, reliability, high availability,
security, and versatility.

VMAX and PowerMax Engineering White Paper

Copyright

2 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases
White Paper

The information in this publication is provided as is. Dell Inc. makes no representations or warranties of any kind with respect
to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular
purpose.

Use, copying, and distribution of any software described in this publication requires an applicable software license.

Copyright © 2018-2019 Dell Inc. or its subsidiaries. All Rights Reserved. Dell Technologies, Dell, EMC, Dell EMC and other
trademarks are trademarks of Dell Inc. or its subsidiaries. Intel, the Intel logo, the Intel Inside logo and Xeon are trademarks
of Intel Corporation in the U.S. and/or other countries. Other trademarks may be trademarks of their respective owners.
Published in the USA 10/19 White Paper H17234.1.

Dell Inc. believes the information in this document is accurate as of its publication date. The information is subject to change
without notice.

 Contents

3 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases

White Paper

Contents

Executive summary ... 4

PowerMax features and benefits for SQL Server .. 6

Configuration best practices and design considerations .. 13

Linux support with SQL Server 2017 and PowerMax with NVMeoF .. 21

SQL Server on PowerMax test cases ... 22

Dell EMC documentation references ... 31

Appendix A: Operating system support and Windows/Linux test case .. 32

Appendix B: Useful commands for SQL Server on Linux .. 33

Appendix C: SQL Server on Kubernetes with PowerMax persistent volumes........................ 34

Executive summary

4 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases
White Paper

Executive summary

In 2018, Dell EMC introduced the PowerMax storage family with a Non-Volatile Memory

Express (NVMe) back end for PCI Express (PCIe)-based access to Non-Volatile Memory

(NVM) media, which includes modern NAND-based flash along with high-performance

storage class memory (SCM) media. Dual-ported NVMe drives with flash-optimized

protocol access provide very low latencies and extremely high I/O densities for mission-

critical applications.

In Q3 2019, Dell EMC enhanced PowerMax systems to support end-to-end NVMe, SCM

drives, and 32 Gb Fibre Channel (FC) NVMe to offer an unprecedented level of

performance for host applications.

The Dell EMC PowerMax family includes PowerMax 2000 and PowerMax 8000 systems

for scale-up and scale-out multicontroller reliability, availability, large write-cache

buffering, back-end write aggregation, and security.

Benefits of PowerMax systems include:

• Easy provisioning and storage management—PowerMax systems use virtual

provisioning to create new storage devices in seconds. All devices are thin

provisioned, consuming only the storage capacity that is written to, which

increases storage efficiency without compromising performance. You can put the

devices into storage groups (SGs) and manage them as a unit to improve

performance, quality of service (QoS), data protection, and data storage efficiency.

In addition, you can manage these systems using Dell EMC Unisphere for

PowerMax, the Dell EMC Solutions Enabler CLI, or REST APIs with integration

with Microsoft Windows PowerShell.

Integration with Kubernetes—The Container Storage Interface (CSI) driver for

PowerMax systems enables integration with Kubernetes open-source container

orchestration infrastructure and delivers scalable persistent storage provisioning

operations for PowerMax all-flash arrays. See Appendix C: SQL Server on

Kubernetes with PowerMax persistent volumes for more details about how

customers can use the CSI driver for SQL Server deployment on Kubernetes

containers.

• High performance—Each PowerMax brick features a multicontroller architecture,

front-end and back-end connectivity, InfiniBand internal fabric, and a large mirrored

and persistent cache. The brick architecture offers predictable high performance for

any kind of workload including transaction processing, log writes, checkpoints, and

batch processing. PowerMax systems also excel in servicing high-bandwidth

sequential workloads by using prefetch algorithms, optimized writes, and fast front-

end and back-end interfaces.

• Superior data services—PowerMax systems excel at providing data services. The

systems natively protect all data with T10-DIF from the moment that data enters the

array until it leaves (including replications). With Dell EMC SnapVX and Dell EMC

SRDF technologies, PowerMax systems offer many topologies for consistent local

and remote replications and integrations with Dell EMC Data Domain, such as Dell

EMC ProtectPoint for data backups using storage snapshots. Other PowerMax

Overview

Executive summary

5 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases

White Paper

system data services include host I/O limits and other QoS features, data reduction,

“call-home” support, nondisruptive upgrades, and nondisruptive migrations.

• Built-in, real time machine learning—PowerMax systems use automated I/O

recognition and data placement across flash and SCM media to maximize

performance with no additional overhead.

PowerMax systems extend the benefits of VMAX All Flash systems with high performance

and low latencies for Tier 0 applications using an NVMe back end. PowerMaxOS

advanced data reduction that includes inline compression and deduplication (dedupe)

further improving storage efficiency without any overhead on the applications.

PowerMax systems are ideal for running SQL Server mission-critical databases, where

high performance, resiliency, protection, and security are required. The following figure

shows the multidimensional scalability, performance, and data services that are offered by

PowerMax systems:

Figure 1. Multidimensional performance and scalability of PowerMax systems

This white paper describes the benefits of using Dell EMC PowerMax storage for

Microsoft SQL Server databases. It includes test cases that demonstrate how to deploy

PowerMax systems in a SQL Server environment for optimal performance to support

mission-critical databases.

This paper is intended for database and system administrators, storage administrators,

and system architects who are responsible for implementing, managing, and maintaining

SQL Server databases. Readers should be familiar with SQL Server and have an interest

in achieving higher database availability, better performance, and simplified storage

management.

Dell EMC and the authors of this document welcome your feedback on the solution and

the solution documentation. Contact the Dell EMC Solutions team with your comments.

Author: Udgith Mankad

Audience

We value your

feedback

mailto:EMC.Solution.Feedback@emc.com?subject=Feedback:%20White%20Paper:%20Dell%20EMC%20PowerMax%20Storage%20for%20Mission-Critical%20SQL%20Server%20Databases%20(H17234)

PowerMax features and benefits for SQL Server

6 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases
White Paper

PowerMax features and benefits for SQL Server

SQL Server databases running on PowerMax storage systems can use all-flash storage

utilizing both NAND flash and SCM media. This capability provides unparalleled levels of

performance and low latency with faster transactions to ensure better business agility and

improved client satisfaction. Flash storage provides better total cost of ownership (TCO)

because it uses less floor space for a few high-capacity solid-state drives (SSDs) and

uses less power than hard drives. Flash storage also provides consistent performance

regardless of whether the I/O profile is random, sequential, intermittent, or continuous.

SQL Server databases can greatly benefit from both server-side cache and flash storage.

As large as the server-side cache is, often the database capacity is even larger. While

frequently accessed data fits in the database cache, there are always queries that access

less-frequently needed data. Database consolidation also often means a smaller portion

of the cache is used for each tenant. Finally, in a cluster, server-side cache is not

cumulative, and each cluster node caches its own data regardless of others. When the

requested data is not in cache, flash storage enables quick completion of I/O operations.

PowerMax systems are even faster and more reliable than other third-party flash-only

systems, due to the high capacity, persistent cache, end-to-end NVMe and 32 Gb FC and

FC-NVMe support. The following figure shows a high-level hardware overview of the

PowerMax 2000 and 8000 systems:

Figure 2. PowerMax family

This platform complements the use of database cache with faster I/O requests for blocks

that are not already in cache. PowerMax systems also provide a storage system that

enables high performance, consolidation, and easy data replications for backup, high

availability (HA), and disaster recovery (DR).

As adoption of flash storage grows, organizations are moving away from traditional hybrid

arrays to all-flash storage arrays such as PowerMax systems. In consolidated

environments, organizations must still provide prioritized data access to mission-critical

Overview

PowerMax features and benefits for SQL Server

7 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases

White Paper

applications while minimizing the impact caused by noisy neighbors. In addition, as the

application performance profile and importance changes, service levels must be set to

ensure predictable and consistent performance for the applications. PowerMaxOS

provides service levels at the SG level for PowerMax storage systems.

PowerMax systems provide automatic, scheduled, and application-consistent snapshots

for Microsoft SQL Server and other applications for creating point-in-time copies for

backup, reporting, and test/dev by using Dell EMC SnapVX local replication. Dell EMC

AppSync data protection enables you to manage application snapshots with tighter

integration between SnapVX and Microsoft Volume Shadow Copy Service (VSS) and

SQL Server Virtual Device Interface (VDI).

PowerMax systems offer active/active high availability of storage devices at synchronous

distances for Microsoft SQL Server failover clusters using SRDF/Metro. With storage

devices always read/write-enabled, in the event of failover, SQL Server cluster resources

can be restarted quickly, thus improving RTO and providing ease of management for SQL

Server databases on a Windows Server Failover Cluster.

PowerMax systems can perform data compression to significantly increase the effective

capacity of the array. With the system’s fine-grained data packing and activity-based

hardware-accelerated compression capabilities, all application environments can achieve

storage efficiency with optimum performance.

PowerMaxOS enhances the data compression capability even further. PowerMaxOS uses

data reduction hardware that is available exclusively on PowerMax systems, further

reducing the processing overhead for data reduction. Also, on PowerMax systems

exclusively, PowerMaxOS provides inline data dedupe that is enabled whenever

compression is enabled on an SG.

The PowerMax architecture incorporates an NVMe back end that reduces I/O latency and

increases data throughput while maintaining full redundancy. NVMe is an interface that

enables host software to communicate with a nonvolatile memory subsystem. The

interface is optimized for SSDs and is typically attached as a register-level interface to the

PCIe interface.

The NVMe back-end subsystem provides redundant paths to the data that is stored on

SSDs. This redundancy provides seamless access to information even if a component

fails or is being replaced.

Each PowerMax disk array enclosure (DAE) can hold twenty-four 2.5-inch NVMe SSDs.

The DAE also houses redundant canister modules (link control cards, or LCCs) and

redundant AC/DC power supplies with integrated cooling fans.

The back-end directors are connected to each DAE through a pair of redundant back-end

I/O modules. The back-end I/O modules connect to the DAEs at redundant LCCs. Each

connection between a back-end I/O module and an LCC uses a completely independent

cable assembly. Within the DAE, each NVMe drive has two ports, each of which connects

to one of the redundant LCCs. PowerMax systems use an active/active RAID group

accessing scheme called Smart RAID. As shown in the following figure, this scheme

enables RAID groups to be shared across directors, giving each director active access to

all drives on the brick or zBrick.

PowerMax NVMe

back end

PowerMax features and benefits for SQL Server

8 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases
White Paper

Figure 3. PowerMax Smart RAID for dual-ported drive access

The dual-initiator feature ensures continuous availability of data in the unlikely event of a

drive-management hardware failure. Both directors within an engine connect to the same

drives through redundant paths. If the sophisticated fencing mechanisms of PowerMaxOS

detect a failure of the back-end director, the system can process reads and writes to the

drives from the other director within the engine without interruption.

The following figure summarizes the benefits of NVMe on the PowerMax system and the

benefits that are realized by the application:

Figure 4. Benefits summary of end-to-end NVMe system

PowerMax support for running NVMe over 32 Gb Fibre Channel combined with SCM

enables lower latency and best response times for demanding applications. This

PowerMax FC-NVMe feature delivers end-to-end NVMe and is compatible with Connectix

PowerMax NVMe

over fabric

PowerMax features and benefits for SQL Server

9 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases

White Paper

32 Gb NVMe switches and directors and 32 Gb NVMe server HBAs. The combination of

end-to-end NVMe and SCM technology delivers true breakthrough performance.

Note: PowerMax 32 Gb I/O modules also support FC host connectivity.

PowerMax Adaptive Compression Engine (ACE) offers high performance and maximum

storage efficiency for application environments. ACE compresses data and efficiently

optimizes system resources to balance overall system performance. ACE features

include:

• Hardware acceleration—The PowerMax system is equipped with data reduction

hardware that is configured with one module per director or two modules per

engine. The modules help reduce the processing overhead for supported data

reduction functions.

• Selective compression—With ACE, you can decide, at the SG level, which data to

compress and when to enable or disable compression. As an example, to prioritize

workloads, you might decide not to use compression. Enabling compression for an

SG compresses the candidate data in the background with the system still active.

Likewise, disabling compression for an SG does not immediately start a

decompression process; rather, it decompresses data when accessed and over

time.

• Activity-based compression—Inline compression and advanced compression

algorithms and hardware acceleration provide space savings, as you would expect.

In addition, ACE uses activity-based compression (ABC) to determine which data to

compress. ABC helps the system to mitigate compression overhead on the system

and on frequently accessed data. ABC prevents constant compression and

decompression of data that is frequently accessed.

ABC marks the busiest data in the storage resource pool (SRP) to skip the

compression flow regardless of the related SG compression setting. This function

differentiates busy data from idle or less-busy data and only accounts for up to 20

percent of the allocations in the SRP. It marks up to 20 percent of the busiest

allocations to skip the compression action, ensuring optimal response time and

reducing the overhead that can result from the act of compressing data to save

space.

The mechanism that determines the busiest data does not add CPU load to the

system. ABC uses statistics that are collected from front-end devices to determine

which datasets are the best candidates for compression. The system can then

maintain balance across the resources, providing an optimal environment for both

the best possible compression savings and the best performance. Effectively, this

balance avoids compression and decompression latency for the busiest data and

reduces system overhead.

• Fine-grained data packing—ACE uses data reduction hardware to process

incoming 128 KB I/O into four sections. Each section is compressed individually

and in parallel, which maximizes the efficiency of the data reduction module.

Fine-grained data packing offers performance benefits for both the compression

function and the overall performance of the system. Included in this process is a

Adaptive

Compression

Engine

PowerMax features and benefits for SQL Server

10 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases
White Paper

zero reclaim function that prevents the allocation of buffers with all zeros or no

actual data. Pairing the zero reclaim function with fine-grained data packing

enables the compression function to operate efficiently with minimal impact on

performance. The 128 KB I/O are compressed in four buffers individually, and in

parallel, enabling each section to be handled independently, although they are still

part of the initial 128 KB I/O. The main benefit comes in the case of partial write

updates or read I/O. If only one or two of the sections are updated or read, only that

data is decompressed.

• Extended Data Compression (EDC) —With PowerMax EDC, data that is already

compressed might qualify for additional compression savings based on background

compression. Data that is part of a compression-enabled SG, is not already

compressed by EDC, and meets a 30-day idle period requirement qualifies for

additional compression savings.

The PowerMax system further improves data reduction by introducing deduplication

(dedupe). Dedupe improves storage utilization without compromising I/O performance. It

works by generating unique hash IDs at the time of data ingress and comparing those IDs

with existing hash IDs before storing the data on the disk. Dedupe is accomplished

through a series of features including:

• Hardware acceleration—PowerMax data reduction hardware used by ACE also

performs an inline dedupe function. All incoming data is passed through this

hardware to generate a unique 32-byte hash ID for each 32k block of data using a

Secure Hash Algorithm (SHA-2). This process occurs before data is stored on

physical disks or even before data is compressed.

• Hash table—The hash table uses PowerMax system memory to store the unique

hash ID. A dedupe relationship is generated whenever a matching hash ID for

incoming data is found.

• Dedupe Management Object (DMO)—The DMO is a 64-byte object within system

memory. DMOs only exist when dedupe relationships exist. These objects store

and manage the pointers between front-end devices and the single instance of data

that is stored at the back end of the array.

Host writes for any compression-enabled SGs go to persistent cache and are

acknowledged immediately. Before the data is destaged to the physical media, the

compression module generates the hash ID. This hash ID is checked for an existing entry

in the hash table. If the match is found, only the pointers are updated to reference

existing data. If the matching hash ID is not found, data is written and the thin device’s

pointers are updated.

The following figure shows the dedupe workflow for all writes for a compression-enabled

SG:

Exclusive data

deduplication

PowerMax features and benefits for SQL Server

11 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases

White Paper

Figure 5. PowerMax dedupe workflow

On single-tier-based PowerMax all-flash systems, PowerMaxOS service levels enable

performance management of all the data for each SG without having to move any of the

data. The latest PowerMaxOS release includes support for a tiered storage model called

automated data placement (ADP). ADP is enabled by the PowerMaxOS service levels

and augmented by machine learning to place the most active data on faster storage drive

technology.

PowerMaxOS uses real-time machine learning to model workload characteristics. This

model provides a predictive function that enables PowerMaxOS to anticipate workload

demand for a storage group. With these anticipated workload demands, PowerMax OS

can adapt as necessary to changes in block size, write ratio, or I/O load. ADP

movements occur as either promotion of active data to SCM or demotion from an SCM

storage tier. The service levels are defined with target response time characteristics.

Service levels also have either an upper response time limit or both upper and lower

response time limits to avoid the over-allocation of shared resources for low-priority

applications.

A storage group with a higher-priority service level that is affected by any lower-priority

storage groups triggers response-time management to the lower-priority service levels.

When the higher-priority storage group reaches its target response time, all lower storage

groups continue to be managed until the lowest-priority storage groups reach their target

response time. The management of any lower-priority service level is imposed by a

response-time delay in I/O. The delay gradually increases over time to keep the higher-

priority storage group within its respective target response time. The delay gradually

decreases to ensure that the higher-priority storage group remains within its response

time.

PowerMaxOS offers the following service levels and associated response times. It also

sets service-level bias to apply promotion and demotion priorities.

• Diamond—This service level has the highest promotion priority and lowest

response times. During optimal utilization, PowerMaxOS attempts to put all

PowerMaxOS

automated data

placement

PowerMax features and benefits for SQL Server

12 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases
White Paper

Diamond-labeled data on SCM drives. Data is demoted when there is need for

more-active Diamond data to be promoted or if the SCM usage exceeds pool-

reserved capacity.

• Platinum, Gold, and Optimized—All these service levels have same priority.

Active data extents using any of these service levels are promoted when possible

given the space usage in an SCM tier. Demotion occurs when space is needed in

an SCM tier for higher priority data or for more active data with the same priority.

• Silver, and Bronze—These service levels have lower priorities and higher target

response times. SGs using these service levels are not chosen for promotion to an

SCM tier.

The following figure illustrates PowerMaxOS service levels:

Figure 6. PowerMaxOS service levels

Several features of PowerMax systems provide exceptional benefits when used for SQL

Server databases:

• Dynamic random-access memory (DRAM)-based cache is large, persistent, and

mirrored, which enables all writes, including SQL Server log writes and batch loads,

to be completed faster than writing directly to SSD.

• Dell EMC TimeFinder SnapVX replication provides storage-consistent snapshots.

SnapVX technology provides high levels of scale, efficiency, and simplicity. It uses

redirect-on-write for added performance and pointer-based management for

dedupe-like data reduction. Snapshots have names, versions, dates, and automatic

expiration dates for easy identification and management. Snapshots are protected,

so they can be reused regardless of changes by the application. They can also be

cascaded any number of times. With SnapVX technology, you can create SQL

Server database replicas for gold copies, test or development environments, and

backups. Snapshots can be restored in seconds and read/write access to snapshot

data is always immediate.

• Dell EMC Symmetrix Remote Data Facility (SRDF) offers many DR topologies for

SQL Server databases, including those for two, three, and four sites. SRDF can

replicate in synchronous and asynchronous modes and offers multisite cascaded

and star configurations. SRDF is closely integrated with SnapVX software to offer a

variety of HA and DR solutions including fast recovery from remote copies and

backup offload.

Key benefits of

PowerMax

systems for SQL

Server

databases

Configuration best practices and design considerations

13 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases

White Paper

• Dell EMC AppSync data protection software offers self-service automated copy

management for Microsoft SQL Server and other application environments. It

provides automatic application discovery and mapping, storage provisioning and

selection for local and remote replications, and easy repurposing for testing,

development, and reporting. Copies can be used for instantly restoring a production

database. Database recovery from such copies can be started immediately after

initiating the restore, improving recovery time object (RTO) greatly for mission-

critical applications.

Configuration best practices and design considerations

PowerMax systems have simplified storage provisioning. This section describes

configuration best practices and design considerations for storage connectivity and

provisioning with PowerMax systems and Microsoft SQL Server.

PowerMax systems are preconfigured with your specified capacity, connectivity options,

and storage RAID protection. The SSD drives are spread across the back end and

provisioned into logical devices called thin data devices (TDATs). The devices are placed

in RAID groups and combined to become an SRP. When host thin devices (TDEVs) are

later created, their capacity is consumed in the SRP. Most systems have a single SRP

unless a specialized configuration is required.

PowerMax system architectures are based on units known as bricks. A brick includes an

engine, which consists of two directors. Each director includes cache, ports, and

emulations based on the services and functions that the storage was designed to provide.

For example, each director includes ports supporting Fibre Channel (FC) or gigabit

Ethernet, and emulations, such as front-end, back-end, iSCSI, eNAS, and SRDF. Each

director also includes CPU cores that are pooled to be used with all emulations and serve

all director ports. While the default balanced core allocation is usually best, Dell EMC

support can deploy other methods if core use across emulations is constantly unbalanced.

PowerMax systems come preconfigured, so that when they are powered up, activities can

immediately focus on physical connectivity to hosts, zoning, and storage provisioning to

the database servers. Factory pre-configuration makes the deployment fast, easy, and

focused on the application needs, rather than on the storage configuration.

Storage connectivity best practices

When planning storage connectivity for performance and availability, connecting storage

ports across different engines and directors is better than using all the ports on a single

director. In this way, even if a component fails, the storage can continue to service host

I/Os.

PowerMax systems use dynamic core allocation. Each director provides services such as

front-end connectivity, back-end connectivity, or data management. Each such service

has its own set of cores on each director. The cores are combined to provide CPU

resources that can be allocated as necessary. For example, even if host I/Os arrive

through a single front-end port on the director, the front-end pool with all its CPU cores is

available to service that port. Because I/Os arriving at other directors have their own core

pools, we recommend connecting each host to ports on different directors before using

Introduction

Storage design

Configuration best practices and design considerations

14 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases
White Paper

additional ports on the same director. This practice ensures high performance and

availability.

Virtual Provisioning and thin devices

All PowerMax system host devices use Virtual Provisioning technology. The devices are a

set of pointers to capacity allocated at 128 KB extent granularity in the SRPs; however, to

the host they look and respond just like regular LUNs. Using pointers also increases

capacity and efficiency for SnapVX local replication by sharing extents when data does

not change between snapshots.

Virtual Provisioning technology offers a choice of whether to fully allocate the host device

capacity or to allow allocation on demand.

• A fully allocated device consumes all its capacity in the SRP on creation, and

therefore, there is no risk that future writes might fail because the SRP has no

remaining capacity.

• Allocation on demand enables over-provisioning. Although the storage devices are

created and appear to the host as available with their full capacity, actual capacity

is allocated in the SRP only when host writes occur. This is a common cost-saving

practice.

Use allocation on demand when:

• You do not know the capacity growth rate for an application.

• You do not want to commit large amounts of storage ahead of time because it

might not be used.

• You do not want to disrupt host operations at a later time by adding more devices

or expanding the capacity of the existing devices.

If allocation on demand is used, capacity is only physically assigned as needed to meet

application requirements.

When data files are created, Microsoft SQL Server pre-allocates capacity by writing to

every page with contiguous zeros. When allocation on demand is used, it is best to

increase database capacity over time, based on actual need. For example, with SQL

Server provisioned with a thin device of 2 TB, the DBA—rather than immediately creating

data files of 2 TB and consuming all its space—could use an auto-growth feature that

consumes only the needed capacity.

Note: When Windows Instant File Initialization (IFI) is used, allocation of data files occurs in a thin-

pool-friendly way. Areas of a disk under which a sparse file is defined, as created by IFI, are not

zeroed. As table and index information is written to a fully initialized data file, areas of the

database become allocated and used by non-zero user data. SQL Server automatically uses

Windows IFI if the service account under which the SQL Server service is running has Perform

volume maintenance tasks permission under the local security policy. By default, only

administrators have this permission. Information about the IFI is provided in the Microsoft SQL

Server Books online product documentation. Transaction logs remain fully allocated even with IFI

to avoid marginal performance penalties that might result during additional thin pool allocations.

Configuration best practices and design considerations

15 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases

White Paper

Considerations for PowerMax data reduction with SQL Server

The following considerations apply when you use PowerMax data reduction for SQL

Server:

• Efficiency using thin provisioning—PowerMax systems are fully thin provisioned

storage systems providing the highest levels of storage efficiency. SQL server SGs

consume storage capacity only for the data that is actually written by the host and

grow as needed with host writes. Storage efficiency is already realized when SQL

Server SGs are deployed on PowerMax devices. All PowerMax data services

continue to offer highly efficient data copy and capacity utilization even when you

use PowerMax SnapVX for periodic snapshots or SRDF for remote replication.

• Efficiency using PowerMax compression—PowerMax ACE splits the 128 KB

track into four 32 KB buffers and acts on them independently, making the

compression process highly efficient. SQL Server I/O ranges between 8 KB and

256 KB with 8 KB to 32 KB write sizes most common for OLTP workloads;

therefore, contiguous writes to the same track are considered for the compression

analysis. In addition, data is decompressed at the same 32 KB granularity,

improving the latency for activities with high locality of reference because data

might be already available in PowerMax cache from prior activity on the track. Data

that is already compressed and does not exceed the activity thresholds assigned by

PowerMax compression algorithms is compressed in line and written to the thin

pools, resulting in excellent efficiency.

• Efficiency using PowerMax dedupe—PowerMax dedupe uses the hash IDs that

are generated on 128 KB track writes. Microsoft Windows NTFS uses 64 KB

alignment. Due to the misalignment with extent size and NTFS allocation unit, the

likelihood of dedupe on subsequent writes to the same device is low. However,

multiple copies of SQL databases are always created on the PowerMax system for

backup, test, dev, and reporting instances. These additional copies would certainly

realize the dedupe benefit because the hash IDs for the copies would match either

the source or some of the target extents that are associated with other copies.

When such matching IDs are found in the hash table, a dedupe relationship is

created.

• Dynamically changing compression settings on SGs—PowerMax compression

is configured system-wide, but it is enabled or disabled at the SG level and can be

changed dynamically. However, because PowerMax compression is activity-based,

the effect might not be immediately noticeable. To minimize the impact on other

workloads, compression-related movements occur at lower priority. Once the

compression ratio is set on the SG, disabling it is possible but not necessary. The

PowerMax compression engine compresses and decompresses data as needed to

meet application performance requirements even when accessing a compressed

dataset. PowerMax dedupe also relies on the compression setting on the SG;

therefore, disabling compression on an SG also prevents the SG devices from

realizing the dedupe benefit, and degrades the data efficiency.

• Expectation of the compression ratio—Compressibility greatly depends on the

dataset. Most live SQL Server databases exhibit compression ratios from 1.3 to 3.0,

with compressible datasets on the PowerMax system likely resulting in a higher

compression ratio due to better hardware acceleration. Unisphere for PowerMax

can provide an indication of SG compressibility for PowerMax systems. With tools

Configuration best practices and design considerations

16 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases
White Paper

such as Dell EMC Live Optics, you can estimate compression ratio targets by

collecting and analyzing statistics on random samples of the devices. After you

configure the PowerMax system for compression, you can configure individual SGs

for compression, and they will achieve their target compression ratio over time.

Higher compressibility can potentially be achieved when the dataset has large

blocks of fillers or blob data with a lot of cyclic/repeated patterns. PowerMax ACE

determines the compressibility of the SG by scanning the contents and

transparently moving the application data to highly compressible storage pools,

improving the compression ratio of the SG. When the workload is run, compression

targets are maintained because ACE decompresses the active dataset and assigns

scores to the extents for further compressibility analysis. Less active extents remain

on the compression storage pools that meet their potential compressibility.

• Compressibility of logs—SQL Server active log devices generally have lower

compressibility, but as the logs fill up and are archived, the inactive nature of the

archived logs results in higher compressibility of the log devices.

• SQL Server data and log devices in cascaded configuration—ACE collects

statistics on 32 KB data extents for compressibility. Although SQL Server storage

provisioning uses child SGs for data and log devices for data protection and

manageability, these devices can be part of the same parent SG that has

compression enabled. ACE still operates at the device level and achieves

compression of various SQL Server objects in the most optimal fashion. Thus, best

practices for storage provisioning with PowerMax compression are the same as the

best practices associated with other PowerMax data services such as SnapVX and

SRDF.

• SQL Server compression and encryption—SQL Server allows database table-

level compression for rows and pages. Table-level compression is set up using the

Data Compression Wizard. The compressibility is slightly better with SQL Server

compression compared to PowerMax compression because SQL Server

compression uses Microsoft proprietary technology that is based on SQL Server

and it is aware of the block layout at the SQL Server level. However, SQL Server

compression puts a greater demand on the host CPU to process compression and

decompression on already compressed data that becomes active; thus, SQL

Server-based compression affects the overall performance of the database and

other applications running on the server. PowerMax compression is set up at the

SG level and works within the PowerMax frame, benefitting all the database objects

that are part of the SG, including the data, logs, indexes, and any support files

associated with the application and database. When PowerMax compression is

used, even external blob/object stores can be compressed without any impact to

overall performance.

Although SQL Server and PowerMax compression can co-exist, any application

performance benefits are realized at the expense of host CPU overhead resulting

from SQL Server compression. The benefits are also short-lived because SQL

Server reads in more data to decompress to align with server application needs. As

the data is aged and the cache needs to be refreshed, any benefits are diminished

and performance lowers to the same level as using only PowerMax compression,

which incurs no CPU overhead. For optimal performance, if you have a choice, use

PowerMax compression rather than SQL Server compression.

Configuration best practices and design considerations

17 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases

White Paper

You can also use PowerMax compression when SQL Server data, connections,

and stored procedures use SQL Server encryption. The compressibility of the data

depends on the amount of redundancy or repeated patterns, but there is no reason

not to use PowerMax compression even when the database is encrypted. Even if

compressibility of the data is lower due to obfuscated data patterns, there is no

overhead associated with compression, so application performance is not affected.

In addition, using PowerMax compression on the storage enables the use of Data

at Rest (D@RE) encryption, with an integrated/external key manager, which allows

storage-level encryption for the highest level of security.

Host bus adapter (HBA) ports (initiators) and storage ports (targets) are connected to an

FC or Ethernet switch based on the connectivity requirements. FC connectivity requires

that you create zones on the switch and define initiator and target relationships. The

zones create an I/O path between the host and storage. Zoning and paths strongly affect

performance aspects of the host and database.

FC connectivity best practices

Best practices for FC connectivity include:

• When zoning host initiators to storage target ports, ensure that each pair is on the

same switch. Performance bottlenecks are often created when I/Os must travel

through ISL (paths between switches), which are shared and limited.

• Use at least two HBAs for each database server to enable better availability and

scale. Use multipathing software such as Dell EMC PowerPath or Microsoft

Windows MPIO to balance loads and automatically failover or recover paths. Use

commands such as powermt display paths or multipath -l to ensure

that all paths are visible and active.

• Consider port speed and count when planning bandwidth requirements. Each 8 Gb

FC port can deliver up to about 800 MB/sec. Therefore, a server with four ports

cannot deliver more than about 3 GB/sec. Also consider that among the host

initiator, storage port, and switch, the lowest speed supported by any of these

components is negotiated and used for that path.

• Consider the number of paths that are available to the database storage devices.

Each path between the host and storage ports creates additional SCSI

representation for the database devices on the host.

• While more paths add I/O queues and the potential for more concurrency and

performance, consider that server boot time is affected by the number of discovered

SCSI devices (one for each path combination per device, plus a pseudo device). In

addition, after connectivity needs are satisfied for performance and availability,

additional paths do not add more value and only add more SCSI representations to

the host.

• In most cases, for availability and performance, it is sufficient to have each HBA

port zoned/masked to two or four PowerMax ports, preferably on different engines

and directors.

Host

connectivity

Configuration best practices and design considerations

18 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases
White Paper

iSCSI connectivity best practices

• Use VLANs dedicated to iSCSI setup. VLANs allow logical grouping of network

endpoints, which minimize network bandwidth contention for iSCSI traffic and

eliminate impact on iSCSI traffic due to noisy neighbors.

• If all network devices in the iSCSI communication paths support jumbo frames,

using jumbo frames on Ethernet improves iSCSI performance.

• To minimize host CPU impact due to network traffic, ensure that Transmission

Control Protocol (TCP) offloading is enabled on a host network interface card (NIC),

which offloads processing of the TCP stack to the NIC and eases impact on the

CPU.

• As with FC connectivity, using PowerPath software or native multipathing for

Windows helps with load balancing and eases queuing issues for iSCSI traffic

through the host NICs.

Number and size of host devices

• PowerMax systems use thin devices exclusively. Therefore, on creation, devices do

not fully allocate their capacity in the SRP, and they only consume as much

capacity as the application actually writes to them. For example, by default, a 1 TB

device that has not been written to does not consume any storage capacity. This

approach enables capacity savings because storage is consumed based on

demand and not during device creation. However, if certain applications require a

guarantee for their capacity, their devices can be fully created and allocated in the

SRP. New devices can be created easily using Unisphere for PowerMax or by

using CLI, as in the following example:

PS > symdev create -tdev -cap 500 -captype gb -N 4 -v #

create 4 x 500GB thin devices

• PowerMax host devices are natively striped at 128 KB across the data pools in the

SRP. Although you can create only a few very large host devices, consider these

factors:

▪ As discussed previously, each path to a device creates a SCSI representation

on the host. Each such representation provides a host I/O queue for that path.

Each such queue can service a tunable, but limited (often 32), number of I/Os

simultaneously. Provide enough database devices for concurrency (multiple I/O

queues), but not so many that management overhead would be increased.

▪ Another benefit of using multiple host devices is that internally the storage array

can use more parallelism for operations such as data movement and local or

remote replications. By performing more copy operations simultaneously, the

overall operation takes less time.

▪ While the size and number of host devices can vary, we recommend finding a

reasonable, low number that offers enough concurrency, provides an adequate

building block for capacity increments when additional storage is needed, and

does not become too large to manage. For example, four or eight devices,

sized at 250 GB to 1 TB (choose one size) can be a good design starting point

for databases from 1 to 8 TB, if enough connectivity/concurrency exists.

Configuration best practices and design considerations

19 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases

White Paper

Physical host connectivity best practices

For physical host connectivity, consider the number and speed of the HBA ports

(initiators) and the number and size of host devices:

• HBA ports—Each HBA port (initiator) creates a path for I/Os between the host and

the SAN switch and then to the PowerMax storage. If a host uses a single HBA

port, it has a single I/O path that must serve all I/Os. Such a design is not advisable

because a single path does not provide HA and risks a potential bottleneck during

high I/O activity due to the unavailability of additional ports for load balancing.

For a better design, provide each database server with at least two HBA ports,

preferably on two separate HBAs. The additional ports provide more connectivity

and enable multipathing software such as Dell EMC PowerPath or Microsoft

Multipath I/O (MPIO) to balance loads and to fail over across HBA paths.

Each path between the host and storage device creates a SCSI device

representation on the host. For example, two HBA ports connected to two

PowerMax front-end adapter ports with a 1:1 relationship create three presentations

for each host device. One port is used for each path, and the multipathing software

uses the other port to create a Dell EMC Symmetrix Multi-Path Disk Device

(PowerPath System Devices). If each HBA port was zoned and masked to both FA

ports (1: many relationship) there would be five SCSI device representations for

each host device (one for each path combination plus pseudo device).

While modern operating systems can manage hundreds of devices, it is not

advisable or necessary, and it burdens the user with complex tracking and storage

provisioning management overhead. We recommend that you:

• Establish enough HBA ports to support workload concurrency, availability,

and throughput

• Use 1:1 relationship for storage front-end ports

• Do not zone or mask each HBA port to all PowerMax front-end ports

Following these suggestions will provide enough connectivity, availability, and

concurrency, while reducing unnecessary complexity.

• Number and size of host devices—PowerMax can create host devices with

capacity ranging from a few megabytes to multiple terabytes. With the native

striping across the data pools that PowerMax provides, the DBA might be tempted

to create only a few very large host devices. For example, a 1 TB Microsoft SQL

Server database can reside on one 1 TB host device, or perhaps on ten 100 GB

host devices; while either option satisfies the capacity requirement, you should use

a reasonable number of host devices of appropriate size. In this example, if the

database capacity was to rise above 1 TB, the DBA might want to add another

device of the same capacity, even if 2 TB was not currently needed. Therefore,

large host devices create very large building blocks when additional storage is

needed.

Each host device also creates its own host I/O queue for the host operating system.

Each such queue can service a tunable, but limited, number of I/Os that can be

transmitted simultaneously. If, for example, the host has four HBA ports and a

single 1 TB LUN with multipathing software, it will have only four paths available to

Configuration best practices and design considerations

20 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases
White Paper

queue I/Os. A high level of database activity generates more I/Os than the queues

can service, resulting in artificially elongated latencies. In this example, two or more

host devices are advisable to alleviate such an artificial bottleneck. Host software

such as Dell EMC PowerPath or Windows PerfMon can help in monitoring host I/O

queues to ensure that the number of devices and paths is adequate for the

workload.

Another benefit of using multiple host devices is that, internally, the storage array

can use more parallelism when operations such as FAST data movement or local

and remote replications take place. By performing more copy operations

simultaneously, the overall operation takes less time.

While there is no one magic number for the size and number of host devices, we

recommend finding a reasonably low number that offers enough concurrency,

provides an adequate building block for capacity when additional storage is

needed, and does not become too large to manage.

Host I/O limits and multi-tenancy

The host I/O limits QoS feature was introduced in VMAX arrays, and it continues to

provide the option to place specific IOPS or bandwidth limits on any SG. For

example, assigning a specific host I/O limit for IOPS to an SG with low performance

requirements can ensure that a spike in I/O demand will not saturate or overload

the storage, affecting performance of more critical applications. As shown by test

cases later in this paper, even though PowerMax systems can maintain high

performance at low latency, using a host I/O limit may limit the impact of noisy

neighbors on mission-critical applications.

Linux support with SQL Server 2017 and PowerMax with NVMeoF

21 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases

White Paper

Linux support with SQL Server 2017 and PowerMax with NVMeoF

For the first time, the power of SQL Server has gone beyond Windows to support Linux

and Docker containers. SQL Server 2017, with its support for Linux and Docker, is truly a

platform with choice: choice of development languages, data types, and operating

systems, all with support for Big Data and advanced analytics. With SQL Server now

available on Linux, users can develop once and deploy SQL Server based applications

anywhere, from on-premises to the cloud, with a consistent experience.

With the PowerMax Q3 2019 release, SQL Server running on Linux can also leverage

supported 32 Gb HBAs for end-to-end NVMe for high demand host applications with best

response times.

Because SQL Server 2017 runs on Windows, Linux, and Docker containers, you can

deploy your application on the platform of your choice, or on a combination of platforms

that makes the most sense for your business.

Benefits of SQL Server with Linux support include:

• The platform is easily integrated with existing open source platforms.

• SQL Server with Linux supports an extended range of platforms on which to

develop applications.

• Integration with Microsoft Active Directory is seamless, providing better and

integrated control over security by using a single security platform for both Windows

and Linux. You can use Active Directory authentication to centralize the identities of

database users and other services in one location. In this manner, you can simplify

permission management and avoid storing passwords.

• Using the same set of tools (SQL Server Management Studio) for both Linux and

Windows reduces the cost of ownership by eliminating the need for additional

hardware and software licenses.

• By not choosing a traditional Linux database, you can save three to six months of

learning curve and gain strong security and reliability.

• Migrating data from Windows SQL Server to Linux is as simple as a backup and

restore operation.

• Unlike MySQL and MariaDB, installation of third-party tools is not required.

• All enterprise-level features, such as data compression, column store, partitioning,

high availability, and DR are included, so your organization can provide robust,

data-driven applications to customers for a fraction of the cost of the competition.

• The installation process offers a native Linux experience for users through

package-based installation methods such as Yum, apt-get, and RPM.

• Containers enable you to quickly deploy multiple database instances: First, make a

copy of data and log files, then launch a new container and attach volumes to it.

• With support for Windows and Linux containers, SQL Server can run in container

orchestration solutions such as Docker Swarm, Red Hat Open Shift, Mesosphere

DC/OS, and Kubernetes.

Introduction

Advantages of

SQL Server on

Linux

SQL Server on PowerMax test cases

22 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases
White Paper

The total cost of ownership is lower than that of other Linux-based enterprise databases.

Limitations of SQL Server on Linux include:

• SQL Server Reporting Services (SSRS) is not available for installation on Linux.

• SQL Server Management Studio (SSMS) must be on the Microsoft Windows

platform.

• SQL Server on Linux currently supports ext4 and XFS. Microsoft will add support

for other file systems later, as needed.

• In our testing, SQL Server on Linux and Linux Docker containers appeared to

consume CPU and memory resources similar to Windows 2017 for the same level

of database performance. SQL Server on Linux consumed 11 percent more CPU

compared to Windows for the same number of transactions per second. Minimum

CPU and memory requirements for the Linux installation of SQL Server are higher

compared to Windows. For up-to-date information on software and hardware

requirements, see the latest SQL Server release notes.

SQL Server on PowerMax test cases

We ran several test cases to demonstrate the capabilities of the PowerMax system for

performance. For all these tests, we used a standard benchmarking tool to drive

workloads from SQL Server instances. While the workloads ran, we monitored the

database transaction rate (TPM) and Windows Server performance, then we charted and

analyzed the results.

Our tests demonstrate a minimal performance configuration of a single-brick PowerMax

8000 with 30 NAND-Flash drives and 8 SCM drives. The results show how, in this small

configuration, multiple SQL Server database workloads can achieve predictable

performance when using PowerMax. PowerMax release Q3 2019, with end-to-end NVMe,

32 Gb FC and SCM drive support, provides the highest level of performance at very low

response times for mission-critical SQL Server databases. We used the following SQL

Server test cases:

• Test case 1—Quality of Service (QoS) test using a single SQL Server running at

the Diamond service level. This test case shows how PowerMax with SCM drives

provides the highest level of performance with very low response times.

• Test case 2—Scale test using multiple SQL Server databases running at Diamond

service levels. This test case shows how PowerMax can effectively support multiple

demanding applications while maintaining high performance and low latencies.

• Test case 3—Performance upgrade test for applications to support special

performance requirements for quarter-end and other demanding work flows. This

test case shows how effectively application service levels on PowerMax can be

managed to support high performance requirements for special purposes.

• Test case 4—Onboard test for applications in a consolidated environment. This

test case shows how effectively new upcoming applications can be consolidated on

PowerMax alongside existing workloads.

Limitations of

SQL Server on

Linux

Introduction

SQL Server on PowerMax test cases

23 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases

White Paper

• Test case 5—Noisy neighbor test for Predictable performance of mission critical

applications. This test case shows the effectiveness of PowerMax systems in

managing noisy neighbors with minimal or no impact to mission-critical applications.

• Test case 6—End-to-end NVMe test for SQL Server running on Linux. This test

shows high performance at the best response times for the applications.

• Test case 7—Bandwidth test for SQL Server DSS environments running on

PowerMax. This test demonstrates the high level of sequential read bandwidth

available on the PowerMax platform for decision support systems and data

warehouse environments.

The following figure is a high-level depiction of the test environment. The environment

consists of multiple Dell EMC PowerEdge R740 servers. Each host uses two dual-port

HBAs, so four initiators per server are connected to the SAN switches. The database uses

an 8 KB block size and a very small buffer pool to generate as many I/Os as possible to

test the PowerMax storage capabilities.

The following table provides the details of the testbed’s hardware and software

components.

Table 1. Hardware and software components

Category Type Quantity/size Version/release

Storage system for
testing

Dell EMC PowerMax 8000 • 1 PowerMax brick

• 512 GB usable cache

• 30 NVMe NAND flash
drives in RAID 5

• 8 SCM drives in RAID 5

PowerMaxOS 5978 based
on Q3 2019 release

Database servers Dell EMC PowerEdge R740 2 stand-alone servers Windows Server 2016

Databases SQL Server on stand-alone
servers

2 instances Microsoft SQL Server 2017

Objective

Test case 1 demonstrates exemplary Quality of Service (QoS) for a demanding SQL

Server database running an OLTP workload on the PowerMax.

Test configuration

We ran a single SQL Server database OLTP workload with a SQL Server buffer pool size

of 4 GB. TheSQL Server database was set to the Diamond service level. While the test

ran, we monitored host IOPS, SQL Server Transactions Per Minute (TPM), and read and

write response times.

Test results

As the test results in the following figure show, the SQL Server database at the Diamond

service level serviced by SCM drives coupled with the PowerMax cache provided very

high performance at unrivaled low latencies.

Test

environment

Test case 1:

Quality of

Service (QoS)

test

SQL Server on PowerMax test cases

24 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases
White Paper

Figure 7. QoS Test for single SQL Server database

The test produced an unprecedented read response time of 0.17 ms and a write response

time of 0.16 ms. All components of the storage system were still well balanced and capable of

supporting other workloads. Due to the very low response times, SQL Server database on

PowerMax allowed for host IOPS of 250 K with a SQL server database OLTP TPM of 2.5 M.

Test conclusion

The PowerMax system with SCM drives and other performance features can provide

unparalleled levels of IOPS at very low latencies for mission-critical applications.

Objective

Test case 2 demonstrates the ability of PowerMax to scale for SQL Server databases

supporting two different applications that are running OLTP workloads.

Test configuration

We ran two OLTP workloads on SQL Server databases at Diamond service levels running

on two identical servers. While the test ran, we monitored host IOPS, SQL Server TPM,

and read and write response times.

Test results

As the test results in the following figure show, PowerMax supported both highly

demanding workloads very effectively. Both databases performed in a balanced fashion

with overall cache read hits of 47%.

Test case 2:

Scale test

SQL Server on PowerMax test cases

25 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases

White Paper

Figure 8. Scale test for two independent SQL Server databases

Test case 2 demonstrated read and write response times of around 0.4 ms for both

databases. Even with such low response times, SQL Server databases on PowerMax allowed

for host IOPS of 430,000 for both SQL server databases and OLTP TPM of over 2 M each.

The total TPM for both databases was close to 4.3 M.

Test conclusion

The PowerMax system can support multiple highly demanding workloads simultaneously

while providing consistent performance. Comparing the results with Test Case 1, we can

see that the PowerMax system scales well. Even with a limited number of SCM drives (8

in our test case), multiple competing workloads can still achieve high performance at low

latencies.

Objective

Test case 3 demonstrates that application performance can be upgraded on demand

using PowerMax service levels.

Test configuration

We ran a single SQL Server database OLTP workload with a SQL Server buffer pool size

of 4 GB. Starting at the Silver service level, we gradually upgraded the service level to

Gold and then to Diamond while the test ran. We monitored host IOPS, SQL Server TPM,

and read and write response times during the test.

Test results

As the test results in the following figure show, as application demand changed, the

service level was upgraded to Gold which allowed PowerMaxOS to promote very active

extents to SCM.As demand increased even further, these workloads attained the highest

level of priority when the service level was changed to Diamond. At the Diamond service

level featuring the availability of larger SCM capacity, the highest level of performance

was achieved with unrivaled response times.

Test case 3:

Performance

upgrade test

SQL Server on PowerMax test cases

26 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases
White Paper

Figure 9. Single SQL Server database performance upgrade test

Table 2 below shows the response times, IOPS, and TPM for each of the three service levels

tested.

Table 2. Test case 3: Service levels and response time

Service level
Read response
time (ms)

Write response
time (ms)

Host IOPS
SQL Server
TPM

Silver 1.88 1.78 96K 890K

Gold 0.27 0.27 226K 2.2M

Diamond 0.17 0.17 247K 2.3M

PowerMax automated data placement uses real time ML and AI which effectively prioritized

the workloads as the workload demand changed. Therefore, when the service level was

changed, PowerMax used the limited SCM drive capacity very effectively for a highly active

workload. Because of this ability, the performance benefits were realized very quickly.

Test conclusion

The PowerMax system with automated data placement using AI/ML and service levels

effectively manage workload performance of demanding applications.

Objective

Test case 4 demonstrates the effective management of workload profiles while

onboarding new applications.

Test configuration

We ran two OLTP workloads on SQL Server databases:

• An already-active mission-critical workload running at the Diamond service level

• A low-priority workload for a newly deployed application running at the Silver

service level.

Test case 4:

Onboarding

application test

SQL Server on PowerMax test cases

27 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases

White Paper

As the newly deployed application aged, it was promoted first to the Gold service level

and then to the Diamond service level to reflect more users and an increasingly active and

important workload profile for that onboarding application. While the test ran, we

monitored host IOPS, SQL Server TPM, and read and write response times.

Test results

As the test results in the following figure show, PowerMax prioritized workloads quite well

as the service level changed. As the new application became more important and its

performance demands increased, PowerMax continued to provide high performance with

low latencies while maintaining the Diamond service level performance profile for the

existing workload.

Figure 10. Onboarding application test alongside existing mission critical application

Table 3 below shows the response times, IOPS, and TPM for each of the three service levels

tested for both databases.

Table 3. Test case 4: Service levels and response time

Period Database
Service
Level

Read
response
time (ms)

Write
response
time (ms)

Host
IOPS

SQL
Server
TPM

1
DB1 Diamond 0.25 0.22 223K 2.3M

DB2 Silver 1.92 1.89 91K 850K

2
DB1 Diamond 0.30 0.30 214K 2.0M

DB2 Gold 0.89 0.89 204K 1.96M

3
DB1 Diamond 0.4 0.35 207K 1.93M

DB2 Diamond 0.4 0.35 207K 1.93M

This test shows that the PowerMaxOS is able to identify the increasing activity level of

onboarding application as the service levels change. As a result PowerMax appropriately

prioritizes the onboarding application over the existing application and tries to balance

SQL Server on PowerMax test cases

28 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases
White Paper

performance. When both applications run on Diamond service levels at the similar activity

levels PowerMax resources are nicely balanced across both applications.

Test conclusion

The PowerMax system automated data placement recognizes active and demanding

applications. It leverages the limited SCM tier effectively by keeping highly active extents

from both applications in SCM to optimize the performance of both applications

simultaneously.

Objective

This test demonstrates how PowerMaxOS maintains the performance levels needed for a

mission-critical application by managing a “noisy neighbor” – the temporary but

demanding application competing with mission-critical application for the system

resources.

Test configuration

We ran a single SQL Server database OLTP workload with a SQL Server buffer pool size

of 4 GB. The SQL Server database was running at a Diamond service level for the

duration of the test. We started a “noisy neighbor” application at a Silver service level and

after some time, we terminated that application. While the test ran, we monitored host

IOPS, SQL Server TPM, and read and write response times.

Test results

As the test results in the following figure show, PowerMax maintained the performance of

the mission-critical application at the Diamond service level while managing a noisy

neighbor at a Silver service level for a limited amount of time.

Figure 11. No impact to mission critical application due to noisy neighbor

The SQL Server database at the Diamond Service level achieved read and write response

times of 0.17 ms with host IOPS of 231 K and SQL Server TPM of over 2.1 M. As the noisy

neighbor application ran, it achieved 1.84 and 1.7 ms read and write response times

respectively with SQL Server host IOPS 30 K and TPM of 295 K. Even when it was running

there was only marginal impact on the mission-critical application, which continued with 229 K

Test case 5:

Noisy neighbor

test

SQL Server on PowerMax test cases

29 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases

White Paper

host IOPS and 2.1 M SQL server TPM at the latencies of 0.2 ms for read and write operations.

And when the noisy neighbor was terminated, the mission-critical application returned to its

original level of operation.

Test conclusion

The PowerMax system with SCM drives and other performance features can provide

unprecedented levels of IOPS at very low latencies for mission-critical applications. It can

maintain that performance level even when some low-priority applications are added to

the workload.

Objective

Test case 6 demonstrates the end-to-end NVMe support of PowerMax for SQL Server

running on Linux servers.

Test configuration

We ran a single SQL Server database OLTP workload with a SQL Server buffer pool size

of 4 GB on Linux server. While the test ran, we monitored host IOPS, SQL Server TPM,

and read and write response times.

Test results

As the test results in the following figure show, PowerMax provided end-to-end NVMe

support when using 32 Gb FC-NVMe HBAs on the Linux server.

Figure 12. End-to-end NVMe test for SQL Server running on Linux

This testing achieved read and write response times of 0.15 ms and 0.19 ms respectively.

This performance level was unparalleled, while all components of the storage system were still

quite balanced and able to support additional workloads. PowerMax supported host IOPS of

over 227 K with a SQL Server Database OLTP transaction rate of 1.8 M.

Test conclusion

The end-to-end NVMe support on PowerMax accommodates an unrivaled level of

performance for SQL Server on Linux.

Test case 6: End-

to-end NVMe test

for SQL Server

on Linux

SQL Server on PowerMax test cases

30 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases
White Paper

Objective

Test case 7 demonstrates the high level of sequential read bandwidth that is available on

the PowerMax platform for decision support systems and data warehouse environments.

Test configuration

We ran a single SQL Server database DSS workload at the Diamond service level with a

SQL Server buffer pool size of 4 GB. While the test ran, we monitored host MB/S, as well

as read and write response times.

Test results

As the test results in the following figure show, dual-ported smart RAID, 32 Gb FC-NVMe,

and SCM drives coupled with the PowerMax cache provided a tremendous amount of

bandwidth and unprecedented low latencies while supporting a SQL Server database

OLTP workload at the Diamond service level.

Figure 13. SQL Server DSS sequential read bandwidth on PowerMax

The test showed an unprecedented read response time of 0.33 ms and a write response time

of 0.21 ms while driving the DSS workload at almost 30 GB/s.

Test conclusion

The PowerMax system with SCM drives and all other performance features can provide

unparalled levels of bandwidth at very low latencies for decision support systems.

Test case 7: DSS

bandwidth test

Dell EMC documentation references

31 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases

White Paper

Dell EMC documentation references

The following Dell EMC documentation provides additional and relevant information for

PowerMax. Access to these documents depends on your login credentials. If you do not

have access to a document, contact your Dell EMC representative.

• PowerMax and VMAX technical documents and videos

• PowerMax and VMAX All Flash technical document library for application papers

https://www.dell.com/support/article/us/en/04/sln314818/powermax-and-vmax-technical-documents-and-videos?lang=en
https://www.dell.com/support/article/us/en/04/sln314818/powermax-and-vmax-technical-documents-and-videos?lang=en
https://www.dellemc.com/en-us/documentation/vmax-all-flash-family.htm?docs=application-technical-papers
https://www.dellemc.com/en-us/documentation/vmax-all-flash-family.htm?docs=application-technical-papers

Appendix A: Operating system support and Windows/Linux test case

32 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases
White Paper

Appendix A: Operating system support and Windows/Linux test case

This appendix provides an overview of supported operating systems for SQL Server 2017 and

higher, including Linux support, and a test case that compares OLTP workload performance

on Linux and Windows deployments.

SQL Server 2017 and higher support the following operating systems:

• Linux:

▪ Red Hat Enterprise Linux 7.3

▪ SUSE Linux Enterprise Server 12 SP2

▪ Ubuntu 16.04

• Docker:

▪ Docker Engine 1.8+ on any supported Linux distribution or Docker for Mac/Windows.

For more information, see the Docker installation and configuration guide.

▪ Minimum of 3.5 GB of disk space and 2 GB of RAM for container

The Linux system configuration includes:

• 3.25 GB RAM

• XFS or EXT4 file system

After the operating system is installed, connect to the SQL Server instance on your Linux

machine. You can connect locally or remotely and with a variety of tools and drivers. One

or more of the following tools can be used to manage SQL Server:

You can use native tools that are used on SQL Server on Windows to manage SQL

Server instances on Linux and Docker containers. Supported tools include:

• sqlcmd command-line tool

• Visual Studio Code (VS Code)

• SQL Server Management Studio (SSMS)

• SQL Server Data Tools (SSDT)

Conclusion

For cloud-native applications, Linux and containerized SQL Server versions provide good

alternatives to Windows versions. Users can use the standard set of tools that are

available to them on those platforms to manage SQL Server without significant

performance differences.

Introduction

Supported

operating

systems

Linux system

configuration

Management

tools for SQL

Server on Linux

Appendix B: Useful commands for SQL Server on Linux

33 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases

White Paper

Appendix B: Useful commands for SQL Server on Linux

A Windows shared drive can be made available to Linux-based installations as follows:

1. Grant domain ID DOMAIN\USERNAME full control on the share folder.

2. Create a mount point in Red Hat.

3. Change mssql:mssql as owner of the mount point.

sudo mount -t cifs //server1/newshare /var/opt/mssql/data -o

vers=3.0,username=user1,dom=DOMAIN1,uid=mssql,gid=mssql

RHEL Server can join Windows AD for centralized authentication:

sudo realm join contoso.com -U 'user@CONTOSO.COM' –v

You can download SQL Server 2017 from the Microsoft SQL Server website and install it

easily:

sudo curl -k -o /etc/yum.repos.d/mssql-server.repo

https://packages.microsoft.com/config/rhel/7/mssql-server-2017.repo

sudo /opt/mssql/bin/mssql-conf setup

Use standard Linux service control commands for starting, stopping, and checking the

status of SQL Server:

systemctl start mssql-server

systemctl status mssql-server

systemctl stop mssql-server

Using Windows

share

Joining AD

Domain from

RHEL Linux

Server

Installing SQL

Server 2017 for

Linux

Starting,

stopping and

checking status

of SQL Server

2017 services on

Linux

https://packages.microsoft.com/config/rhel/7/mssql-server-2017.repo

Appendix C: SQL Server on Kubernetes with PowerMax persistent volumes

34 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases
White Paper

Appendix C: SQL Server on Kubernetes with PowerMax
persistent volumes

This appendix describes in detail how IT professionals and application developers can

leverage the advantages of Docker, Kubernetes, SQL Server and Dell EMC servers and

PowerMax storage and to deploy SQL servers with efficiency.

A SQL Server instance on Kubernetes with persistent storage on PowerMax provides

resiliency and storage efficiency. Kubernetes plays the role of the cluster orchestrator.

When a SQL Server instance in a container fails, the orchestrator bootstraps another

instance of the container that attaches to the same persistent storage from PowerMax. If a

node has failed, Kubernetes creates a pod on another healthy node.

Figure 14. SQL server on Kubernetes architecture

In the preceding figure, mssql-server is a SQL Server instance (container) in a pod. The

figure shows three instances of SQL Server running. Applications connect to the service

to access the SQL Server. The service maps the external IP address and TCP port to the

pod’s internal IP address and port. The service could be the Load Balancer type or the

Cluster IP type, so that the IP address used to connect to SQL Server remains the same

even in the event of a node or pod failure. When a node hosting a SQL Server instance

pod fails, Kubernetes bootstraps a new pod with a SQL Server instance on a different,

healthy node and attaches it to the same persistent storage.

Note: SQL Server 2019 supports availability groups on containers in a Kubernetes cluster. For

availability groups, deploy the SQL Server Kubernetes operator to your Kubernetes cluster. The

operator helps package, deploy, and manage SQL Server instances and the availability group in a

cluster. SQL Server 2019 deployment with availability groups is not covered in this document.

Appendix C: SQL Server on Kubernetes with PowerMax persistent volumes

35 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases

White Paper

To effectively address the challenges of persistent storage, PowerMax provides a CSI

plugin that delivers persistent storage for container-based applications on premises for

both development and production scale. The Kubernetes CSI plugin for PowerMax is CSI

1.0 compliant and allows containerized applications in Kubernetes clusters to use block

storage from PowerMax over an iSCSI interface.

Ensure that the CSI Driver for Dell EMC PowerMax has been installed on the Kubernetes

cluster and is operational. See the Powermax CSI Driver Product Guide. Make sure that

your setup meets all the prerequisites described in this document.

Deploying a stateless container into a Kubernetes Cluster is quite simple, but SQL Server

is stateful. Therefore, we need a way to persist the created data across pod restarts.

Kubernetes provides us with the means to implement persistent storage. This section

covers the deployment of SQL Server on Kubernetes under different scenarios including

restoring an existing database backup from the PowerMax volume, as well by using a

snapshot of the existing data volumes on PowerMax.

Create namespace

Kubernetes namespaces are intended for use in environments with many users spread

across multiple teams or projects. Namespaces provide a scope for names and provide a

way to divide cluster resources among multiple users (via resource quota). It is

recommended to have a separate namespace for SQL. Create a Kubernetes namespace

with the name “mssql” using this command:

kubectl create namespace mssql

Create SA password

Create a password for SQL user SA before you create the SQL server container. The

recommended method is to create a Kubernetes secret and use it for the SA password.

The following command creates a password for the SA account. Set SA_PASSWORD to

that password that you would like to use with this command:

kubectl create secret generic mssql --namespace mssql --from-

literal=SA_PASSWORD="MySecretP@ssw0rd"

Note: SA password should be at least 8 characters long and must contain a combination of

uppercase letters, lowercase letters, 0 - 9 numerals and non-alphanumeric characters. If minimum

password requirements are not met, SQL Server container will fail to come up. Detailed password

requirements can be found at Password Policy.

Secrets can also be created by using manifest files as described in the Kubernetes

documentation about using Secrets. When a secret is being used for SQL SA password,

the deployment manifest for SQL Server will have password setting as shown below:

env:

 - name: MSSQL_PID

 value: "Developer"

 - name: ACCEPT_EULA

 value: "Y"

CSI Plugin

Prerequisites

Deployment of

SQL server

infrastructure

https://github.com/dell/csi-powermax/blob/master/CSI%20Driver%20for%20Dell%20EMC%20PowerMax%20Product%20Guide.pdf
https://docs.microsoft.com/en-us/sql/relational-databases/security/password-policy?view=sql-server-2017
https://kubernetes.io/docs/concepts/configuration/secret/

Appendix C: SQL Server on Kubernetes with PowerMax persistent volumes

36 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases
White Paper

 - name: MSSQL_SA_PASSWORD

 valueFrom:

 secretKeyRef:

 name: mssql

 key: SA_PASSWORD

Instead of using a Kubernetes secret, the password can be specified in the manifest file

for the deployment. This method is the simplest one, but it is not recommended as it

exposes the password clearly in text:

env:

 - name: MSSQL_PID

 value: "Developer"

 - name: ACCEPT_EULA

 value: "Y"

 - name: MSSQL_SA_PASSWORD

 value: "MySecretP@ssw0rd"

Persistent storage creation

Kubernetes pods are ephemeral by nature, so the data does not survive through the

restart/re-scheduling of a pod. The Kubernetes persistent volume (PV) framework allows

administrators to provision persistent storage for a cluster. Using persistent volume claims

(PVCs), developers can request storage resources defined by a Storage Class (SC)

without having specific knowledge of the underlying storage infrastructure.

Once the PowerMax CSI plugin has been installed on a Kubernetes cluster, it creates a

default Storage Class using parameters from the myvalues.yaml file that was created

during plugin installation. You can also create your own storage class by specifying

parameters that determine how storage is provisioned on the Dell EMC PowerMax array.

Some of the important parameters that you need to define while creating Storage Class

are:

• Mandatory parameters:

▪ SYMID – Dell EMC PowerMax ID on which volumes are to be created

▪ SRP – Storage Resource Pool. If you are not aware of which SRP to use, set it

to SRP_1.

• Optional parameters:

▪ ServiceLevel – Service Level for the volume. If not specified, the driver takes

the Optimized service level as default. See DellEMC PowerMax: Service Levels

for PowerMaxOS to select a Service Level based on your applications’

performance requirements.

▪ Application Prefix – Used to group volumes belonging to the same application.

Note: For valid values for parameters SYMID, SRP and ServiceLevel, please consult your

PowerMax administrator as these values are specific to your environment. To better understand

various Service Levels please see DellEMC PowerMax: Service Levels for PowerMaxOS.

Below are two examples of Storage Class. The first example specifies only mandatory

parameters.

https://www.dellemc.com/en-us/collaterals/unauth/technical-guides-support-information/products/storage/h17108-dell-emc-service-levels-for-powermaxos.pdf
https://www.dellemc.com/en-us/collaterals/unauth/technical-guides-support-information/products/storage/h17108-dell-emc-service-levels-for-powermaxos.pdf
https://www.dellemc.com/en-us/collaterals/unauth/technical-guides-support-information/products/storage/h17108-dell-emc-service-levels-for-powermaxos.pdf

Appendix C: SQL Server on Kubernetes with PowerMax persistent volumes

37 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases

White Paper

kind: StorageClass

apiVersion: storage.k8s.io/v1

metadata:

 name: pmax-8000-449

provisioner: csi-powermax

parameters:

 SRP: "SRP_1"

 ServiceLevel: "Diamond"

 SYMID: "000197600358"

The second example specifies File System type as XFS and reclaim policy as Retain.

Setting reclaim policy to Retain will not delete the PowerMax volume when the associated

PV ID is deleted. This is useful when you want to preserve the data on the volume for

future use.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: pmax-retain

parameters:

 SRP: SRP_1

 SYMID: "000197600358"

 ServiceLevel: Diamond

 FsType: xfs

provisioner: csi-powermax

reclaimPolicy: Retain

volumeBindingMode: Immediate

You can create Persistent Volumes (PV) and Persistent Volume Claims (PVC) using

these storage classes. These PVC names can be used in the pod manifests where you

can specify which containers need these volumes and where they must be mounted.

In general, a container’s root filesystem is not suitable for storing persistent data. The

containers you run on Kubernetes Engine are typically disposable entities, and the cluster

manager may delete, evict, or reschedule any containers that become unavailable due to

node failure or other causes. In such an occurrence, all data saved to a container’s root

filesystem is lost.

To deploy SQL server in Kubernetes cluster with persistent volumes from PowerMax,

create at least three PVCs with the appropriate Storage Class using a manifest. One

volume is for the SQL Server installation which will be mounted as /var/opt/mssql so that

the SQL Server configuration can persist. The other two volumes are for data and log

respectively. The number of data and log volumes can be increased as needed. It is

recommended to have at least two different volumes: one volume for data and one for log.

Having data and log on the same volume is not recommended as described earlier in this

paper. A sample manifest for creating PVCs to be used by SQL server is given below:

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

Appendix C: SQL Server on Kubernetes with PowerMax persistent volumes

38 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases
White Paper

 name: mssql-server-1

 namespace: mssql

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 10Gi

 storageClassName: pmax-358

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: mssql-data-1

 namespace: mssql

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1024Gi

 storageClassName: pmax-358

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: mssql-log-1

 namespace: mssql

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 250Gi

 storageClassName: pmax-358

Create PVCs using the manifest. It will create a PVC and an associated PV.

kubectl create -f pvc-449-mssql-server-data-log.yaml

persistentvolumeclaim/mssql-server-1 created

persistentvolumeclaim/mssql-data-1 created

persistentvolumeclaim/mssql-log-1 created

Use Kubectl command to list PVCs created by manifest and their associated PVs. The

volume capacity may be larger that requested in the manifest. This is not a problem.

kubectl get pvc -n mssql

Appendix C: SQL Server on Kubernetes with PowerMax persistent volumes

39 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases

White Paper

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE

mssql-data-1 Bound pmax-5f45ddbfb2 1025Gi RWO pmax-358 29s

mssql-log-1 Bound pmax-5f464d68b2 251Gi RWO pmax-358 29s

mssql-server-1 Bound pmax-5f451fb8b2 11Gi RWO pmax-358 29s

kubectl get pv -n mssql

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE

pmax-5f451fb8b2 11Gi RWO Delete Bound sql/mssql-server-1 pmax-449 8m53s

pmax-5f45ddbfb2 1025Gi RWO Delete Bound sql/mssql-data-1 pmax-449 8m53s

pmax-5f464d68b2 251Gi RWO Delete Bound sql/mssql-log-1 pmax-449 9m7s

Using existing PowerMax volumes to create PV/PVC

If a containerized SQL Server needs to restore backup from an existing PowerMax

volume or needs to use existing PowerMax volumes for data and log, you need to create

a PV using the existing PowerMax volume. Create this PV with Storage Class with

ReclaimPolicy set to Retain. Use the kubectl command to verify the ReclaimPolicy setting

for the Storage Class:

kubectl describe sc pmax-retain-358

Name: pmax-retain-358

IsDefaultClass: No

Annotations: <none>

Provisioner: csi-powermax

Parameters:

SRP=SRP_1,SYMID=000197600358,ServiceLevel=Bronze

AllowVolumeExpansion: <unset>

MountOptions: <none>

ReclaimPolicy: Retain

VolumeBindingMode: Immediate

Events: <none>

Identify the PowerMax volume that needs to be used for PV and find its volume identifier.

If there is no volume identifier for the volume, set a unique identifier using Unisphere or

SymCLI. The command symdev -sid <sym> list -identifier device_name

displays the list of volumes with identifier.

symdev -sid 358 list -identifier device_name

Symmetrix ID: 000197600358

 Device

Sym Config Attr Device Name

----- --------------- ---- ----------------------------

000F7 TDEV SQLbackup1TB

000FC TDEV csi-K8S-pmax-2a908fccb3
Volume

Identifier

Appendix C: SQL Server on Kubernetes with PowerMax persistent volumes

40 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases
White Paper

000FF TDEV csi-K8S-pmax-88f40510b4

00101 TDEV csi-K8S-pmax-88f4c8f6b4

00108 TDEV csi-K8S-pmax-706fba4db9

Unisphere shows the volume identifier in the volume details next to the device ID:

Figure 15. Locating volume identifier for a PowerMax volume using Unisphere

If the volume identifier is not set or needs to be changed, use SymCLI or Unisphere. Do

not change the volume identifier if the volume is in use by the CSI driver, because the

volume identifier is validated for CSI operations. A volume is in use by CSI driver if a

Persistent Volume (PV) is already mapped to the volume.

symdev -sid 358 set 000F7 -device_name sqlbackup2

Appendix C: SQL Server on Kubernetes with PowerMax persistent volumes

41 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases

White Paper

Figure 16. Setting volume identifier using Unisphere

A volume identifier is used to specify the volumeHandle for PV. The volume handle needs

to be in the format <volumeIdentifier>-<SymmID-<device ID>. For example, if volume is

000F7 on PowerMax 000197600358 and identifier is set to “SQLbackup1TB”,

volumeHandle would be SQLbackup1TB-000197600358-000F7 as shown in the manifest

for PV and PVC:

apiVersion: v1

kind: PersistentVolume

metadata:

 name: mssql-backup

 namespace: mssql

spec:

 accessModes:

 - ReadWriteOnce

 capacity:

 storage: 1024Gi

 csi:

 driver: csi-powermax.dellemc.com

 volumeHandle: SQLbackup1TB-000197600358-000F7

 persistentVolumeReclaimPolicy: Retain

 storageClassName: pmax-retain

 volumeMode: Filesystem

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: mssql-backup

 namespace: mssql

Appendix C: SQL Server on Kubernetes with PowerMax persistent volumes

42 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases
White Paper

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1024Gi

 storageClassName: pmax-retain-358

 volumeMode: Filesystem

 volumeName: mssql-backup

apiVersion: apps/v1beta1

Once the required PVCs are in place, you are ready to deploy SQL Server. All created

PVCs will be mounted to their respective directories in the SQL container. In this

document example, the container hosting the SQL Server instance is described as a

Kubernetes deployment object. The deployment creates a replica set. The replica set

creates the pod.

Create a manifest to describe the container based on the SQL Server mssql-server-linux

Docker image. The manifest references the mssql-server persistent volume claim, and the

mssql secret that is already applied to the Kubernetes cluster. The manifest also

describes a service, which is a load balancer. The load balancer guarantees that the IP

address persists after the SQL Server instance is recovered.

kind: Deployment

metadata:

 name: mssql-deployment-1

 namespace: mssql

spec:

 replicas: 1

 template:

 metadata:

 labels:

 app: mssql

 spec:

 terminationGracePeriodSeconds: 10

 containers:

 - name: mssql

 image: mcr.microsoft.com/mssql/server:2017-latest

 ports:

 - containerPort: 1433

 env:

 - name: MSSQL_PID

 value: "Developer"

 - name: ACCEPT_EULA

 value: "Y"

 - name: MSSQL_SA_PASSWORD

 valueFrom:

 secretKeyRef:

 name: mssql

Deployment of

SQL server

Appendix C: SQL Server on Kubernetes with PowerMax persistent volumes

43 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases

White Paper

 key: SA_PASSWORD

 volumeMounts:

 - name: mssqlsvr

 mountPath: /var/opt/mssql

 - name: mssqldata

 mountPath: /mssql/data

 - name: mssqllog

 mountPath: /mssql/log

 - name: mssqlbackup

 mountPath: /mssql/backup

 volumes:

 - name: mssqlsvr

 persistentVolumeClaim:

 claimName: mssql-server-1

 - name: mssqldata

 persistentVolumeClaim:

 claimName: mssql-data-1

 - name: mssqllog

 persistentVolumeClaim:

 claimName: mssql-log-1

 - name: mssqlbackup

 persistentVolumeClaim:

 claimName: mssql-backup

apiVersion: v1

kind: Service

metadata:

 name: mssql-deployment-1

 namespace: mssql

spec:

 selector:

 app: mssql

 ports:

 - protocol: TCP

 port: 1433

 targetPort: 1433

 externalIPs:

 - 10.228.247.248

Some of the fields and their values in the manifest are explained here:

• MSSQL_PID value: "Developer": Sets the container to run SQL Server Developer

edition. Developer edition is not licensed for production data. If the deployment is

for production use, set the appropriate edition (Enterprise, Standard, or Express).

• persistentVolumeClaim: This value requires an entry for claimName: that maps to

the name used for the persistent volume claim. In this example four persistent

volume claims are being used.

Appendix C: SQL Server on Kubernetes with PowerMax persistent volumes

44 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases
White Paper

• MSSQL_SA_PASSWORD: Configures the container image to set the SA

password. A Kubernetes secret is being used for password that was created in the

earlier steps.

Create deployment using manifest file using the kubectl create -f <manifest

file name> command:

kubectl create -f deploy-mssql-server-1.yaml

deployment.apps/mssql-deployment-1 created

The deployment and service are created. The SQL Server instance is in a container,

connected to persistent storage. To view the status of the pod, enter the kubectl get

pod command.

kubectl get pod -n mssql

NAME READY STATUS RESTARTS

AGE

mssql-deployment-1-7f754f6d7b-jss58 1/1 Running 0

75s

If the pod has a status of Running, it indicates that the container is ready. It may take

several minutes for the pod to get to the Running state after being deployed.

kubectl describe pod mssql-deployment-1-7f754f6d7b-jss58

Name: mssql-deployment-1-7f754f6d7b-jss58

Namespace: default

Priority: 0

PriorityClassName: <none>

Node: dsib3244/10.228.247.244

Start Time: Thu, 01 Aug 2019 19:31:41 -0400

Labels: app=mssql

 pod-template-hash=7f754f6d7b

Annotations: <none>

Status: Running

IP: 10.233.65.72

Controlled By: ReplicaSet/mssql-deployment-1-7f754f6d7b

Containers:

 mssql:

 Container ID:

docker://439a0bb16317ccd42af75e38b10e0b479b3968025a77f1c8325c38e7f

ae192e5

 Image: mcr.microsoft.com/mssql/server:2017-latest

 Image ID: docker-

pullable://mcr.microsoft.com/mssql/server@sha256:29fb9c64b0efb5694

8864b4df9e8b1dc26ef3ecc552e64902c24d81519f6a15e

 Port: 1433/TCP

 Host Port: 0/TCP

 State: Running

 Started: Thu, 01 Aug 2019 19:32:19 -0400

 Ready: True

Appendix C: SQL Server on Kubernetes with PowerMax persistent volumes

45 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases

White Paper

The kubectl get services command returns services that are running, as well as

the internal and external IP addresses for the services. Make note of the external IP

address for the mssql-deployment service. Use this IP address to connect to SQL Server.

kubectl get services -n mssql

NAME TYPE CLUSTER-IP EXTERNAL-IP

PORT(S) AGE

mssql-deployment-8 ClusterIP 10.233.45.10 10.228.247.248

1433/TCP 2d

A static route may be required to be configured on the host accessing SQL Server. If

required, set a static route for EXTERNAL-IP of the service with gateway as one of the

nodes of the cluster.

Use the sa account and the external IP address (and port number if not default) for the

service to connect to the SQL Server container. Use the password that you configured as

the Kubernetes secret or password configured in the deployment manifest.

You can use the following applications to connect to the SQL Server instance:

sqlcmd

To connect with sqlcmd, run the following command from the node or from any other

machine which has sqlcmd installed and has network access to the pod.

sqlcmd -S <External IP Address> -U sa -P <SA Password>

For example:

sqlcmd -S 10.233.26.89 -U sa

Password:

1>

SQL Server Management Studio

SQL Server Management Studio (SSMS) is part of a suite of SQL tools that Microsoft

offers free of charge for your development and management needs. SSMS is an

integrated environment to access, configure, manage, administer, and develop all

components of SQL Server. It can connect to SQL Server running on any platform on-

premises, in Docker containers, and in the cloud.

To connect to SQL server running in a container, enter the following information:

Setting Description

Server type The default is database engine; do not change this value

Server name External IP address assigned to service and the TCP port number

Authentication For SQL Server on Linux, use SQL Server Authentication

Login Name of a user with access to a database on the server, default is SA
as configured in manifest

Connecting to

the SQL Server

instance

https://docs.microsoft.com/en-us/sql/ssms/sql-server-management-studio-ssms?view=sql-server-2017

Appendix C: SQL Server on Kubernetes with PowerMax persistent volumes

46 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases
White Paper

Setting Description

Password Password or Secret configured in Pod manifest

Figure 17. SQL Server Management Studio (SSMS)

Restore database

If the deployment was created with a backup volume mounted, the database can be

restored from backup using sqlcmd or SSMS.

An example of a script used to restore a database is shown below.

Figure 18. Sample SQL script to restore database

You can run the script SSMS or using by using sqlcmd:

sqlcmd -S <Server IP Address> -U sa -P <SA Password> -i <script

file> -o <result file>

USE [master]
RESTORE DATABASE [tpcc215_Mod_8Dev1TB] FROM DISK = N'/sql/backup/tpccMod_MyFile.bak'
WITH REPLACE,FILE = 1

, MOVE N'tpcc215_org_8Dev1TB_fg1' TO N'/mssql/data/tpcc215_Mod_8Dev1TB_fg1.mdf'
, MOVE N'tpcc215_org_8Dev1TB_fg2' TO N'/mssql/data/tpcc215_Mod_8Dev1TB_fg2.ndf'
, MOVE N'tpcc215_org_8Dev1TB_fg3' TO N'/mssql/data/tpcc215_Mod_8Dev1TB_fg3.ndf'
, MOVE N'tpcc215_org_8Dev1TB_fg4' TO N'/mssql/data/tpcc215_Mod_8Dev1TB_fg4.ndf'
, MOVE N'tpcc215_org_8Dev1TB_fg5' TO N'/mssql/data/tpcc215_Mod_8Dev1TB_fg5.ndf'
, MOVE N'tpcc215_org_8Dev1TB_fg6' TO N'/mssql/data/tpcc215_Mod_8Dev1TB_fg6.ndf'
, MOVE N'tpcc215_org_8Dev1TB_fg7' TO N'/mssql/data/tpcc215_Mod_8Dev1TB_fg7.ndf'
, MOVE N'tpcc215_org_8Dev1TB_fg8' TO N'/mssql/data/tpcc215_Mod_8Dev1TB_fg8.ndf'
, MOVE N'tpcc215_org_8Dev1TB_log' TO N'/mssql/log/tpcc215_Mod_8Dev1TB_log.ldf'
, NOUNLOAD, STATS = 5

GO

Appendix C: SQL Server on Kubernetes with PowerMax persistent volumes

47 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases

White Paper

For example:

sqlcmd -S 10.228.247.248 -U sa -P MySecretP@ssw0rd -i

restoredb.sql -o restoreout.txt

Migrating existing SQL database to Kubernetes

Migrating an existing SQL database which exists on a PowerMax device is fast and

efficient. There is no need to go through the time-consuming process of database backup

and restore. The most efficient method is to create a snapshot of the existing data and log

volumes and then use those snapshots to create Kubernetes PVs to be used by a SQL

Server container.

PowerMax array’s local replication data service Timefinder SnapVX creates very low-

impact snapshots. SnapVX provides the ability to manage consistent point-in-time copies

for storage groups with a single operation. This allows multiple persistent volumes used

by a pod to be managed together.

A point-in-time snapshot can be accessed from Kubernetes nodes by linking it to a host-

accessible volume referred to as a target. Target volumes are standard PowerMax

devices. Up to 1,024 target volumes can be linked to the snapshot(s) of a single source

volume. By default, targets are linked in a no-copy mode. This no-copy mode eliminates

the need to perform a full volume copy of the source volume during the unlink operation in

order to continue to use the target volume for host I/O.

Make a copy of existing data and log

To make a copy of the existing data and log, follow these steps:

1. Identify the PowerMax volumes that contain the existing SQL server and put them

in a Storage Group. If the volumes are already in a storage group, this step is not

required.

2. Create a snapshot of the storage group which will be then used to create

Kubernetes persistent volumes.

3. Create a new Storage Group with volumes that match in number and size with the

original storage group, and link the snapshot to this new storage group. Make

sure that device names do not contain “-“ in the name.

symsnapvx -sid 359 -sg postgres -name postgres1 establish

symsg -sid 358 symsg -sid 358 create mssql-deployment-1

symsg -sid 358 create mssql-deployment-1

symsg -sid 358 -sg mssql-deployment-1 add dev 000FF

symsg -sid 358 -sg mssql-deployment-1 add dev 00101

symsnapvx -sid 358 -sg mssql-deployment-1 -name sql-snap-

1 establish

Appendix C: SQL Server on Kubernetes with PowerMax persistent volumes

48 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases
White Paper

Create PV and PVC using existing volumes

To create a PV using a specific existing PowerMax volume, use a volume identifier to

specify the volumeHandle for PV. The volume handle must be in the format

<volumeIdentifier>-<SymmID-<device ID>.

For example, if volume is 00104 on PowerMax with SYMID 000197600358 and identifier

is set to “sqldatasnap001”, volumeHandle would be “sqldatasnap001-000197600358-

00104” as shown in the manifest for PV and PVC below. Create similar manifests for all

the volumes required for the SQL server (Data and Log volumes). Field labels can be

used to uniquely define a PV so that while creating a PVC, the selector parameter can be

used to pick a specific PV. In this example, label matching is being used to pick a specific

PV while creating PVC. Create PV for data and log volumes.

apiVersion: v1

kind: PersistentVolume

metadata:

 name: sql-data-snap-001

 labels:

 device-name: sqldatasnap001

spec:

 accessModes:

 - ReadWriteOnce

 capacity:

 storage: 1024Gi

 csi:

 driver: csi-powermax.dellemc.com

 volumeHandle: sqldatasnap001-000197600358-00104

 persistentVolumeReclaimPolicy: Retain

 storageClassName: powermax-358

 volumeMode: Filesystem

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: mssql-data-snap-1

spec:

 accessModes:

symsg -sid 358 create sql_LNK_SG_001

symdev -sid 358 create -tdev -emulation fba -v -nop -cap 1048577 -captype mb -

device_name sqldatasnap001 -sg sql_LNK_SG_001

symdev -sid 358 create -tdev -emulation fba -v -nop -cap 256001 -captype mb -

device_name sqllogsnap001 -sg sql_LNK_SG_001

symsnapvx -sid 358 -sg mssql-deployment-1 -lnsg sql_LNK_SG_001 -snapshot_name

sqlsnap1 link -copy

Appendix C: SQL Server on Kubernetes with PowerMax persistent volumes

49 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases

White Paper

 - ReadWriteOnce

 resources:

 requests:

 storage: 1024Gi

 selector:

 matchLabels:

 device-name: sqldatasnap001

 storageClassName: powermax-358

For the SQL server volume, create a dynamic PVC of required size.

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: mssql-server-1

 labels:

 device-name: sql-server-1

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 20Gi

 storageClassName: powermax-358

Deploy SQL server and attach database

Deploy SQL Server using the PVC created in the previous step. The manifest will have

one newly created volume for SQL Server, plus data and log volumes from existing

PowerMax devices. Once the pod is operational, use SQL Server Management Studio to

attach the database to SQL Server using the .mdf file for the database. In SSMS, after

connecting to the SQL Server Database Engine through Object Explorer, expand the

server, right-click on Databases, and select Attach.

Appendix C: SQL Server on Kubernetes with PowerMax persistent volumes

50 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases
White Paper

Figure 19. Attaching SQL Server database using SSMS

Create a script file with the restore commands as shown in the script example below. This

script example has eight data files and one log file to be restored. Use SSMS or sqlcmd to

execute the script. Run sqlcmd with all the required options. Option -I specifies the input

file which was created in the previous step and -o option specifies the output file where

output of the command will be stored. If -o option is not specified, output is written on a

standard output device which is normally the terminal screen.

sqlcmd -S 10.228.247.248 -U sa -P MySecretP@ssw0rd -i

attachdb.sql -o attachout.txt

USE [master]
RESTORE DATABASE [tpcc215_Mod_8Dev1TB] FROM DISK = N'/sql/backup/tpccMod_MyFile.bak' WITH
REPLACE,FILE = 1
, MOVE N'tpcc215_org_8Dev1TB_fg1' TO N'/mssql/data/tpcc215_Mod_8Dev1TB_fg1.mdf'
, MOVE N'tpcc215_org_8Dev1TB_fg2' TO N'/mssql/data/tpcc215_Mod_8Dev1TB_fg2.ndf'
, MOVE N'tpcc215_org_8Dev1TB_fg3' TO N'/mssql/data/tpcc215_Mod_8Dev1TB_fg3.ndf'
, MOVE N'tpcc215_org_8Dev1TB_fg4' TO N'/mssql/data/tpcc215_Mod_8Dev1TB_fg4.ndf'
, MOVE N'tpcc215_org_8Dev1TB_fg5' TO N'/mssql/data/tpcc215_Mod_8Dev1TB_fg5.ndf'
, MOVE N'tpcc215_org_8Dev1TB_fg6' TO N'/mssql/data/tpcc215_Mod_8Dev1TB_fg6.ndf'
, MOVE N'tpcc215_org_8Dev1TB_fg7' TO N'/mssql/data/tpcc215_Mod_8Dev1TB_fg7.ndf'
, MOVE N'tpcc215_org_8Dev1TB_fg8' TO N'/mssql/data/tpcc215_Mod_8Dev1TB_fg8.ndf'
, MOVE N'tpcc215_org_8Dev1TB_log' TO N'/mssql/log/tpcc215_Mod_8Dev1TB_log.ldf'
, NOUNLOAD, STATS = 5

GO

Appendix C: SQL Server on Kubernetes with PowerMax persistent volumes

51 Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases

White Paper

If the node running SQL Server needs to be taken out of service, there is no need to shut

down the server. The SQL Server will automatically be migrated to another node. The

server will be unavailable while the persistent storage volumes are mapped to the new

node. The failover time depends on the number of volumes mapped to the container and

the volume un-map/map process is sequential in nature. Table 1 shows SQL server

failover time and the number of persistent volumes.

Table 4. SQL server downtime and number of PVCs

SQL server migration time using Node drain

Number of PVCs SQL server down time (Seconds)

1 64

4 84

8 143

12 148

If the container dies and is restarted on the same node, the downtime is only 10 to 12

seconds because no volume un-map/map or volume discovery is required in this

scenario.

Planned failover

	Dell EMC PowerMax Storage for Mission-Critical SQL Server Databases White Paper
	Executive summary
	Overview
	Audience
	We value your feedback

	PowerMax features and benefits for SQL Server
	Overview
	PowerMax NVMe back end
	PowerMax NVMe over fabric
	Adaptive Compression Engine
	Exclusive data deduplication
	PowerMaxOS automated data placement
	Key benefits of PowerMax systems for SQL Server databases

	Configuration best practices and design considerations
	Introduction
	Storage design
	Storage connectivity best practices
	Virtual Provisioning and thin devices
	Considerations for PowerMax data reduction with SQL Server

	Host connectivity
	FC connectivity best practices
	iSCSI connectivity best practices
	Number and size of host devices
	Physical host connectivity best practices
	Host I/O limits and multi-tenancy

	Linux support with SQL Server 2017 and PowerMax with NVMeoF
	Introduction
	Advantages of SQL Server on Linux
	Limitations of SQL Server on Linux

	SQL Server on PowerMax test cases
	Introduction
	Test environment
	Test case 1: Quality of Service (QoS) test
	Objective
	Test configuration
	Test results
	Test conclusion

	Test case 2: Scale test
	Objective
	Test configuration
	Test results
	Test conclusion

	Test case 3: Performance upgrade test
	Objective
	Test configuration
	Test results
	Test conclusion

	Test case 4: Onboarding application test
	Objective
	Test configuration
	Test results
	Test conclusion

	Test case 5: Noisy neighbor test
	Objective
	Test configuration
	Test results
	Test conclusion

	Test case 6: End-to-end NVMe test for SQL Server on Linux
	Objective
	Test configuration
	Test results
	Test conclusion

	Test case 7: DSS bandwidth test
	Objective
	Test configuration
	Test results
	Test conclusion

	Dell EMC documentation references
	Appendix A: Operating system support and Windows/Linux test case
	Introduction
	Supported operating systems
	Linux system configuration
	Management tools for SQL Server on Linux
	Conclusion

	Appendix B: Useful commands for SQL Server on Linux
	Using Windows share
	Joining AD Domain from RHEL Linux Server
	Installing SQL Server 2017 for Linux
	Starting, stopping and checking status of SQL Server 2017 services on Linux

	Appendix C: SQL Server on Kubernetes with PowerMax persistent volumes
	CSI Plugin
	Prerequisites
	Deployment of SQL server infrastructure
	Create namespace
	Create SA password
	Persistent storage creation
	Using existing PowerMax volumes to create PV/PVC

	Deployment of SQL server
	Connecting to the SQL Server instance
	sqlcmd
	SQL Server Management Studio

	Restore database
	Migrating existing SQL database to Kubernetes
	Make a copy of existing data and log
	Create PV and PVC using existing volumes
	Deploy SQL server and attach database

	Planned failover

