CONTENTS

Chapter 1
Introduction
Solution overview... 5
Scope.. 6
Assumptions... 6

Chapter 2
Configuring the solution
Design concepts.. 9
EMC VNX... 10
 - Disk drives... 10
 - Storage pool configuration (recommended).......................... 11
 - LUN configuration... 12
 - iSCSI initiators.. 12
 - Configure iSCSI front-end ports.. 12
 - Connect the iSCSI target on Windows................................. 13
 - Format the iSCSI target on Windows................................. 13
 - Fibre Channel configuration.. 14
 - VNXe RAID configuration... 14
 - Recommended cache configuration.................................. 15
Isilon (NAS).. 15
 - Data protection... 15
 - Impact policy and priority configuration............................ 16
 - Volume limits... 16
 - Large file system, small view (SmartQuotas)...................... 16
 - Configuring SmartQuotas (recommended)......................... 17
 - Unique share naming.. 17
 - Configuring SmartConnect (optional).................................... 17
 - I/O optimization configuration... 19
 - Configuring authentication and access control.................... 19
Releases tested.. 20

Chapter 3
Conclusion
Summary... 21
CHAPTER 1

Introduction

This chapter presents the following topics:

- Solution overview ... 6
- Scope ... 6
- Assumptions ... 6
Solution overview

Honeywell video management software (VMS) for video surveillance is scalable, provides sensor integration, and is standards-based for open integration. Honeywell VMS incorporates smart technology to automatically detect, analyze, and classify behaviors of people and vehicles. This solution is ideally coupled with Isilon Scale-out NAS storage or VNX family block storage including the Video Surveillance Storage (VSS) array. These options provide the customer with exceptional performance and reliability creating a successful implementation.

The purpose of this Configuration Guide is to help Dell EMC field personnel understand how to configure Dell EMC storage system offerings to simplify Honeywell DVM implementation. This document is not a replacement for the Honeywell implementation guide nor is the document a replacement for the Dell EMC sizing guides.

Honeywell DVM provides a comprehensive system for video surveillance. This system enables customer's network and security teams to collaborate effectively in a highly scalable environment that combines video and network techniques to optimize the experience. The Dell EMC storage system provides no single point of failure while the Honeywell DVM design ensures resilience.

Scope

This guide is intended for internal Dell EMC personnel and qualified Dell EMC and Honeywell partners. It provides configuration instructions for installing the Honeywell DVM video management software using Dell EMC storage platforms.

The following Dell EMC storage systems have been tested:

- Dell EMC Isilon™
- EMC VNX™

This guide supplements the standard EMC VNX Storage Best Practices with Video Management Systems: Configuration Guide and Dell EMC Isilon Storage Best Practices with Video Management Systems: Configuration Guide and provides configuration information specific to Honeywell DVM.

Note

All performance data in this guide was obtained in a rigorously controlled environment. Performance varies depending on the specific hardware and software used.

Assumptions

This solution assumes that internal Dell EMC personnel and qualified Dell EMC partners are using this guide with an established architecture.

This guide assumes that the Dell EMC partners who intend to deploy this solution are:

- Associated with product implementation
- Honeywell-certified to install Honeywell DVM services
- Proficient in installing and configuring VNX storage solutions
- Proficient in installing and configuring Isilon storage solutions
- Familiar with installing and configuring VMware hypervisors and the appropriate operating system, such as Microsoft Windows or a Linux distribution
- Able to access the *EMC VNX Storage with Video Management Systems: Configuration Guide* and *Dell EMC Isilon Storage with Video Management Systems: Configuration Guide*

The configurations that are documented in this guide are based on tests that we conducted in the Dell EMC Surveillance Lab using worst-case scenarios to establish a performance baseline. Lab results might differ from individual production implementations.
CHAPTER 2

Configuring the solution

This chapter presents the following topics:

- **Design concepts** ... 10
- **EMC VNX** ... 10
- **Isilon (NAS)** .. 15
- **Releases tested** ... 20
Design concepts

There are many design options for a Honeywell DVM implementation. These design details are beyond the scope of this paper.

The Honeywell Building Solutions Digital Video Manager Release 500 provides the information that you need to plan a Honeywell DVM system. The document is available from a Honeywell partner or through dvm.honeywell.com. This configuration guide is not intended to replace or supersede any Honeywell document.

This guide is intended for systems integrators and architects, network IT planners, and system administrators. The guides assume that readers know what Honeywell DMV does and how it works, and know how to deploy and configure Windows IP networks.

The following figure represents the basic configuration that was tested in our lab for this solution.

Figure 1 Honeywell DVM architecture

EMC VNX

VNX storage is ideal for recording and managing terabytes of video from distributed locations. This section describes best practices for configuring a VNX storage system for this solution.

The VNX family includes the VNX and VNX-VSS series arrays. The VNX series is designed for midtier to enterprise storage environments, is ideal for distributed environments, and can scale to handle large petabyte (PB) environments with block-only requirements at central locations.

Disk drives

Although any supported drive will work, video surveillance systems typically rely on the density of the array. Dell EMC recommends NL-SAS drives of the highest available density in this solution. In general, we used one-terabyte (TB) or multi-TB NL-SAS drives when performing our tests.

Note

Because of the high percentage of sequential, large block writes, Dell EMC does not recommend using flash drives for video storage within a surveillance application.
Storage pool configuration (recommended)

The tests we conducted show how storage pools that are defined with the maximum allowable number of disks per pool perform as well as, or better than, traditional RAID groups. Therefore, Dell EMC recommends that you use storage pools rather than RAID groups. Storage pools also reduce the required array management tasks.

The VNX family array architecture is optimized for storage pools. A storage pool is a construct that is built over one, or more commonly multiple, RAID groups. LUNs are built on top of the storage pool. The read/write activity is a random distribution across all disks defined to the storage pool. This distribution results in increased and balanced per disk utilization and improved performance when compared to traditional RAID implementations.

The RAID groups underlying storage pools can be either RAID 5 or RAID 6. The default and recommended RAID configuration for a VNXe or VSS1600 array using NL-SAS drives is RAID 6. Either RAID 5 or RAID 6 can be used with VNX arrays. RAID 5 is used for optimizing the array to achieve the maximum amount of storage and RAID 6 is used for enhancing data protection. Our tests using an isolated surveillance infrastructure did not reveal any notable performance variances when using RAID 5 as compared to RAID 6.

Building a storage pool is a straightforward process. You can configure either RAID 5 or RAID 6 pools depending on the VNX storage system restrictions and the level of risk that the customer is willing to accept. When configuring storage pools, use large storage pools with large logical unit number (LUN) sizes, and configure the LUNs as thick. Do not use thin LUN provisioning.

Dell EMC recommends the following RAID configurations for VNX arrays:

- RAID 5 or RAID 10 with SAS drives
- RAID 6 with NL-SAS drives

Procedure

1. In Unisphere, select Storage > Storage Pools for block.
2. Click Create under Pools in the Pools section.
3. Set the following options for the storage pool:
 - Storage pool name
 - RAID type
 - Number of SAS drives
 - Number of NL SAS drives
4. Choose a method for selecting disks to include in the storage pool:
 - **Automatic**: Provides a list of available disks.
 - **Manual**: Enables you to select specific disks to include in the storage pool from a list of available disks. Be sure to clear the automatic disk recommendation list before you select new disks from the list.
5. Select **Perform a Background verify on the new storage** and set the priority to medium.
6. Click Apply, and then click YES to create the storage pool.
LUN configuration

A VNX pool LUN is similar to a classic LUN. Pool LUNs comprise a collection of slices. A slice is a unit of capacity that is allocated from the private RAID groups to the pool LUN when it needs additional storage. Pool LUNs can be thin or thick.

Thin LUNs typically have lower performance than thick LUNs because of the indirect addressing. The mapping overhead for a thick LUN is less than for a thin LUN.

Thick LUNs have more predictable performance than thin LUNs because they assign slice allocation at creation. Because thick LUNs do not provide the flexibility of oversubscribing like a thin LUN, use thick LUNs for applications where performance is more important than saving space.

Thick and thin LUNs can share the same pool, enabling them to have the same ease-of-use and benefits of pool-based provisioning.

Procedure

1. In Unisphere, right-click a storage pool and then click **Create LUN**.
2. Type the user capacity for the LUN.
3. Type the starting **LUN ID**, and then select the number of LUNs to create.

 For example, if the selected LUN ID is 50, and the selected number of LUNs to create is 3, the names for the LUNs are 50, 51, and 52.
4. Select **Automatically assign LUN IDs as LUN names**.
5. Click **Apply**.

iSCSI initiators

Software or hardware initiators may be used with VMware ESXi server or a non-virtualized server.

Microsoft Internet SCSI (iSCSI) initiators

For both physical servers and VMware ESXi server, the Dell EMC Surveillance Lab uses Microsoft iSCSI initiators with excellent results.

Hardware iSCSI initiators

Hardware iSCSI initiators can be used. There are many iSCSI initiators available on the market, and results might vary.

Configure iSCSI front-end ports

Configure the storage system iSCSI front-end ports when the cabling is completed.

For cable specifications, refer to the technical specifications for your storage system. You can generate an up-to-date version of these specifications using the **Learn about storage system** link on the storage system support website.

For high availability:

- Connect one or more iSCSI front-end data ports on SP A to ports on the switch or router. If two switches or routers are available, connect the same number of iSCSI front-end data ports on SP B to ports on the same switch or router, or on another switch or router.
- For a multiple NIC or iSCSI host bus adapter (HBA) server, connect one or more NIC or iSCSI ports to ports on the switch or router. If two switches or routers are
available, connect the same number of NIC or iSCSI HBA ports to ports on the same switch or router, or on another switch or router.

Procedure

1. To start Unisphere, in an Internet browser, type the IP address of the storage system SP that you want to manage.
2. Type your user name and password.
3. Click Login.
4. From Unisphere, select System > Hardware > Storage Hardware.
5. Identify the storage system iSCSI front-end ports by selecting SPs > SP A/B > IO Modules > Slot [#] > Port [#] in the Hardware window.
 For example: SPs > SP A > IO Modules > Slot A4 > Port 0
6. Click OK.
7. Highlight the iSCSI front-end port that you want to configure and click Properties.
8. To assign an IP address to the port, click Add in Virtual Port Properties.
9. Click OK and close all open dialog boxes
10. Click OK.
11. Click OK.

 The iSCSI Port Properties window displays the added virtual ports in the Virtual Port Properties area.

Connect the iSCSI target on Windows

When the iSCSI target is connected to the Windows iSCSI initiator, the volume is shown on the computer as a local physical hard drive, which can be used for video storage.

Procedure

1. Connect the iSCSI target with the Windows iSCSI initiator.
 a. Launch the iSCSI initiator at Control Panel > Tools.
 b. On the iSCSI Initiator Properties page, click Discovery.
 c. Enter the IP address of the NAS and then click OK.
 d. Click Targets and then select the available iSCSI targets that you want to connect.
 e. Click Connect.
 f. Click OK.

 On successful connection, the status changes to Connected.

Format the iSCSI target on Windows

After the iSCSI target has been successfully connected on Windows, Windows displays the iSCSI target as an Unallocated Disk. You must set the disk to online and format the disk before you can start using it as a local disk to store video.

Procedure

1. Right-click Computer and then click Manage.
2. Click Disk Management to display current disk information.
3. Right-click iSCSI Disk and then click Online to activate the disk.
4. Right-click iSCSI Disk again to open the New Simple Volume Wizard window.
5. Follow the wizard to complete formatting the disk.

When the wizard completes, the disk appears as a local hard disk drive, which can then be used as extra storage space.

Fibre Channel configuration

To transfer traffic from the host servers to shared storage, the serial-attached network (SAN) uses the Fibre Channel (FC) protocol that packages SCSI commands into FC frames.

Note

iSCSI is prevalent for video security implementations because it often provides a lower-cost option when compared to FC.

To restrict server access to storage arrays that are not allocated to the server, the SAN uses zoning. Typically, zones are created for each group of servers that access a shared group of storage devices and LUNs. A zone defines which HBAs can connect to specific service providers (SPs). Devices outside a zone are not visible to the devices inside the zone.

Zoning is similar to LUN masking, which is commonly used for permission management. LUN masking is a process that makes a LUN available to some hosts and unavailable to other hosts.

Zoning provides access control in the SAN topology. Zoning defines which HBAs can connect to specific targets. When you use zoning to configure a SAN, the devices outside a zone are not visible to the devices inside the zone.

Zoning has the following effects:

- Reduces the number of targets and LUNs presented to a host
- Controls and isolates paths in a fabric
- Prevents non-ESXi systems from accessing a particular storage system and from possible virtual machine file system (VMFS) data loss
- Optionally, separates different environments, such as test and production environments

With VMware ESXi hosts, use single-initiator zoning or single-initiator-single-target zoning. The latter is the preferred zoning practice because it is more restrictive and prevents problems and misconfigurations that can occur on the SAN.

VNXe RAID configuration

VNXe offers RAID 5, RAID 6, and RAID 10 configurations. Different configurations offer different types of protection against disk failures.

Dell EMC recommends the following RAID configurations:

- RAID 5 or RAID 10 with SAS drives
- RAID 6 with NL-SAS drives
Recommended cache configuration

EMC VNX generation 2 systems, such as VNX5200 or VNX5400, manage the cache. If the array is shared with other applications, you can use a lower write cache value, but avoid excessive forced flushes.

Dell EMC recommends that you configure the cache as 90 percent write and 10 percent read if the storage array does not automatically adapt to the write characteristics of video surveillance (for example, EMC VNX5500 or EMC VNX-VSS100).

Isilon (NAS)

The Isilon scale-out network-attached storage (NAS) platform combines modular hardware with unified software to harness unstructured data. Powered by the distributed Isilon OneFS™ operating system, an Isilon cluster delivers a scalable pool of storage with a global namespace.

The platform's unified software provides centralized web-based and command-line administration to manage the following features:

- A symmetrical cluster that runs a distributed file system
- Scale-out nodes that add capacity and performance
- Storage options that manage files and tiering
- Flexible data protection and high availability
- Software modules that control costs and optimize resources

Data protection

In the Isilon N+M data protection model, N represents the number of nodes, and M represents the number of simultaneous node, drive, or a combination of node and drive failures that the cluster can withstand without incurring data loss. N must be larger than M.

Isilon OneFS supports N+1, N+2, N+3, and N+4 data protection schemes, and up to 8x mirroring. OneFS also supports several hybrid protection schemes. These include N+2:1 and N+3:1, which protect against two drive failures or one node failure, and three drive failures or one node failure, respectively.

The following best practices are based on a five-node minimum cluster size. You can use cluster sizes as small as a three-node cluster, but Dell EMC does not recommend this.

- Our five-node cluster lab tests were based on the Isilon recommended +2:1 protection level for this node count range. Larger node-count clusters have more disks, which cause an increase in the possibility of multiple disk failures. For larger clusters, consult the Isilon team or your Isilon representative for appropriate protection schemes: N+2:1, N+2, N+3, or N+4.
- Include a minimum free space calculation for proper cluster sizing. Dell EMC recommends a cluster size that enables a node to be removed, while retaining a minimum of 10 percent free space in the remaining capacity. This free space ensures that node removal and node failures have minimal or no impact on video ingestion.
An Isilon sizing tool provides a more accurate calculation. You can find this tool at https://isilon-lawndart.herokuapp.com/pools/search. Other sizing tools are available for sizing bandwidth and storage capacity needed.

Impact policy and priority configuration

The impact policy defines the number of parallel tasks or workers that can run at one time within OneFS. Leave the impact policy as it is, unless Isilon directs you to change one or more policies.

Releases with OneFS 7.0 or greater

Dell EMC recommends using OneFS 7.0 or later to maximize bandwidth and minimize video review response times. You can use the default impact policy with Isilon X400, Isilon X410, Isilon NL410, and greater. For less powerful nodes, such as the Isilon X200 and earlier running OneFS 7.0 or greater, modify all jobs to use an impact policy of **Low**.

Releases prior to OneFS 7.0

For releases prior to OneFS 7.0, the best I/O performance is obtained by configuring all background jobs with the impact policy set to **Low**. To set the impact policy select **Operations > Jobs and Impact Policies**.

Priority configuration

Even if the impact policy is modified, for example, by changing the settings of all the jobs to **Low**, the priority of the jobs remains at their default settings.

Volume limits

Implementations greater than 8 TB are common when video is stored on high-end storage, such as Isilon scale-out NAS storage and VNX block storage. The clustered file system OneFS uses enables Isilon to handle these large volumes.

Large file system, small view (SmartQuotas)

Although it is possible to assign the full Isilon cluster file system to a single Honeywell Recorder, the Dell EMC best practice is to use SmartQuotas™ to segment the single Isilon file system so that each Recorder has a logical subset view of storage.

There are three directory-level quota systems:

Advisory limit

Let you define a usage limit and configure notifications without subjecting users to strict enforcement.

Soft limit

Let you define a usage limit, configure notifications, and specify a grace period before subjecting users to strict enforcement.

Hard limit (recommended)

Let you define a usage limit for strict enforcement and configure notifications. For directory quotas, you can configure storage users' view of space availability as reported through the operating system.

Use the **Hard limit** quota system to set the video storage as a defined value.

If necessary, both Isilon and the Honeywell Recorder can add or subtract storage, even if a hard quota is set.
Configuring SmartQuotas (recommended)

The SmartQuotas feature enables you to limit the storage that is used for each Honeywell Recorder. It presents a view of available storage that is based on the assigned quota to the Recorder. SmartQuotas enables each Recorder to calculate its available disk space and react appropriately.

Without SmartQuotas, the Digital Video Manager administrator must anticipate the total write rate to the cluster and adjust the **Min Free Space** on each Recorder accordingly. A miscalculation can result in lost video. SmartQuotas resolves the issues that can be caused by manual calculations.

Configure SmartQuotas when more than one Recorder is writing to the Isilon cluster, or when other users share the cluster. Enable SmartQuotas and define a quota for each share or directory.

Configure the SmartQuotas setup with the following settings:

- Configure a hard share limit threshold to the Recorder video files.
- Define OneFS to show and report the available space as the size of the hard threshold.
- Set the usage calculation method to show the user data only.

Procedure

1. From the OneFS GUI, select **File System Management > SmartQuotas**.
2. For each listed share, select **View details**.
3. Under **Usage Limits**, select **Edit usage limits**.
4. Define the SmartQuotas limit and set the threshold:
 a. Select **Specify Usage Limits**.
 b. Select **Set a hard limit**.
 c. Type the hard limit value.
 d. Select the size qualifier, typically **TB**.
 e. Select the size of the hard threshold.
5. Click **Save**.
6. Repeat the process for the remaining shares.

Unique share naming

When working with a single file system, each Recorder uses the time and date as part of its directory and file-naming conventions.

To avoid corruption caused by overwriting or grooming (deleting) files prematurely, create a unique share for each Recorder.

Configuring SmartConnect (optional)

SmartConnect™ uses the existing Domain Name Service (DNS) Server and provides a layer of intelligence within the OneFS software application.

The resident DNS server forwards the lookup request for the delegated zone to the delegated zone’s server of authority, which is the SmartConnect Service IP (SIP) address on the cluster. If the node providing the SmartConnect service becomes unavailable, the SIP address automatically moves to a different node in the pool.
Connections are balanced across the cluster, which ensures optimal resource utilization and performance. If a node goes down, SmartConnect automatically removes the node's IP address from the available list of nodes, ensuring that a connection is not tried with the unavailable node. When the node returns to service, its IP address is added to the list of available nodes.

The delegated server authority is always the node with the lowest ID, unless it has surrendered its authority status, either voluntarily or involuntarily. This node should always be available, but if the status of the node changes and becomes unavailable, it voluntarily surrenders its role as server of authority.

You must add a delegation Name Server (NS) entry to the resident DNS server for the SmartConnect name, which points to the SIP address as the Name Server. In your DNS Manager, create a New Delegation using your SmartConnect zone name. In the Microsoft DNS wizard, a New Delegation record is added in the forward lookup zone for the parent domain.

SmartConnect balances connection loads to the Isilon cluster and handles connection failover. With SmartConnect, all Honeywell Recorders use a single fully qualified domain name (FQDN) or universal naming convention (UNC) path for video storage access. Using this network name provides load balancing when the connection to the cluster is made and simplifies installations.

SmartConnect Basic can use a round-robin-type connection allocation, which is based on DNS load balancing.

SmartConnect Advanced can include multiple pools for each subnet, Dynamic IP addresses for NFS, and the following load-balancing options (Connection policy and Rebalance policy):

Round-robin (recommended)
Sequentially directs a connection to the next Isilon IP address in the cycle. Based on field reports, this option works well with 20 servers or more.

Connection count
Provides uniform distribution of the Honeywell Recorder servers to specified nodes in the Isilon cluster. Use a unique IP address pool for video recording and Recorder read/write access.

Network throughput
Based on NIC utilization. Use of throughput requires that each Recorder is activated, configured, and recording video after it connects to Isilon.

CPU usage
Uses the node CPU utilization to determine which Isilon IP address to assign to the next connection request.

Ensure that no other service uses the Recorder IP address pool. Define additional pools for management (such as Isilon InsightIQ™ or administrative access), evidence repository, post process, or other use.

Procedure

1. Select **Networking Configuration**.
2. Under **Subnet > Settings**, define the SmartConnect service IP (SSIP) address. The SSIP address is the IP address that the DNS uses for the Isilon Authoritative name service.
3. Under **Pool settings**:
 a. Define the SmartConnect zone name, which is the name to which clients connect.
b. Define the SmartConnect service subnet (the subnet that has the SSIP configured on the DNS server).

c. Define the connection balancing policy to Round Robin.

d. Set the IP allocation strategy to Static.

4. Verify this configuration on the SmartConnect dashboard.

I/O optimization configuration

As of OneFS 7.0.x, no changes are necessary to the I/O profiles for the directories that are used for Honeywell.

Note

This setting does not require a SmartPool license.

Configuring authentication and access control

We conducted authentication and access control tests to determine the best method for shared access.

The following three tests were conducted:

Full Active Directory (recommended)

Where the Digital Video Manager server and the Isilon cluster are part of the same Windows domain.

Partial Active Directory

Where the Digital Video Manager servers are part of the Windows domain, but the Isilon cluster is administered locally.

Fully locally administered control

Where the Digital Video Manager servers and the Isilon cluster are administered locally.

Alternatives to the previous methods might exist, but the Dell EMC Surveillance Lab team does not plan to derive or support other methods.

Procedure

2. Select Access zone and ensure that the System access zone has the provider status Active Directory, Local, and File marked with a green dot.
3. Under Active Directory, select Join a domain and add the Windows domain and appropriate users using one of the following options:

 • When the Isilon cluster and Honeywell are not part of the same domain, set the shares to Run as Root. This setting is not ideal from a security perspective.

 • When the Isilon cluster and DVM server are part of the same domain, configure the DVM Camera service to use the Domain account with read/write permissions to the Isilon cluster share. During the initial installation of the camera server, use the DVM administrator account specification wizard to configure the camera service. Specify the recording location for the camera server using the full UNC path of the Isilon share.
Releases tested

The following tables list the firmware builds and software releases used for our tests.

Table 1 Firmware builds

<table>
<thead>
<tr>
<th>Model</th>
<th>Firmware</th>
</tr>
</thead>
<tbody>
<tr>
<td>VNXe1600</td>
<td>VNXe 0E 3.1.3.5754151</td>
</tr>
<tr>
<td>VNXe3200</td>
<td>VNXe 0E 3.1.3.5754151</td>
</tr>
<tr>
<td>VNXe3300</td>
<td>VNXe 0E 2.1.0.14097</td>
</tr>
<tr>
<td>VNX-VSS100</td>
<td>VNX OE 5.32.000.5.215</td>
</tr>
<tr>
<td>VNX5200</td>
<td>VNX OE 5.33.008.5.119</td>
</tr>
<tr>
<td>VNX5400</td>
<td>VNX OE 5.33.000.5.015</td>
</tr>
<tr>
<td>VNX5600</td>
<td>VNX OE 5.33.000.5.052</td>
</tr>
</tbody>
</table>

Table 2 OneFS releases

<table>
<thead>
<tr>
<th>Model</th>
<th>Firmware</th>
</tr>
</thead>
<tbody>
<tr>
<td>X410</td>
<td>7.2.1</td>
</tr>
<tr>
<td>NL410</td>
<td>7.2.1</td>
</tr>
<tr>
<td>HD400</td>
<td>7.2.1</td>
</tr>
</tbody>
</table>

Table 3 Honeywell DVM releases

<table>
<thead>
<tr>
<th>Release</th>
<th>Subrelease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honeywell DVM</td>
<td>600.1 Build 1833</td>
</tr>
</tbody>
</table>
CHAPTER 3

Conclusion

This chapter presents the following topics:

- Summary

22
Summary

Dell EMC performed comprehensive testing with Honeywell DVM against EMC VNX and Dell EMC Isilon clusters. Depending on the implementation needs, you can use Dell EMC storage for Honeywell DVM. The Honeywell DVM architecture and product suite enables extreme scaling from a few cameras to tens of thousands of cameras using Dell EMC storage.

EMC VNX

Compared to traditional block-level storage, the use of storage pools to create LUNs within the VNX arrays greatly simplifies the configuration and increases the performance. Either iSCSI or FC can be implemented. FC performs better than iSCSI.

EMC VSS

The VNX Video Surveillance Storage (VSS) is a storage solution that is purpose-built to meet the unique demands of the video surveillance environment. We found that this high-availability, low-cost array performs comparably to other arrays in the VNX family.

EMC VNXe

An iSCSI-connected VNXe array, implemented with storage pools, provides a cost-effective implementation while maintaining the expected performance. Many mid-sized deployments can use VNXe.

Dell EMC Isilon scale-out storage

Isilon scale-out storage is ideal for midtier and enterprise customers. An Isilon cluster is based on independent nodes working seamlessly together to present a single file system to all users.

Licensed SmartQuotas options can be configured so that each Recorder view of the storage is based on the assigned quota and not the entire file system. Dell EMC recommends using SmartQuotas with Honeywell DVM as a best practice.