
 
 

h14071.16 

Technical White Paper 

ECS Overview and Architecture 
 

Abstract 
This document provides a technical overview and design of the Dell EMCÊ 

ECSÊ software-defined cloud-scale object storage platform. 

May 2020 

 



Revisions 

2 ECS Overview and Architecture | h14071.16 

Revisions 

Date Description 

December 2015 Initial release 

May 2016 Updated for 2.2.1 

September 2016 Updated for 3.0 

August 2017 Updated for 3.1 

March 2018 Updated for 3.2 

September 2018 Updated for Gen3 Hardware 

February 2019 Updated for 3.3 

September 2019 Updated for 3.4 

February 2020 Updated ECSDOC-628 changes 

May 2020 Updated for 3.5 

 

Acknowledgements 

This paper was produced by the following: 

Author: Zhu, Jarvis 

 

 

 

 

The information in this publication is provided ñas is.ò Dell Inc. makes no representations or warranties of any kind with respect to the information in this 

publication, and specifically disclaims implied warranties of merchantability or fitness for a particular purpose. 

 

Use, copying, and distribution of any software described in this publication requires an applicable software license. 

 

Copyright © 2015ï2020 Dell Inc. or its subsidiaries. All Rights Reserved. Dell, EMC, Dell EMC and other trademarks are trademarks of Dell Inc. or its 

subsidiaries. Other trademarks may be trademarks of their respective owners. [5/11/2020] [Technical White Paper] [h14071.16]   

mailto:jarvis_zhu@dell.com
mailto:jarvis_zhu@dell.com


Table of contents 

3 ECS Overview and Architecture | h14071.16 

Table of contents 

Revisions............................................................................................................................................................................. 2 

Acknowledgements ............................................................................................................................................................. 2 

Table of contents ................................................................................................................................................................ 3 

Executive summary ............................................................................................................................................................. 5 

1 Introduction ................................................................................................................................................................... 6 

1.1 Audience ............................................................................................................................................................. 6 

1.2 Scope .................................................................................................................................................................. 6 

2 Value of ECS ................................................................................................................................................................ 7 

3 Architecture .................................................................................................................................................................. 9 

3.1 Overview ............................................................................................................................................................. 9 

3.2 ECS portal and provisioning services ............................................................................................................... 10 

3.3 Data services .................................................................................................................................................... 12 

3.3.1 Object ............................................................................................................................................................... 12 

3.3.2 HDFS ................................................................................................................................................................ 13 

3.3.3 NFS ................................................................................................................................................................... 15 

3.3.4 Connectors and gateways ................................................................................................................................ 16 

3.4 Storage engine ................................................................................................................................................. 16 

3.4.1 Storage services ............................................................................................................................................... 16 

3.4.2 Data .................................................................................................................................................................. 17 

3.4.3 Data management ............................................................................................................................................ 18 

3.4.4 Data flow ........................................................................................................................................................... 20 

3.4.5 Write optimizations for file size ......................................................................................................................... 20 

3.4.6 Space reclamation ............................................................................................................................................ 21 

3.4.7 SSD metadata caching ..................................................................................................................................... 21 

3.5 Fabric ................................................................................................................................................................ 22 

3.5.1 Node agent ....................................................................................................................................................... 22 

3.5.2 Lifecycle manager............................................................................................................................................. 23 

3.5.3 Registry ............................................................................................................................................................. 23 

3.5.4 Event library ...................................................................................................................................................... 23 

3.5.5 Hardware manager ........................................................................................................................................... 23 

3.6 Infrastructure ..................................................................................................................................................... 23 

3.6.1 Docker .............................................................................................................................................................. 23 

4 Appliance hardware models ....................................................................................................................................... 25 

4.1 EX-series .......................................................................................................................................................... 25 



Table of contents 

4 ECS Overview and Architecture | h14071.16 

4.2 Appliance networking ....................................................................................................................................... 26 

4.2.1 25Gbe switches - front-end top-of-rack (TOR) public switches ........................................................................ 26 

4.2.2 25Gbe switches - back-end TOR private switches ........................................................................................... 28 

5 Network separation .................................................................................................................................................... 29 

6 Security ....................................................................................................................................................................... 30 

6.1 Authentication ................................................................................................................................................... 30 

6.2 Data services authentication ............................................................................................................................ 31 

6.3 Data-at-rest encryption (D@RE) ...................................................................................................................... 31 

6.3.1 Key rotation ....................................................................................................................................................... 31 

6.4 ECS IAM ........................................................................................................................................................... 32 

6.5 Object tagging ................................................................................................................................................... 33 

6.5.1 Additional information about object tagging ..................................................................................................... 34 

7 Data integrity and protection ...................................................................................................................................... 35 

7.1 Compliance ....................................................................................................................................................... 36 

8 Deployment ................................................................................................................................................................ 37 

8.1 Single site deployment ..................................................................................................................................... 38 

8.2 Multisite deployment ......................................................................................................................................... 39 

8.2.1 Data consistency .............................................................................................................................................. 40 

8.2.2 Active replication group .................................................................................................................................... 40 

8.2.3 Passive replication group ................................................................................................................................. 41 

8.2.4 Geo-caching remote data ................................................................................................................................. 43 

8.2.5 Behavior during site outage .............................................................................................................................. 43 

8.3 Failure tolerance ............................................................................................................................................... 45 

8.4 Disk replacement automation ........................................................................................................................... 47 

8.5 Tech refresh ...................................................................................................................................................... 47 

9 Storage protection overhead ...................................................................................................................................... 48 

10 Conclusion .................................................................................................................................................................. 50 

A Technical support and resources ............................................................................................................................... 51 

  



Executive summary 

5 ECS Overview and Architecture | h14071.16 

Executive summary 

Organizations require options for consuming public cloud services with the reliability and control of a private-

cloud infrastructure. Dell EMC ECS is a software-defined, IPv6-supported, cloud-scale, object storage 

platform that delivers S3, Atmos, CAS, Swift, NFSv3 and HDFS storage services on a single, modern 

platform. 

With ECS, administrators can easily manage globally distributed storage infrastructure under a single global 

namespace that provides anywhere access to content. ECS core components are layered for flexibility and 

resiliency. Each layer is abstracted and independently scalable with high availability. 

Simple RESTful API access for storage services are being embraced by developers. Use of HTTP semantics 

like GET and PUT simplifies the application logic required when compared with traditional, but familiar, path-

based file operations. In addition, ECSôs underlying storage system is strongly consistent, which means it can 

guarantee an authoritative response. Applications that are required to guarantee authoritative delivery of data 

are able to do so without complex code logic simply by using ECS. 



Introduction 

6 ECS Overview and Architecture | h14071.16 

1 Introduction 
This document provides an overview of Dell EMC ECS object storage platform. It details the ECS design 

architecture and core components such as the storage services and data protection mechanisms. 

1.1 Audience 
This paper is intended for anyone interested in understanding the value and architecture of ECS. It aims to 

provide context with links to additional information. 

1.2 Scope 
This document focuses primarily on ECS architecture. It does not cover installation, administration, and 

upgrade procedures for ECS software or hardware. It also does not cover specifics on using and creating 

applications with the ECS APIs.  

Updates to this document are done periodically and generally coincide with major releases or new features. 



Value of ECS 

7 ECS Overview and Architecture | h14071.16 

2 Value of ECS 
ECS provides significant value for enterprises and service providers seeking a platform architected to support 

rapid data growth. The main advantages and features of ECS that enable enterprises to globally manage and 

store distributed content at scale include: 

¶ Cloud Scale - ECS is an object storage platform for both traditional and next-gen workloads. ECSôs 

software-defined layered architecture promotes limitless scalability. Feature highlights are: 

-  Globally distributed object infrastructure 

-  Exabyte+ scale without limits on storage pool, cluster or federated environment capacity 

-  No limits exist on the number of objects in a system, namespace or bucket 

-  Efficient at both small and large file workloads with no limits to object size 

¶ Flexible Deployment - ECS has unmatched flexibility with features such as: 

-  Appliance deployment 

-  Software-only deployment with support for certified or custom industry standard hardware 

-  Multi-protocol support: Object (S3, Swift, Atmos, CAS) and File (HDFS, NFSv3) 

-  Multiple workloads: Modern apps and long-term archive 

-  Secondary storage for Data Domain Cloud Tier and Isilon using CloudPools 

-  Non-disruptive upgrade paths from previous to current generation ECS models 

¶ Enterprise Grade - ECS provides customers more control of their data assets with enterprise class 

storage in a secure and compliant system with features such as: 

-  Data-at-rest (D@RE) with key rotation and external key management. 

-  Encrypted inter-site communication 

-  Disables ports 9101/9206 by default to empowers organizations to meet compliance policies   

-  Reporting, policy- and event-based record retention and platform hardening for SEC Rule 17a-

4(f) compliance including advanced retention management such as litigation hold and min-max 

governance 

-  Compliance with Defense Information Systems Agency (DISA) Security Technical Implementation 

Guide (STIG) hardening guidelines 

-  Authentication, authorization and access controls with Active directory and LDAP 

-  Integration with monitoring and alerting infrastructure (SNMP traps and SYSLOG) 

-  Enhanced enterprise capabilities (multi-tenancy, capacity monitoring and alerting) 

¶ TCO Reduction - ECS can dramatically reduce Total Cost of Ownership (TCO) relative to both 

traditional storage and public cloud storage. It even offers a lower TCO than tape for long-term 

retention. Features include: 

-  Global namespace 

-  Small and large file performance 

-  Seamless Centera migration 

-  Fully compliant with Atmos REST 

-  Low management overhead 

-  Small datacenter footprint 

-  High storage utilization 



Value of ECS 

8 ECS Overview and Architecture | h14071.16 

The design of ECS is optimized for the following primary use cases: 

¶ Modern Applications - ECS designed for modern development such as for next-gen web, mobile 

and cloud applications. Application development is simplified with strongly-consistent storage. Along 

with multi-site, simultaneous multi-user read/write access, as the ECS capacity changes and grows, 

developers never need to recode their apps. 

¶ Secondary Storage - ECS is used as secondary storage to free up primary storage of infrequently 

accessed data, while also keeping it reasonably accessible. Examples are policy-based tiering 

products such as DataDomain Cloud Tier and Isilon CloudPools. GeoDrive, a Windows-based 

application, gives Windows systems direct access to ECS to store data. 

¶ Geo-Protected Archive - ECS serves as a secure and affordable on-premise cloud for archival and 

long-term retention purposes. Using ECS as an archive tier can significantly reduce primary storage 

capacities. To allow for better storage efficiencies for cold archive use cases a 10+2 erasure coding 

(EC) scheme is available in addition to the default of 12+4. 

¶ Global Content Repository - Unstructured content repositories containing data such as images and 

videos are often stored in high cost storage systems making it impossible for businesses to cost-

effectively manage massive data growth. ECS enables consolidation of multiple storage systems into 

a single, globally accessible and efficient content repository. 

¶ Storage for Internet of Things - The Internet of Things (IoT) offers a new revenue opportunity for 

businesses who can extract value from customer data. ECS offers an efficient IoT architecture for 

unstructured data collection at massive scale. With no limits on the number of objects, the size of 

objects or custom metadata, ECS is the ideal platform to store IoT data. ECS can also streamline 

some analytic workflows by allowing data to be analyzed directly on the ECS platform without 

requiring time consuming extract, transform and load (ETL) processes. Hadoop clusters can run 

queries using data stored on ECS by another protocol API such as S3 or NFS. 

¶ Video Surveillance Evidence Repository - In contrast to IoT data, video surveillance data has a 

much smaller object storage count, but a much higher capacity footprint per file. While data 

authenticity is important, data retention is not as critical. ECS can be a low-cost landing area or 

secondary storage location for this data. Video management software can leverage the rich custom 

metadata capabilities for tagging files with important details like camera location, retention 

requirement and data protection requirement. Also, metadata can be used to set the file to a read-

only status to ensure a chain of custody on the file. 

¶ Data lakes and Analytics - Data and analytics have become a competitive differentiator and a 

primary source of value generation for organizations. However, transforming data into a valuable 

corporate asset is a complex topic that can easily entail the use of dozens of technologies, tools, and 

environments. ECS provide a set of services to help customer collecting, storing, governing, and 

analyzing data at any scale.  

 



Architecture 

9 ECS Overview and Architecture | h14071.16 

3 Architecture 
ECS is architected with a few core design principles, such as global namespace with strong consistency; 

scale-out capability, secure multi-tenancy; and superior performance for both small and large objects. ECS is 

built as a completely distributed system following the principle of cloud applications, where every function in 

the system is built as an independent layer. With this design, each layer is horizontally scalable across all 

nodes in the system. Resources are distributed across all nodes to increase availability and share the load. 

This section will go in-depth into the ECS architecture and design of the software and hardware. 

3.1 Overview 
ECS is deployed on a set of qualified industry standard hardware or as a turnkey storage appliance. The main 

components of ECS are the: 

¶ ECS Portal and Provisioning Services - API-based WebUI and CLI for self-service, automation, 

reporting and management of ECS nodes. This layer also handles licensing, authentication, multi-

tenancy and provisioning services such as namespace creation. 

¶ Data Services - Services, tools and APIs to support object and file access to the system. 

¶ Storage Engine - Core service responsible for storing and retrieving data, managing transactions, 

and protecting and replicating data locally and between sites. 

¶ Fabric - Clustering service for health, configuration and upgrade management and alerting. 

¶ Infrastructure - SUSE Linux Enterprise Server 12 for the base operating system in the turnkey 

appliance or qualified Linux operating systems for industry standard hardware configuration. 

¶ Hardware - A turnkey appliance or qualified industry standard hardware. 

Figure 1 shows a graphical view of these layers which are described in detail in the sections that follow. 

 

Figure 1 ECS architecture layers 

 



Architecture 

10 ECS Overview and Architecture | h14071.16 

3.2 ECS portal and provisioning services 
Storage administrators manage ECS using the ECS Portal and provisioning services. ECS provides a web-

based GUI (WebUI) to manage, license and provision ECS nodes. The portal has comprehensive reporting 

capabilities that include: 

¶ Capacity utilization per site, storage pool, node and disk. 

¶ Performance monitoring on latency, throughput, and replication progress. 

¶ Diagnostic information, such as node and disk recovery status. 

The ECS dashboard provides overall system-level health and performance information. This unified view 

enhances overall system visibility. Alerts notify users about critical events, such as capacity limits, quota 

limits, disk or node failures or software failures. ECS also provides a command-line interface to install, 

upgrade and monitor ECS. Access to nodes for command-line usage is done via SSH. A screenshot of the 

ECS Dashboard appears in Figure 2 below. 

 

Figure 2 ECS web UI dashboard 

  



Architecture 

11 ECS Overview and Architecture | h14071.16 

Detailed performance reporting is available in the UI under the Advance Monitoring folder. The reports are 

displayed in a Grafana dashboard. There are filters available to drill into specified Namespaces, Protocols or 

Nodes.  An example of an S3 protocol performance report is shown below in Figure 3. 

 

Figure 3 Advanced monitoring visualization using Grafana 

ECS can also be managed using RESTful APIs. The management API allows users to administer ECS within 

their own tools, scripts and new or existing applications. The ECS web UI and command-line tools are built 

using the ECS REST Management APIs. 

ECS supports the following event notification servers which can be set using the web UI, API or CLI: 

¶ SNMP (Simple Network Management Protocol) servers 

¶ Syslog servers 

The ECS Administratorôs Guide has more information and details on configuring notification services. 

  

https://grafana.com/
https://grafana.com/
https://grafana.com/


Architecture 

12 ECS Overview and Architecture | h14071.16 

3.3 Data services 
Standard object and file methods are used to access ECS storage services. For S3, Atmos and Swift, 

RESTful APIs over HTTP are used for access. For Content Addressable Storage (CAS), a proprietary access 

method/SDK is used. ECS natively supports all the NFSv3 procedures except for LINK. A custom ECS jar file 

can be installed on Hadoop nodes that allow ECS to be used as a Hadoop Compatible File System. 

ECS provides multi-protocol access where data ingested through one protocol can be accessed through 

others. This means that data can be ingested through S3 and modified through NFSv3 or Swift, or vice versa. 

There are some exceptions to multi-protocol access due to protocol semantics and representations of 

protocol design. Table 1 highlights the access methods and which protocols interoperate. 

Table 1 ECS supported data services and protocol interoperability 

Protocols Supported Interoperability 

Object S3 Additional capabilities like Byte Range 
Updates and Rich ACLS 

HDFS, NFS, Swift 

Atmos Version 2.0 NFS (path-based objects only and not 
object ID style based) 

Swift V2 APIs and Swift and Keystone v3 
Authentication 

HDFS, NFS, S3 

CAS SDK v3.1.544 or later N/A 

File HDFS Hadoop 2.7 compatibility S3, S3A, NFS, Swift 

NFS NFSv3 S3, Swift, HDFS, Atmos (path-based 
objects only and not object ID style based) 

 

Data services, which are also referred to as head services, are responsible for taking client requests, 

extracting required information, and passing it to the storage engine for further processing. All head services 

are combined to a single process, dataheadsvc, running inside the infrastructure layer. This process is further 

encapsulated within a Docker container named object-main. which runs on every node within ECS. The 

Infrastructure section of this document covers Docker in more detail. ECS protocol service port requirements, 

such as port 9020 for S3 communication, are available in the latest ECS Security Configuration Guide. 

3.3.1 Object 
ECS supports S3, Atmos, Swift and CAS APIs for object access. Except for CAS, objects or data are written, 

retrieved, updated, and deleted via HTTP or HTTPS calls of GET, POST, PUT, DELETE and HEAD. For 

CAS, standard TCP communication and specific access methods and calls are used. 

ECS provides a facility for metadata search for objects using a rich query language. This is a powerful feature 

of ECS that allows S3 object clients to search for objects within buckets using system and custom metadata. 

While search is possible using any metadata, by searching on metadata that has been specifically configured 

to be indexed in a bucket, ECS can return queries quicker, especially for buckets with billions of objects. 

Up to thirty metadata fields can be indexed per bucket. Metadata is specified at the time of bucket creation. 

Metadata search feature can be enabled on buckets with server-side encryption enabled; however, any 

indexed user metadata attribute utilized as a search key will not be encrypted. 



Architecture 

13 ECS Overview and Architecture | h14071.16 

Note: There is a performance impact when writing data in buckets configured to index metadata. The impact 

to operations increases as the number of indexed fields increases. Impact to performance needs careful 

consideration on choosing if to index metadata in a bucket, and if so, how many indexes to maintain. 

For CAS objects, CAS query API provides similar ability to search for objects based on metadata that is 

maintained for CAS objects which does not need to be enabled explicitly. 

For more information on ECS APIs and APIs for metadata search see the latest ECS Data Access Guide. For 

Atmos and S3 SDKs refer to the GitHub site Dell EMC Data Services SDK or Dell EMC ECS. For CAS refer 

to the Centera Community site. Access to numerous examples, resources and assistance for developers can 

be found in the ECS Community. 

Client applications such as S3 Browser and Cyberduck provide a way to quickly test or access data stored in 

ECS. ECS Test Drive is freely provided by Dell EMC which allows access to an ECS system for testing and 

development purposes. After registering for ECS Test Drive, REST endpoints are provided with user 

credentials for each of the object protocols. Anyone can use ECS Test drive to test their S3 API application. 

Note: Only the number of metadata that can be indexed per bucket is limited to thirty in ECS. There is no 

limitation to the total number of custom metadata stored per object, only the number indexed for fast lookup. 

3.3.2 HDFS 
ECS can store Hadoop file system data. As a Hadoop-compatible file system, organizations can create big 

data repositories on ECS that Hadoop analytics can consume and process. The HDFS data service is 

compatible with Apache Hadoop 2.7, with support for fine-grained ACLs and extended filesystem attributes. 

ECS has been integrated with Ambari, which allows you to easily deploy the ECS HDFS client jar file and 

specify ECS HDFS as the default filesystem in a Hadoop cluster. The jar file is installed on each node within a 

participating Hadoop cluster. ECS provides file system and storage functionality equivalent to what name and 

data nodes do in a Hadoop deployment. ECS streamlines the workflow of Hadoop by eliminating the need for 

migration of data to a local Hadoop DAS and/or creating a minimum of three copies. Figure 4 below shows 

the ECS HDFS Client jar file installed on each Hadoop compute node and the general communication flow. 

 

Figure 4 ECS serving as name and data nodes for a Hadoop cluster 

  



Architecture 

14 ECS Overview and Architecture | h14071.16 

Other enhancements added in ECS for HDFS include the following:  

¶ Proxy user authentication - Impersonation for Hive, HBase, and Oozie. 

¶ Security - Server-side ACL enforcement and addition of Hadoop superuser and superuser group as 

well as default group on buckets. 

ECS has been validated and tested with Hortonworks (HDP 2.7). ECS also has support for services such as 

YARN, MapReduce, Pig, Hive/Hiveserver2, HBase, Zookeeper, Flume, Spark, and Sqoop. 

3.3.2.1 Hadoop S3A support  
ECS supports the Hadoop S3A client for storing Hadoop data. S3A is an open source connector for Hadoop, 

based on the official Amazon Web Services (AWS) SDK. It was created to address storage scaling and cost 

problems that many Hadoop admin were having with HDFS. Hadoop S3A connects Hadoop clusters to any 

S3 compatible object store whether in the public, hybrid, or on-premises cloud. 

Note: S3A support is available on Hadoop 2.7 or later version 

Hadoop configuration analysis using ECS Service Console 

The ECS Service Console (SC) can read and interpret your Hadoop configuration parameters with respect to 

connections to ECS for S3A. Also, SC provides a function, Get_Hadoop_Config that reads the Hadoop cluster 

configuration and checks S3A settings for typos, errors, and values. Contact ECS support team for assistance 

with installing ECS SC. 

Privacera implementation with Hadoop S3A 

Privacera is a third-party vendor that has implemented a Hadoop client-side agent and integration with Ambari 

for S3 (AWS and ECS) granular security. Although Privacera supports Cloudera Distribution of Hadoop 

(CDH), Cloudera (another third-party vendor) does not support Privacera on CDH. 

Note: CDH users must use ECS IAM security services. If you want secure access to S3A without using ECS 

IAM, contact the support team. 

See the latest ECS Data Access Guide for further information on S3A support 

3.3.2.2 Hadoop S3A security 
ECS IAM allows the Hadoop administrator to setup access policies to control access to S3A Hadoop data. 

Once the access policies are defined, there are two user access options for Hadoop administrators to 

configure: 

¶ IAM Users/Groups  

-  Create IAM groups that attach to policies  

-  Create IAM users that are members of an IAM group 

¶ SAML Assertions (Federated Users) 

-  Create IAM roles that attach to policies 

-  Configure CrossTrustRelationship between Identity Provider (AD FS) and ECS that map AD 

groups to IAM roles 

  



Architecture 

15 ECS Overview and Architecture | h14071.16 

ECS admin and Hadoop admin need to work together to pre-define appropriate policies. The fictional 

examples that follow outline three types of Hadoop users that we will create policies for.  They are: 

¶ Hadoop Administrator - do all operations, except create bucket and delete bucket 

¶ Hadoop Power User - do all operations except create bucket, delete bucket and delete objects 

¶ Hadoop Read Only User - only list and read objects 

For more information about ECS IAM, see ECS IAM on page 32.  

3.3.3 NFS 
ECS includes native file support with NFSv3. The main features for the NFSv3 file data service include: 

¶ Global namespace - File access from any node at any site. 

¶ Global locking - In NFSv3 locking is advisory only. ECS supports compliant client implementations 

that allow for shared and exclusive, range-based and mandatory locks. 

¶ Multi-protocol access - Access to data using different protocol methods. 

NFS exports, permissions and user group mappings are created using the WebUI or API. NFSv3 compliant 

clients mount exports using namespace and bucket names. Here is a sample command to mount a bucket:  

mount ït nfs ïo ve rs=3 s3.dell.com :/namespace/bucket  

To achieve client transparency during a node failure, a load balancer is recommended for this workflow. 

ECS has tightly integrated the other NFS server implementations, such as lockmgr, statd, nfsd, and mountd, 

hence, these services are not dependent on the infrastructure layer (host operating system) to manage. 

NFSv3 support has the following features: 

¶ No design limits on the number of files or directories. 

¶ File write size can be up to 4TB. 

¶ Ability to scale across up to 8 sites with a single global namespace/export. 

¶ Support for Kerberos and AUTH_SYS authentication. 

NFS file services process NFS requests coming from clients; however, data is stored as objects within ECS. 

An NFS file handle is mapped to an object id. Since the file is basically mapped to an object, NFS has 

features like the object data service, including: 

¶ Quota management at the bucket level. 

¶ Encryption at the object level. 

¶ Write-Once-Read-Many (WORM) to the bucket level. 

-  WORM is implemented using Auto Commit period during new bucket creation. 

-  WORM is only applicable to non-compliant buckets. 

 

 

 

 

 

 



Architecture 

16 ECS Overview and Architecture | h14071.16 

3.3.4 Connectors and gateways 
Several third-party software products have the capability to access ECS object storage. Independent software 

vendors (ISVs) such as Panzura, Ctera and Syncplicity create a layer of services that offer client access to 

ECS object storage via traditional protocols such as SMB/CIFS, NFS and iSCSI. Organizations can also 

access or upload data to ECS storage with the following Dell EMC products: 

¶ Isilon CloudPools - Policy-based tiering of data to ECS from Isilon. 

¶ Data Domain Cloud Tier - Automated native tiering of deduplicated data to ECS from Data Domain 

for long-term retention. Data Domain Cloud Tier provides a secure and cost-effective solution to 

encrypt data in the cloud with a reduced storage footprint and network bandwidth. 

¶ GeoDrive - ECS stub-based storage service for Microsoft® Windows® desktops and servers. 

3.4 Storage engine 
At the core of ECS is the storage engine. The storage engine layer contains the main components 

responsible for processing requests as well as storing, retrieving, protecting and replicating data. 

This section describes the design principles and how data is represented and handled internally. 

3.4.1 Storage services 
The ECS storage engine includes the following services as shown in Figure 5. 

 

Figure 5 Storage engine services 

The services of the Storage Engine are encapsulated within a Docker container that runs on every ECS node 

to provide a distributed and shared service. 

 

 



Architecture 

17 ECS Overview and Architecture | h14071.16 

3.4.2 Data 
The primary types of data stored in ECS can be summarized as follows: 

¶ Data - Application- or user-level content stored such as an image. Data is used synonymously with 

object, file or content. Applications may store an unlimited amount of custom metadata with each 

object. The storage engine writes data and associated application-provided custom metadata 

together in a logical repository. Custom metadata is a robust feature of modern storage systems that 

provide further information or categorization of the data being stored. Custom metadata is formatted 

as key-value pairs and provided with write requests. 

¶ System metadata - System information and attributes relating to user data and system resources. 

System metadata can be broadly categorized as follows: 

-  Identifiers and descriptors - A set of attributes used internally to identify objects and their 

versions. Identifiers are either numeric ids or hash values which are not of use outside the ECS 

software context. Descriptors define information such as type of encoding. 

-  Encryption keys in encrypted format - Data encryption keys are considered system metadata. 

They are stored in encrypted form inside the core directory table structure. 

-  Internal flags - A set of indicators used to track if byte range updates or encryption are enabled, 

as well as to coordinate caching and deletion. 

-  Location information - Attribute set with index and data location such as byte offsets. 

-  Timestamps - Attribute set that tracks time such as for object create or update. 

-  Configuration/tenancy information - Namespace and object access control. 

Data and system metadata are written in chunks on ECS. An ECS chunk is a 128MB logical container of 

contiguous space. Each chunk can have data from different objects, as shown below in Figure 6. ECS uses 

indexing to keep track of all the parts of an object that may be spread across different chunks and nodes.  

Chunks are written in an append-only pattern. The append-only behavior means that an applicationôs request 

to modify or update an existing object will not modify or delete the previously written data within a chunk, but 

rather the new modifications or updates will be written in a new chunk. Therefore, no locking is required for 

I/O and no cache invalidation is required. The append-only design also simplifies data versioning. Old 

versions of the data are maintained in previous chunks. If S3 versioning is enabled and an older version of the 

data is needed, it can be retrieved or restored to a previous version using the S3 REST API. 

 

Figure 6 128MB chunk storing data of three objects 

The Data Integrity and Protection section below explains how data is protected at the chunk level. 

  



Architecture 

18 ECS Overview and Architecture | h14071.16 

3.4.3 Data management 
ECS uses a set of logical tables to store information relating to the objects. Key-value pairs are eventually 

stored on disk in a B+ tree for fast indexing of data locations. By storing the key-value pair in a balanced, 

searched tree like a B+ tree, the location of the data and metadata can be accessed quickly. ECS implements 

a two-level log-structured merge tree where there are two tree-like structures; a smaller tree is in memory 

(memory table) and the main B+ tree resides on disk. Lookup of key-value pairs occurs in memory first 

subsequently at the main B+ tree on disk if needed. Entries in these logical tables are first recorded in journal 

logs and these logs are written to disks in triple-mirrored chunks. The journals are used to track transactions 

not yet committed to the B+ tree. After each transaction is logged into a journal, the in-memory table is 

updated. Once the table in the memory becomes full or after a certain period, its merge sorted or dumped to 

B+ tree on disk. The number of journal chunks used by the system is insignificant when compared to B+ tree 

chunks. Figure 7 illustrates this process. 

 

Figure 7 Memory table dumped to B+ tree 

Information stored in the Object table (OB) are shown below in Table 2. The OB table contains the names of 

objects and their chunk location at a certain offset and length within that chunk. In this table, the object name 

is the key to the index and the value is the chunk location. The index layer within the Storage Engine is 

responsible for the object name-to-chunk mapping. 

Table 2 Object table entries 

Object Name Chunk Location 

ImgA ¶ C1:offset:length 

FileB ¶ C2:offset:length 

¶ C3:offset:length 

 

The chunk table (CT) records the location for each chunk as detailed in Table 3. 

Table 3 Chunk table entries 

Chunk ID Location 

C1 ¶ Node1:Disk1:File1:Offset1:Length 

¶ Node2:Disk2:File1:Offset2:Length 

¶ Node3:Disk2:File6:Offset:Length 



Architecture 

19 ECS Overview and Architecture | h14071.16 

ECS was designed to be a distributed system such that storage and access of data are spread across all 

nodes. Tables used to manage object data and metadata grow over time as the storage is used and grows. 

The tables are divided into partitions and assigned to different nodes where each node becomes the owner of 

the partitions it is hosting for each of the tables. To get the location of a chunk, for example, the Partition 

Records table (PR) is queried for owner node which has knowledge of the chunk location. A basic PR table is 

illustrated in Table 4 below. 

Table 4 Partition records table entries 

Partition ID Owner 

P1 Node 1 

P2 Node 2 

P3 Node 3 

 

If a node goes down, other nodes take ownership of its partitions. The partitions are recreated by reading the 

B+ tree root and replaying the journals stored on disk. Figure 8 shows the failover of partition ownership. 

 

Figure 8 Failover of partition ownership 

  



Architecture 

20 ECS Overview and Architecture | h14071.16 

3.4.4 Data flow 
Storage services are available from any node. Data is protected by distributed EC segments across drives, 

nodes and racks. ECS runs a checksum function and stores the result with each write. If the first few bytes of 

data are compressible ECS will compress the data. With reads, data is decompressed, and its stored 

checksum is validated. Here is an example of a data flow for a write in five steps: 

1. Client sends object create request to a node. 

2. Node servicing the request writes the new objectôs data in to a repo (short for repository) chunk.  

3. On successful write to disk a PR transaction occurs to enter name and chunk location. 

4. The partition owner records the transaction in journal logs. 

5. Once the transaction has been recorded in the journal logs, an acknowledgement is sent to the client. 

As shown in Figure 9 below, an example the data flow for a read is as follows: 

1. A read object request is sent from client to Node 1. 

2. Node 1 utilizes a hash function using the object name to determine which node is the partition owner 

of the logical table where this object information resides. In this example, Node 2 is owner and thus 

Node 2 will do a lookup in the logical tables to get location of chunk. In some cases, the lookup can 

occur on two different nodes, for instance when the location is not cached in logical tables of Node 2. 

3. From the previous step, location of chunk is provided to Node 1 who will then issue a byte offset read 

request to the node that holds the data, Node 3 in this example, and will send data to Node 1. 

4. Node 1 sends data to requesting client. 

 

Figure 9 Read data flow 

3.4.5 Write optimizations for file size 
For smaller writes to storage ECS uses a method called box-carting to minimize impact to performance. Box-

carting aggregates multiple smaller writes of 2MB or less in memory and writes them in a single disk 

operation. Box-carting limits the number of roundtrips to disk required process individual writes. 

For writes of larger objects, nodes within ECS can process write requests for the same object simultaneously 

and take advantage simultaneous writes across multiple spindles in the ECS cluster. Thus, ECS can ingest 

and store small and large objects efficiently. 



Architecture 

21 ECS Overview and Architecture | h14071.16 

3.4.6 Space reclamation 
Writing chunks in an append-only manner means that data is added or updated by first keeping the original 

written data in place and secondly by creating net new chunk segments which may or may not be included in 

the chunk container of the original object. The benefit of append-only data modification is an active/active 

data access model which is not hindered by file-locking issues of traditional filesystems. This being the case, 

as objects are updated or deleted, data in chunks becomes no longer referenced or needed. Two garbage 

collection methods used by ECS to reclaim space from discarded full chunks, or chunks containing a mixture 

of deleted and non-deleted object fragments which are no longer referenced, are: 

¶ Normal Garbage Collection - When an entire chunk is garbage, reclaim space. 

¶ Partial Garbage Collection by Merge - When a chunk is 2/3 garbage, reclaim the chunk by merging 

the valid parts of with other partially filled chunks to a new chunk, reclaim space. 

Garbage collection has also been applied to the ECS CAS data services access API to clean up orphan 

blobs. Orphan blobs, which are unreferenced blobs identified in the CAS data stored on ECS, will be eligible 

for space reclamation via normal garbage collection methods. 

3.4.7 SSD metadata caching   
ECS metadata is stored in B-trees.  Each B-tree may have entries in memory, journal transactions and on 

disk. For the system to have a complete picture of a particular B-tree all three locations are queried which 

often includes multiple look ups to disk. 

To minimize latency for metadata lookups, an optional SSD-based cache mechanism has been implemented 

in ECS 3.5. The cache holds recently accessed B-tree pages. This means read operations on the latest B-

trees will always hit the SSD-based cache and avoids trips to spinning disks. 

Here are some highlights for the new SSD metadata caching feature: 

¶ Improved system-wide read latency and TPS (Transactions Per Second) for small files 

¶ One 960GB flash drive per node 

¶ Net new nodes from manufacturing include the SSD drive as an option 

¶ Existing field nodesðGen3 and Gen2ðcan be upgraded via upgrade kits and self-service installation  

¶ SSD drives can be added while ECS is online 

¶ Improvement for small file analytics workloads which require fast reads of large data sets 

 

 

 

 

 

 

 

 

 

 

 



Architecture 

22 ECS Overview and Architecture | h14071.16 

The ECS fabric detects when a SSD kit has been installed. This triggers the system to automatically initialize 
and begin using the new drive. Figure 10 shows SSD cache enabled. 

Figure 10 SSD cache enabled 
 

SSD metadata caching improves small reads and bucket listing. As we tested in our lab, the listing 

performance improves 50% with 10MB objects. The read performance improve 35% with 10KB objects and 

70% with 100KB objects. 

3.5 Fabric 
The Fabric layer provides clustering, system health, software management, configuration management, 

upgrade capabilities and alerting. It is responsible for keeping services running and managing resources such 

as disks, containers and the network. It tracks and reacts to environment changes such as failure detection 

and provides alerts related to system health. The Fabric layer has the following components: 

¶ Node Agent - Manages host resources (disks, network, containers, etc.) and system processes. 

¶ Lifecyle Manager - Application lifecycle management which involves starting services, recovery, 

notification and failure detection. 

¶ Persistence Manager - Coordinates and synchronizes the ECS distributed environment. 

¶ Registry - Docker image store for ECS software. 

¶ Event Library - Holds the set of events occurring on the system. 

¶ Hardware Manager - Provides status, event information and provisioning of the hardware layer to 

higher level services. These services have been integrated to support commodity hardware. 

3.5.1 Node agent 
The node agent is a lightweight agent written in Java that runs natively on all ECS nodes. Its main duties 

include managing and controlling host resources (Docker containers, disks, the firewall, the network) and 

monitoring system processes. Examples of management include formatting and mounting disks, opening 

required ports, ensuring all processes are running, and determining public and private network interfaces. It 



Architecture 

23 ECS Overview and Architecture | h14071.16 

has an event stream that provides ordered events to a lifecycle manager to indicate events occurring on the 

system. A Fabric CLI is useful to diagnose issues and look at overall system state. 

3.5.2 Lifecycle manager 
The lifecycle manager runs on a subset of three or five nodes and manages the lifecycle of applications 

running on nodes. Each lifecycle manager is responsible for tracking several nodes. Its main goal is to 

manage the entire lifecycle of the ECS application from boot to deployment, including failure detection, 

recovery, notification and migration. It looks at the node agent streams and drives the agent to handle the 

situation. When a node is down, it responds to failures or inconsistencies in the state of the node by restoring 

the system to a known good state. If a lifecycle manager instance is down, another one takes its place. 

3.5.3 Registry 
The registry contains the ECS Docker images used during installation, upgrade and node replacement. A 

Docker container called fabric-registry runs on one node within the ECS rack and holds the repository of ECS 

Docker images and information required for installations and upgrades. Although the registry is available on 

one node at a time, all Docker images are locally cached on every node, so any may serve the registry. 

3.5.4 Event library 
The event library is used within the Fabric layer to expose the lifecycle and node agent event streams. Events 

generated by the system are persisted onto shared memory and disk to provide historical information on the 

state and health of the ECS system. These ordered event streams can be used to restore the system to a 

specific state by replaying the ordered events stored. Some examples of events include node events such as 

started, stopped or degraded. 

3.5.5 Hardware manager 
The hardware manager is integrated to the Fabric Agent to support industry standard hardware. Its main 

purpose is to provide hardware specific status and event information, and provisioning of the hardware layer 

to higher level services within ECS. 

3.6 Infrastructure 
ECS appliance nodes currently run SUSE Linux Enterprise Server 12 for the infrastructure. For ECS software 

deployed on custom industry standard hardware the operating system can also be RedHat Enterprise Linux 

or CoreOS. Custom deployments are done via a formal request and validation process. Docker is installed on 

the infrastructure to deploy the encapsulated ECS layers. ECS software is written in Java so the Java Virtual 

Machine is installed as part of the infrastructure. 

3.6.1 Docker 
ECS runs on top of the operating system as a Java application and is encapsulated within several Docker 

containers. The containers are isolated but share the underlying operating system resources and hardware. 

Some parts of ECS software run on all nodes and some run on one or some nodes. The components running 

within a Docker container include: 

¶ object-main - Contains the resources and processes relating to the data services, storage engine 

and the portal and provisioning services. Runs on every node in ECS. 

¶ fabric-lifecycle - Contains the processes, information and resources required for system-level 

monitoring, configuration management and health management. An odd number of fabric-lifecycle 



Architecture 

24 ECS Overview and Architecture | h14071.16 

instances will always be running. For example, there will be three instances running on a four-node 

system and five instances for an eight-node system. 

¶ fabric-zookeeper - Centralized service for coordinating and synchronizing distributed processes, 

configuration information, groups and naming services. It is referred to as the persistence manager 

and runs on odd number of nodes, for instance, five in an eight-node system. 

¶ fabric-registry - Registry of the ECS Docker images. Only one instance runs per ECS rack. 

 

There are other processes and tools that run outside of a Docker container namely the Fabric node agent and 

hardware abstraction layer tools. Figure 11 below provides an example of how ECS containers can be run on 

an eight-node deployment. 

 

Figure 11 Docker containers and agents on eight node deployment example 

Figure 12 shows command line output of the docker ps command on a node which shows the four containers 

used by ECS inside Docker. A listing is shown with all of the object-related services available on the system. 

 

Figure 12 Processes, resources, tools and binaries in object-main container 



Appliance hardware models 

25 ECS Overview and Architecture | h14071.16 

4 Appliance hardware models 
Flexible entry points enable ECS to rapidly scale to petabytes and exabytes of data. With minimal business 

impact, an ECS solution can scale linearly in both capacity and performance by adding nodes and disks. 

ECS appliance hardware models are characterized by hardware generation. The third-generation appliance 

series, known as the Gen3 or EX-Series, include three hardware models. A high-level overview of the EX-

Series is provided in this section. For complete details refer to the ECS EX-Series Hardware Guide. 

Information on the first and second generation ECS appliance hardware is available in the Dell EMC ECS D- 

and U-Series Hardware Guide. 

4.1 EX-series  
EX series appliance models are based on standard Dell servers and switches. The 16TB disk drive will be 

support in ECS 3.5 at hardware available. The offerings in the series are: 

¶ EX300 - The EX300 has a starting raw capacity of 60 TB. They are the perfect storage platform for 

cloud-native apps and customer digital transformation initiatives. EX300 are ideal for modernizing 

Centera deployments. Most importantly, the EX300 can scale cost-effectively to larger capacities. It 

provides 12 drives per node and 1TB, 2TB, 4TB, 8TB, 16TB disk options (all same in the node) 

¶ EX500 - The EX500 is the latest edition appliance which aims to provide economy with density. With 

options for 12 or 24 drives, 8TB, 12TB and 16TB disk options (all same in the node). Cluster range 

from 480TB to 6.1PB per rack. This series provides a versatile option for midsize enterprises looking 

to support modern application and/or deep archive use cases. 

¶ EX3000 - The EX3000 has a maximum capacity of 11.5 PB of raw storage per rack, 30 to 90 drives 

per node, 12TB or 16TB disks and can grow into exabytes across several sites, providing a deep and 

scalable datacenter solution that is ideal for workloads with larger data footprints. These nodes are 

available in two different configurations known as EX3000S and EX3000D. The EX3000S is a single-

node, and the EX3000D is a dual-node chassis. These high-density nodes are hot disk-swappable. 

They start with a minimum of thirty disks per node. Thirty drives per ECS node is the point around 

which the gains in performance by adding more drives diminishes. With thirty or more drives in each 

node as a minimum, the performance expectations are similar across every EX3000 node regardless 

of drive count. 

The EX-Series starting capacity options allow customers to begin an ECS deployment with only the capacity 

needed, and to easily grow as needs change in the future. Refer to the ECS Appliance Specification Sheet for 

more details on the EX-Series appliances which also details the previous Gen2 U- and D- series appliances. 

Post deployment updates to EX-Series nodes are not supported. These include: 

¶ Changing the CPU. 

¶ Adjusting memory capacity. 

¶ Upgrading hard drive size. 

  



Appliance hardware models 

26 ECS Overview and Architecture | h14071.16 

4.2 Appliance networking 
Starting with the release of the EX-Series appliances, a redundant pair of dedicated back-end management 

switches are used. By moving to new appliance switch gear, ECS is now able to adopt a front- and back-end 

switching mode of configuration. In future releases of ECS, node-to-node traffic will be directed over the back-

end switches. Again, this functionality is not yet available with ECS 3.4 or earlier, however it was important to 

get the hardware level defined to support this direction of future development. 

4.2.1 25Gbe switches - front-end top-of-rack (TOR) public switches 
Two optional Dell EMC S5148F 25GbE 1U ethernet switches can be obtained for network connection, or the 

customer can provide their own 10 or 25GbE HA pair for the front-end connectivity. The public switches are 

often referred to as hare and rabbit or just the front-end.  

Caution: It is required to have connections from the customer's network to both front-end switches (rabbit and 

hare) in order to maintain the high availability architecture of the ECS appliance. If the customer chooses not 

to connect to their network in the required HA manner, there is no guarantee of high data availability for the 

use of this product. 

These switches provide 48 ports of 25GbE SFP28 and 6 ports of 100GbE QSFP28. More details of these two 

port types are: 

¶ SFP28 is an enhanced version of SFP+ 

-  SFP+ supports up to 16Gb/s, SFP28 supports up to 28Gb/s 

-  Same form factor 

-  Backwards compatible to SFP+ modules 

¶ QSFP28 is an enhanced version of QSFP+ 

-  QSFP+ supports up to 4 lanes of 16Gb/s, QSFP28 supports up to 4 lanes of 28Gb/s 

> QSFP+ aggregated lanes to obtain 40Gb/s Ethernet 

> QSFP28 aggregated lanes to obtain 100Gb/s Ethernet 

-  Same form factor 

-  Backwards compatible to QSFP+ modules 

-  Can be broken out into 4 individual lanes of SFP28 

Note: Two 100GbE LAG cables are provide with Dell EMC S5148F 25GbE public switches. Organizations 

providing their own public switches must supply required LAG, SFPs or external connection cables. 



Appliance hardware models 

27 ECS Overview and Architecture | h14071.16 

 

Figure 13 Front-end network switch port designation and usage 

Figure 13 above provides a visual representation of how ports are intended to be used to enable ECS node 

traffic as well as customer uplink ports. This is standard across all implementations.  

Figure 14 below shows a picture of a Dell EMC purpose-built 25GbE TOR switch (same switch model used 

for back-end connectivity) which is followed by switch details. 

 

Figure 14 Dell EMC purpose-built 25GbE 1RU TOR switch 

¶ S5148F-ON: 48 ports of 25GbE SFP28 and 6 ports of 100GbE QSFP28 

¶ Line rate performance 

¶ More bandwidth and lower latency vs current generation 

¶ DCB-enabled, VLT support, L2/L3 Feature Set 

¶ Complete OS10 feature set including programmability, automation and virtualization features 

¶ Cavium XP70 chipset 

¶ Data plane programmability 

¶ 1588v2 supported in hardware 

¶ TOR for Servers with 10G or 25G Adapters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


















































